首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutrophil NADPH oxidase (O(2)(-) generating enzyme) activated in a cell-free system was deactivated by dilution. When ATP was included in dilution the deactivation was further accelerated. The deactivation by dilution was biphasic, and the half-life of the enzyme was significantly shortened by ATP in each phase. ADP and AMP had little effect on the enzyme longevity while GTP and CTP had a similar effect to ATP. Staurosporine, a wide-range inhibitor of protein kinases, had no effect on ATP-induced deactivation, suggesting that the effect was not due to a protein phosphorylation. Mg(2+) addition largely prevented the deactivation by ATP. Chemical crosslinking of the activated oxidase prevented the deactivation by dilution and ATP, suggesting that the deactivation is caused by dissociation of the oxidase complex. Estimation of actin filament (F-actin) showed that the F-actin level was markedly reduced by addition of ATP. The ATP effect on the deactivation was not prominent in a semi-recombinant system which does not contain cytosol. These results suggest that ATP-induced deactivation is largely due to the chelation of Mg(2+) and are consistent with the concept that Mg(2+) stabilizes the oxidase complex by stabilizing F-actin.  相似文献   

2.
Jun Nakamura 《BBA》1983,723(2):182-190
The effects of ATP on Ca2+ binding in the absence of added Mg2+ to the purified sarcoplasmic reticulum Ca2+-ATPase were studied at pH 7.0 and 0°C. ATP increased the number of Ca2+-binding sites of the enzyme from 2 to 3 mol per mol of phosphorylatable enzyme. The association constant for the ATP-induced Ca2+ binding was 4·105 M?1, which was not significantly different from that obtained in the absence of ATP. AdoP[CH2]PP has little effect on the Ca2+-binding process. The amount of phosphoenzyme formed was equivalent to the level of ATP-induced Ca2+ binding. ADP decreased the level of ATP-induced Ca2+ binding and phosphoenzyme by the same amount. These results suggest that ATP-induced Ca2+ binding exists in the form of an ADP-reactive phosphoenzyme·Ca complex. In addition, the Ca2+ bound to the enzyme in the presence of ATP was released on the addition of 1 mM MgCl2; after the release of Ca2+, the phosphoenzyme decayed. These observations suggest that Mg2+, added after the ATP-induced Ca2+-binding process, may replace the Ca2+ on the phosphoenzyme and initiate phosphoenzyme decomposition.  相似文献   

3.
Glutathione biosynthesis in murine L5178Y lymphoma cells   总被引:2,自引:0,他引:2  
The pyruvate dehydrogenase complex from pea leaf mitochondria was rapidly deactivated in the presence of 50 to 200 μm ATP. The deactivation of the complex requires Mg2+ as shown by EDTA inhibition of deactivation. Deactivation was inhibited by 0.1 to 1 mm pyruvate or dichloroacetate. Activation required 10 mM Mg2+ or Mn2+ but Ca2+ and K+ had no effect. Activation was inhibited by the phosphatase inhibitor, F?. Autoradiograms of nondissociating electrophoresis gel, crossed immunoelectrophoresis gels, and dissociating sodium dodecyl sulfate electrophoresis gels of the complex showed that one protein is labeled. Labeling of this protein is prevented by Mg2+, pyruvate, and dichloroacetate. The pyruvate dehydrogenase complex was isolated in a partially deactivated state and reactivation required exogenous Mg2+ and was inhibited by F?. These results are taken as conclusive evidence that the pyruvate dehydrogenase complex in pea leaf mitochondria undergoes interconversion between deactivated and activated states by covalent modification (phosphorylation-dephosphorylation) catalyzed by a kinase and phosphatase. Isolation of the complex in a partially deactivated (phosphorylated) state suggests a physiologically significant role for this regulatory mechanism.  相似文献   

4.
Crude preparations of cyclic adenosine 3′, 5′-monophosphate phosphodiesterase were activated 1.5 to 2 fold by incubation with ATP, Mg2+ and cyclic AMP in a reaction which was both, time and temperature dependent. Cyclic AMP phosphodiesterase remained in an activated state upon filtration of the enzymatic preparation through Sephadex G-25 and ion-exchange chromatography. Activation of the enzyme in the presence of [γ 32P]ATP resulted in a significant amount of [32P] protein-bound radioactivity. Reversible deactivation of cyclic AMP phosphodiesterase was enhanced by Mg2+ and was accompanied by the release of [32P] protein bound radioactivity. The evidence is consistent with a mechanism for controlling cyclic AMP phosphodiesterase through phosphorylation-dephosphorylation sequence.  相似文献   

