首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In rabbit proximal convoluted tubules, an ATP-sensitive K(+) (K(ATP)) channel has been shown to be involved in membrane cross-talk, i.e. the coupling (most likely mediated through intracellular ATP) between transepithelial Na(+) transport and basolateral K(+) conductance. This K(+) conductance is inhibited by taurine. We sought to isolate this K(+) channel by expression cloning in Xenopus oocytes. Injection of renal cortex mRNA into oocytes induced a K(+) conductance, largely inhibited by extracellular Ba(2+) and intracellular taurine. Using this functional test, we isolated from our proximal tubule cDNA library a unique clone, which induced a large K(+) current which was Ba(2+)-, taurine- and glibenclamide-sensitive. Surprisingly, this clone is not a K(+) channel but an adenylate kinase protein (AK3), known to convert NTP+AMP into NDP+ADP (N could be G, I or A). AK3 expression resulted in a large ATP decrease and activation of the whole-cell currents including a previously unknown, endogenous K(+) current. To verify whether ATP decrease was responsible for the current activation, we demonstrated that inhibition of glycolysis greatly reduces oocyte ATP levels and increases an inwardly rectifying K(+) current. The possible involvement of AK in the K(ATP) channel's regulation provides a means of explaining their observed activity in cytosolic environments characterized by high ATP concentrations.  相似文献   

2.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

3.
K+ channels in the renal proximal tubule play an important role in salt reabsorption. Cells of the frog proximal tubule demonstrate an inwardly rectifying, ATP-sensitive K+ conductance that is inhibited by Ba2+, GBa. In this paper we have investigated the importance of phosphorylation state on the activity of GBa in whole-cell patches. In the absence of ATP, GBa decreased over time; this fall in GBa involved phosphorylation, as rundown was inhibited by alkaline phosphatase and was accelerated by the phosphatase inhibitor F(10 mM). Activation of PKC using the phorbol ester PMA accelerated rundown via a mechanism that was dependent on phosphorylation. In contrast, the inactive phorbol ester PDC slowed rundown. Inclusion of the PKC inhibitor PKC-ps in the pipette inhibited rundown. These data indicate that PKC-mediated phosphorylation promotes channel rundown. Rundown was prevented by the inclusion of PIP-2 in the pipette. PIP-2 also abrogated the PMA-mediated increase in rundown, suggesting that regulation of GBa by PIP-2 occurred downstream of PKC-mediated phosphorylation. G-protein activation inhibited GBa, with initial currents markedly reduced in the presence of GTPγs. These properties are consistent with GBa being a member of the ATP-sensitive K+ channel family.  相似文献   

4.
Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir) play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs) that was regulated by the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-β-S and choleratoxin suggested that currents weren’t determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems.  相似文献   

5.
K+ channels sensitive to intracellular ATP (KATP channels) have been described in a number of cell types and are selectively inhibited by sulfonylurea drugs. To look for the presence of this type of K+ channel in the basolateral membrane of tight epithelia, we have used an amphibian renal cell line, the A6 cells, grown on filters. After the selective permeabilization of the apical membrane with amphotericin B, the basolateral conductance was studied under voltage-clamp conditions. Tolbutamide inhibited 65.8 ± 6.3% of the barium-sensitive current. The tolbutamide-sensitive conductance had an equilibrium potential of ?83 ± 1 mV and was inward rectifying in spite of the outwardly directed K+ gradient. Similar results were obtained with glibenclamide. The half-inhibition constants were 25.7 ± 3.0 μm and 0.114 ± 0.018 μm for tolbutamide and glibenclamide respectively. To study the relation between cellular ATP and the activity of this conductance, A6 cells were treated with glucose (5 mm) and insulin (250 μU/ml). This maneuver significantly increased the cellular ATP and abolished the tolbutamide-sensitive conductance. A sulfonylurea-sensitive K+ conductance is present and active in the basolateral membrane of A6 cells. This conductance appears to be modulated by physiological changes of intracellular ATP.  相似文献   

6.
Glucose-sensing (GS) behaviour in pancreatic β-cells is dependent on ATP-sensitive K+ channel (KATP) activity, which is controlled by the relative levels of the KATP ligands ATP and ADP, responsible for closing and opening KATP, respectively. However, the mechanism by which β-cells transfer energy status from mitochondria to KATP, and hence to altered electrical excitability and insulin secretion, is presently unclear. Recent work has demonstrated a critical role for AMP-activated protein kinase (AMPK) in GS behaviour of cells. Electrophysiological recordings, coupled with measurements of gene and protein expression were made from rat insulinoma cells to investigate whether AMPK activity regulates this energy transfer process. Using the whole-cell recording configuration with sufficient intracellular ATP to keep KATP closed, raised AMPK activity induced GS electrical behaviour. This effect was prevented by the AMPK inhibitor, compound C and required a phosphotransfer process. Indeed, high levels of intracellular phosphocreatine or the presence of the adenylate kinase (AK) inhibitor AP5A blocked this action of AMPK. Using conditions that maximised AMPK-induced KATP opening, there was a significant increase in AK1, AK2 and UCP2 mRNA expression. Thus we propose that KATP opening in response to lowered glucose concentration requires AMPK activity, perhaps in concert with increased AK and UCP2 to enable mitochondrial-derived ADP signals to be transferred to plasma membrane KATP by phosphotransfer cascades.  相似文献   

7.
Muscle form of lactate dehydrogenase (M-LDH) physically associate with KATP channel subunits, Kir6.2 and SUR2A, and is an integral part of the ATP-sensitive K+ (KATP) channel protein complex in the heart. Here, we have shown that concomitant introduction of viral constructs containing truncated and mutated forms of M-LDH (ΔM-LDH) and 193gly-M-LDH respectively, generate a phenotype of rat heart embryonic H9C2 cells that do not contain functional M-LDH as a part of the KATP channel protein complex. The K+ current was increased in wild type cells, but not in cells expressing ΔM-LDH/193gly-M-LDH, when they were exposed to chemical hypoxia induced by 2,4 dinitrophenol (DNP; 10 mM). At the same time, the outcome of chemical hypoxia was much worse in ΔM-LDH/193gly-M-LDH phenotype than in the control one, and that was associated with increased loss of intracellular ATP in cells infected with ΔM-LDH/193gly-M-LDH. On the other hand, cells expressing Kir6.2AFA, a Kir6.2 mutant that abolishes KATP channel conductance without affecting intracellular ATP levels, survived chemical hypoxia much better than cells expressing ΔM-LDH/193gly-M-LDH. Based on the obtained results, we conclude that M-LDH physically associated with Kir6.2/SUR2A regulates the activity of sarcolemmal KATP channels as well as an intracellular ATP production during metabolic stress, both of which are important for cell survival.  相似文献   

8.
Opening of ATP-sensitive K+ (KATP) channels by the uncoupler of oxidative phosphorylation, 2,4 dinitrophenol (DNP), has been assumed to be secondary to metabolic inhibition and reduced intracellular ATP levels. Herein, we present data which show that DNP (200 μm) can induce opening of cardiac KATP channels, under whole-cell and inside-out conditions, despite millimolar concentrations of ATP (1–2.5 mm). DNP-induced currents had a single channel conductance (71 pS), inward rectification, reversal potential, and intraburst kinetic properties (open time constant, τopen: 4.8 msec; fast closed time constant, τclosed(f): 0.33 msec) characteristic of KATP channels suggesting that DNP did not affect the pore region of the channel, but may have altered the functional coupling of the ATP-dependent channel gating. A DNP analogue, with the pH-titrable hydroxyl replaced by a methyl group, could not open KATP channels. The pH-dependence of the effect of DNP on channel opening under whole-cell, cell-attached, and inside-out conditions suggested that transfer of protonated DNP across the sarcolemma is essential for activation of KATP channels in the presence of ATP. We conclude that the use of DNP for metabolic stress-induced KATP channel opening should be reevaluated. Received: 10 September 1996/Revised: 27 December 1996  相似文献   

9.

Background

5-Hydroxydecanoate (5-HD) inhibits preconditioning, and it is assumed to be a selective inhibitor of mitochondrial ATP-sensitive K+ (mitoKATP) channels. However, 5-HD is a substrate for mitochondrial outer membrane acyl-CoA synthetase, which catalyzes the reaction: 5?HD + CoA + ATP → 5-HD-CoA (5-hydroxydecanoyl-CoA) + AMP + pyrophosphate. We aimed to determine whether the reactants or principal product of this reaction modulate sarcolemmal KATP (sarcKATP) channel activity.

Methods

Single sarcKATP channel currents were measured in inside-out patches excised from rat ventricular myocytes. In addition, sarcKATP channel activity was recorded in whole-cell configuration or in giant inside-out patches excised from oocytes expressing Kir6.2/SUR2A.

Results

5-HD inhibited (IC50 ∼ 30 μM) KATP channel activity, albeit only in the presence of (non-inhibitory) concentrations of ATP. Similarly, when the inhibitory effect of 0.2 mM ATP was reversed by 1 μM oleoyl-CoA, subsequent application of 5-HD blocked channel activity, but no effect was seen in the absence of ATP. Furthermore, we found that 1 μM coenzyme A (CoA) inhibited sarcKATP channels. Using giant inside-out patches, which are weakly sensitive to “contaminating” CoA, we found that Kir6.2/SUR2A channels were insensitive to 5-HD-CoA. In intact myocytes, 5-HD failed to reverse sarcKATP channel activation by either metabolic inhibition or rilmakalim.