5.
Abstract

Arylsulfate sulfotransferase (ASST) from a human intestinal bacterium stoichiometrically catalyzed the transfer of a sulfate group from phenylsulfate esters to phenolic compounds. Pentachlorophenol, one of the selective inhibitors of phenol sulfoconjugation in mammalian tissues, inhibited both phenol and tyramine sulfation by ASST Nucleotide triphosphaies such as ATP, GTP, UTP and CTP, and pyrophosphate inhibited the ASST activity, whereas Mg2+ and Mn2+ activated the enzyme and prevented its inhibition by ATP and pyrophosphate. Equimolar binding of [α-] and [γ-32P]ATP to the enzyme showed that the enzyme protein was not phospholylated, but bound ATP. These results suggest that nucleotide triphosphates and divalent cations are important modulators in the control of ASST activity.  相似文献   

6.
Tryptophan 5-monooxygenase in rat brainstem cytosol was activated about twofold by incubation with 0.5 mm ATP and 5 mm MgCl2. The activation required micromolar concentrations of Ca2+ but was not dependent on either cyclic AMP or cyclic GMP. Rat brain cytosol was shown to possess an endogenous protein kinase which was markedly stimulated by the addition of Ca2+ using endogenous protein substrates. Following activation by ATP and Mg2+ in the presence of Ca2+, tryptophan 5-monooxygenase was reversibly deactivated to the original level by incubation at 30 °C after removal of Ca2+ by adding ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid and was then reactivated by incubation at 30 °C after subsequent addition of Ca2+ and ATP. The deactivation was markedly inhibited by the omission of Mg2+ or by the addition of NaF.  相似文献   

7.
The sarcoplasmic reticulum Ca2+-ATPase was reacted with vanadate in the presence of Mg2+ and EGTA, and the effect of Ca2+, Mg2+ and ATP on the kinetics of vanadate release from the enzyme vanadate complex was studied after dilution with vanadate-free media. Ca2+ increased, whereas ATP decreased the rate of vanadate release. In absence of free Mg2+ in the release media ATP was bound to the vanadate-reacted Ca2+-ATPase with high affinity (Kd 4–5 μM), and full saturation with ATP resulted in complete inhibition of vanadate release. In media containing free Mg2+, where ATP predominantly was present as MgATP, binding of the nucleotide to vanadate-reacted Ca2+-ATPase occurred with low apparent affinity. Mg2+ alone did not affect the rate of vanadate release. At saturating ATP concentrations the release rate in the presence of free Mg2+ was less inhibited than in its absence. These results indicate that uncomplexed ATP interacts with the same Mg2+ at the catalytic site, which is involved in formation of the enzyme-vanadate complex (EMgV), and thereby hinders dissociation of vanadate. Destabilization of the complex by free Mg2+ may be caused by the presence of an additional magnesium ion in the catalytic site together with ATP.  相似文献   

8.
A deoxyribonuclease, isolated from the mycelia of Aspergillus niger, grown as surface cultures on a liquid medium, was partially purified and had an optimum pH of 9.5 and an optimum temperature of 37°C. The enzyme was strongly activated by Mg2+ while Mn2+, Ca2+ or Co2+ activated the enzyme to lesser extents. Thiol reagents, mercaptoethanol and dithiothreitol (DTT) activated the enzyme. S-Adenosylmethionine at low concentration (2.8?5.0 × 10?2 mM) activated the enzyme but at a higher concentration (11.5 × 10?2 mM) and above it inhibited the enzyme. The effect of EDTA on the enzyme was variable. The enzyme had both ATP-dependent and independent activities, the former usually being higher. ATP could be replaced by CTP or GTP. The nucleoside diphosphates ADP, CDP and GDP could replace ATP but they were not as effective as the triphosphates.  相似文献   