General significance

SarcKATP channels are inhibited by 5-HD (provided that ATP is present) and CoA but insensitive to 5-HD-CoA. 5-HD is equally potent at “directly” inhibiting sarcKATP and mitoKATP channels. However, in intact cells, 5-HD fails to inhibit sarcKATP channels, suggesting that mitochondria are the preconditioning-relevant targets of 5-HD.  相似文献   

10.
We report in a previous study the presence of a large conductance K+ channel in the membrane of rough endoplasmic reticulum (RER) from rat hepatocytes incorporated into lipid bilayers. Channel activity in this case was found to decrease in presence of ATP 100 µM on the cytoplasmic side and was totally inhibited at ATP concentrations greater than 0.25 mM. Although such features would be compatible with the presence of a KATP channel in the RER, recent data obtained from a brain mitochondrial inner membrane preparation have provided evidence for a Maxi-K channel which could also be blocked by ATP within the mM concentration range. A series of channel incorporation experiments was thus undertaken to determine if the ATP-sensitive channel originally observed in the RER corresponds to KATP channel. Our results indicate that the gating and permeation properties of this channel are unaffected by the addition of 800 nM charybdotoxin and 1 µM iberiotoxin, but appeared sensitive to 10 mM TEA and 2.5 mM ATP. Furthermore, adding 100 µM glibenclamide at positive potentials and 400 µM tolbutamide at negative or positive voltages caused a strong inhibition of channel activity. Finally Western blot analyses provided evidence for Kir6.2, SUR1 and/or SUR2B, and SUR2A expression in our RER fractions. It was concluded on the basis of these observations that the channel previously characterized in RER membranes corresponds to KATP, suggesting that opening of this channel may enhance Ca2+ releases, alter the dynamics of the Ca2+ transient and prevent accumulation of Ca2+ in the ER during Ca2+ overload.  相似文献   

11.
12.
K+ channels play an important role in pump-leak coupling and volume regulation in the renal proximal tubule. Previous experiments have identified a barium-sensitive K+ conductance (GBa) in proximal tubule cells isolated from frog kidneys. In this paper we examine the regulation of GBa by ATP. GBa was measured in single cells isolated from frog kidney using the whole-cell patch-clamp technique. GBa was activated by 2 mM intracellular ATP. This activation was enhanced by inhibition of protein kinase C and attenuated by inhibition of protein kinase A, indicating reciprocal regulation by these kinases. Activation by ATP was reduced in the presence of a hypertonic bath solution, suggesting that cell swelling was required. However, after activation to steady-state, GBa was not sensitive to cell-volume changes. Hypotonic shock-induced volume regulation was inhibited by barium and quinidine, inhibitors of GBa. The effect of maximal inhibitory concentrations of barium and quinidine on volume regulation was similar and addition of both blockers together did not augment the inhibitory response. GBa was also activated by ADP, via a mechanism dependent on the presence of Mg2+. However, the responses to ADP and ATP were not additive, suggesting that these nucleotides may share a common mechanism of activation. The regulation of GBa by ATP was biphasic, with a half-maximal activating concentration of 0.89 mM and a half maximal inhibitory concentration of 6.71 mM. The sensitivity to nucleotides suggests that GBa may be regulated by the metabolic state of the cell. Furthermore, the sensitivity to solution osmolality, coupled with the blocker profile of inhibition of volume regulation, suggests that GBa could play a role in volume regulation.  相似文献   

13.
Rat basophilic leukemia cells (RBL-2H3) have previously been shown to contain a single type of voltage-activated channel, namely an inwardly rectifying K+ channel, under normal recording conditions. Thus, RBL-2H3 cells seemed like a logical source of mRNA for the expression cloning of inwardly rectifying K+ channels. Injection of mRNA isolated from RBL-2H3 cells into Xenopus oocytes resulted in the expression of an inward current which (1) activated at potentials negative to the K+ equilibrium potential (EK), (2)decreased in slope conductance near EK, (3) was dependent on [K+]o and (4) was blocked by external Ba2+ and Cs+. These properties were similar to those of the inwardly rectifying K+ current recorded from RBL-2H3 cells using whole-cell voltage clamp. Injection of size-fractionated mRNA into Xenopus oocytes revealed that the current was most strongly expressed from the fraction containing mRNA of approximately 4–5 kb. Expression of this channel represents a starting point for the expression cloning of a novel class of K+ channels.  相似文献   

14.
Slo3 channels belong to the high conductance Slo K+ channel family. They are activated by voltage and intracellular alkalinization, and have a K+/Na+ permeability ratio (PK/PNa) of only approximately 5. Slo3 channels have only been found in mammalian sperm. Here we show that Slo3 channels expressed in Xenopus oocytes are also stimulated by elevated cAMP levels through PKA dependent phosphorylation. Capacitation, a maturational process required by mammalian sperm to enable them to fertilize eggs, involves intracellular alkalinization and an increase in cAMP. Our mouse sperm patch clamp recordings have revealed a K+ current that is time and voltage dependent, is activated by intracellular alkalinization, has a PK/PNa ? 5, is weakly blocked by TEA and is very sensitive to Ba2+. This current is also stimulated by cAMP. All of these properties match those displayed by heterologously expressed Slo3 channels, suggesting that the native current we observe in sperm is indeed carried by Slo3 channels.  相似文献   

15.
16.
A K+ channel with a main conductance of 29 pS was recorded after the incorporation of coronary artery membrane vesicles into lipid bilayers. This channel was identified as an ATP-sensitive K+ channel (KATP) because its activity was diminished by the internal application of 50–250 μm ATP-Na2. Moreover, it was opened when 10–50 μm pinacidil was externally applied. Single-channel records revealed the existence of several (sub)conductance states. At 0 mV and with a 5/250 KCl gradient, the main conductance of the KATP channel was 29 pS. The other (sub)conductance states were less frequent and had discrete values of 12, 17 and 22 pS. Pinacidil stabilized the channel open state primarily in the 29 pS conductance level; whereas ATP inhibited all the conductance levels. In general, KATP channels were characterized by brief openings followed by long closings (open probability, P o ≈ 0.02); only occasionally (3 out of 12 experiments) did the KATP channels have a high open probability (P o ≥ 0.7). Channel activity could be increased or rescued by adding 2.5–10 mm UDP-TRIS and 0.5–2 mm MgCl2 to the internal side of the channel. Received: 7 November 1995/Revised: 10 June 1996  相似文献   

17.
KVLQT1 (KCNQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of KVLQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to KVLQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of KVLQT1 in crypt cells and surface epithelium. Expression of rKVLQT1 in Xenopus oocytes induced a typical delayed activated K+ current, that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that KVLQT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis. Received: 17 July 2000/Revised: 25 October 2000  相似文献   

18.
The K+ channel KCNQ1 (KVLQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes. Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR. Received: 13 December 2000/Revised: 30 March 2001  相似文献   

19.
In an attempt to explore unknown K+ channels in mammalian cells, especially ATP-sensitive K+ (KATP) channels, we compared the sequence homology of Kir6.1 and Kir6.2, two pore-forming subunits of mammalian KATP channel genes, with bacterial genes that code for selective proteins with confirmed or putative ion transport properties. BLAST analysis revealed that a prokaryotic gene (ydfJ) expressed in Escherichia coli K12 strain shared 8.6% homology with Kir6.1 and 8.3% with Kir6.2 genes. Subsequently, we cloned and sequenced ydfJ gene from E. coli K12 and heterologously expressed it in mammalian HEK-293 cells. The whole-cell patch-clamp technique was used to record ion channel currents generated by ydfJ-encoded protein. Heterologous expression of ydfJ gene in HEK-293 cells yielded a novel K+ channel current that was inwardly rectified and had a reversal potential close to K+ equilibrium potential. The expressed ydfJ channel was blocked reversibly by low concentration of barium in a dose-dependent fashion. Specific KATP channel openers or blockers did not alter the K+ current generated by ydfJ expression alone or ydfJ coexpressed with rvSUR1 or rvSUR2B subunits of KATP channel complex. Furthermore, this coexpressed ydfJ/rvSUR1 channels were not inhibited by ATP dialysis. On the other hand, ydfJ K+ currents were inhibited by protopine (a nonspecific K+ channel blocker) but not by dofetilide (a HERG channel blocker). In summary, heterologously expressed prokaryotic ydfJ gene formed a novel functional K+ channel in mammalian cells.  相似文献   

20.
We investigated the action of adenosine and GTP on KATP channels, using inside-out patch clamp recordings from dissociated single fibers of rat flexor digitorum brevis (FDB) skeletal muscle. In excised patches, KATP channels could be activated by a combination of an extracellular adenosine agonist and intracellular Mg2+-ATP and GTP or GTP-γ-S. The activation required hydrolyzable ATP and could be partially reversed with Mg2+, suggesting that it may involve a G-protein dependent phosphorylation of KATP channels. We found that KATP channels of the rat FDB could not be activated by Mg2+-ATP alone or by Mg2+-ATP in the presence of extracellular adenosine. Patches whose channel activity had been `rundown' by Ca2+ could not be recovered by adenosine, GTP or Mg2+-ATP. KATP channels activated by adenosine receptor agonists had a similar ATP sensitivity to those under control conditions; but adenosine appears to be able to switch these KATP channels from an inactive to an active mode. Received: 29 December 1995/Revised: 22 March 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号