9.
ATP, GTP, CoA, Mg2+, and Mn2+ did not inhibit biosynthesis of steryl glycoside and acylated steryl glycoside when added singly to enzyme preparations from spinach leaves. The combination of ATP (but not GTP), CoA, and Mg2+ or Mn2+ caused marked inhibition, especially of steryl glycoside biosynthesis, when reaction mixture concentrations of the additions were 0.2 millimolar. Inhibition was attributed to acyl-CoA and could be reproduced by palmitoyl-CoA. The inhibition could be partially prevented by bovine serum albumin. The effects of palmitoyl-CoA were distinct at 10 micromolar, and 50% inhibition of biosynthesis was observed at 40 micromolar.  相似文献   

10.
ATPase was purified from an alkalophilic Bacillus. The enzyme has a molecular weight of 410,000 and consists of five types of subunits of molecular weights of 60,000 (α), 58,000 (β), 34,000 (γ), 14,000 (δ), and 11,000 (?). The subunit structure is suggested to be α3β3γδ?. The enzyme is activated by Mg2+ and Ca2+. The pH optima of the enzyme with 0.1 and 2.0 mm Mg2+ are 9 and 6, and those with 1 and 10 mm Ca2+ are 8–9 and 7, respectively. Ca2+-ATPase hydrolyzes only ATP, whereas Mg2+-ATPase hydrolyzes GTP and, to a lesser extent, ATP. The values of V and Km of the enzyme with ATP in the presence of 10 mm Ca2+ or 0.6 mm Mg2+ at pH 7.2 are 17 or 0.5 units/mg protein and 1.2 or 0.3 mm, respectively. The enzyme with Mg2+ is appreciably activated by HCO?3. Relationship of the ATPase to the active transport system in the bacterium is suggested.  相似文献   

11.
We investigated the action of adenosine and GTP on KATP channels, using inside-out patch clamp recordings from dissociated single fibers of rat flexor digitorum brevis (FDB) skeletal muscle. In excised patches, KATP channels could be activated by a combination of an extracellular adenosine agonist and intracellular Mg2+-ATP and GTP or GTP-γ-S. The activation required hydrolyzable ATP and could be partially reversed with Mg2+, suggesting that it may involve a G-protein dependent phosphorylation of KATP channels. We found that KATP channels of the rat FDB could not be activated by Mg2+-ATP alone or by Mg2+-ATP in the presence of extracellular adenosine. Patches whose channel activity had been `rundown' by Ca2+ could not be recovered by adenosine, GTP or Mg2+-ATP. KATP channels activated by adenosine receptor agonists had a similar ATP sensitivity to those under control conditions; but adenosine appears to be able to switch these KATP channels from an inactive to an active mode. Received: 29 December 1995/Revised: 22 March 1996  相似文献   

12.
Huber SC 《Plant physiology》1979,63(4):754-757
Millimolar concentrations of Mg2+ inhibited CO2-dependent O2 evolution by barley (Hordeum vulgare L.) chloroplasts and also prevented the activation of NADP-glyceraldehyde-3-phosphate dehydrogenase, ribulose-5-phosphate kinase, and fructose-1,6-diphosphatase by light in intact chloroplasts. When added in the dark, 3-phosphoglycerate prevented the inhibition of O2 evolution by Mg2+ and reduced the Mg2+ inhibition of enzyme activation by light. Fructose 1,6-diphosphate and ribulose 5-phosphate also prevented the inhibition of O2 evolution by Mg2+ whereas glucose 1-phosphate, glucose 6-phosphate, ribulose 1,5-diphosphate, and citrate had no effect. Phosphoenolpyruvate gave an intermediate response. Metabolites that prevented the Mg2+ inhibition of O2 evolution shortened the lag phase of CO2-dependent O2 evolution in the absence of M2+. Loading chloroplasts in the dark with 3-phosphoglycerate reduced both the lag phase of O2 evolution and the inhibition of O2 evolution by Mg2+. The results suggested that Mg2+ inhibition was lessened either by external metabolites that compete with inorganic phosphate for transport into the chloroplast or by a high concentration of internal metabolites.  相似文献   

13.
The properties of membrane-associated ATPase of cucumber (Cucumis sativus cv. Seiriki No. 2) roots cultured in a complete medium (complete enzyme) and in a medium lacking Ca2+ (Ca2+-deficient enzyme) were investigated. The basal activity of membrane-associated ATPase increased during Ca2+ starvation, while Mg2+-activation of the enzyme decreased and even resulted in inhibition by high Mg2+ concentration at the late stage of the Ca2+ starvation. The complete enzyme had low basal activity and showed a Mg2+-activated hyperbolic reaction curve in relation to ATP concentration. Ca2+-deficient enzyme with high basal activity showed a biphasic reaction curve and Mg2+-activation was seen only at high ATP concentrations. Activation of membrane-associated ATPase by various cations was decreased or lost during Ca2+ starvation. The basal ATPase activity of Ca2+-deficient enzyme increased for various substrates including pyrophosphate, p-nitrophenyl phosphate, glucose-6 phosphate, β-glycerophosphate, AMP, ADP and ATP. Mg2+-activation was found only for ADP and ATP in both the complete and Ca2+-deficient enzymes, but the activation for ATP was greatly reduced by Ca2+ starvation. The heat inactivation curves for basal and Mg2+-activated ATPase did not differ much between the complete and Ca2+-deficient enzyme. The delipidation of membrane-associated enzyme by acetone affected the protein content and the basal activity slightly, but inhibited the Mg2+-activated ATPase activity clearly with somewhat different behaviour between the complete and Ca2+-deficient enzyme.  相似文献   

14.
The purified PMCA supplemented with phosphatidylcholine was able to hydrolyze pNPP in a reaction media containing only Mg2+ and K+. Micromolar concentrations of Ca2+ inhibited about 75% of the pNPPase activity while the inhibition of the remainder 25% required higher Ca2+ concentrations. Acidic lipids increased 5-10 fold the pNPPase activity either in the presence or in the absence of Ca2+. The activation by acidic lipids took place without a significant change in the apparent affinities for pNPP or K+ but the apparent affinity of the enzyme for Mg2+ increased about 10 fold. Thus, the stimulation of the pNPPase activity of the PMCA by acidic lipids was maximal at low concentrations of Mg2+. Although with differing apparent affinities vanadate, phosphate, ATP and ADP were all inhibitors of the pNPPase activity and their effects were not significantly affected by acidic lipids. These results indicate that (a) the phosphatase function of the PMCA is optimal when the enzyme is in its activated Ca2+ free conformation (E2) and (b) the PMCA can be activated by acidic lipids in the absence of Ca2+ and the activation improves the interaction of the enzyme with Mg2+.  相似文献   

15.
Actin and Myosin in pea tendrils   总被引:12,自引:2,他引:10  
Ma YZ  Yen LF 《Plant physiology》1989,89(2):586-589
We demonstrate here the presence of actin and myosin in pea (Pisum sativum L.) tendrils. The molecular weight of tendril actin is 43,000, the same as rabbit skeletal muscle actin. The native molecular weight of tendril myosin is about 440,000. Tendril myosin is composed of two heavy chains of molecular weight approximately 165,000 and four (two pairs) light chains of 17,000 and 15,000. At high ionic strength, the ATPase activity of pea tendril myosin is activated by K+-EDTA and Ca2+ and is inhibited by Mg2+. At low ionic strength, the Mg2+-ATPase activity of pea tendril myosin is activated by rabbit skeletal muscle F-actin. Superprecipitation occurred after incubation at room temperature when ATP was added to the crude actomyosin extract. It is suggested that the interaction of actin and myosin may play a role in the coiling movement of pea tendril.  相似文献   

16.
Single-channel recordings were used to study the modulation of stretch-activated channels (SACs) by intracellular adenosine nucleotides in identified leech neurons. These channels exhibited two activity modes, spike-like (SL) and multiconductance (MC), displaying different polymodal activation. In the absence of mechanical stimulation, internal perfusion of excised patches with ATP induced robust and reversible activation of the MC but not of the SL mode. The ATP effect on channel activity was dose-dependent within a range of 1 μM-1 mM and was induced at different values of intracellular pH and Ca2+. The non-hydrolyzable ATP analog AMP-PNP, ATP without Mg2+ or ADP also effectively enhanced MC activity. Adenosine mimicked the effect of its nucleotides. At negative membrane potentials, both ATP and adenosine activated the channel. Moreover, ATP but not adenosine induced a flickering block. Addition of cAMP during maximal ATP activation completely and reversibly inhibited the channel, with activation and deactivation times of minutes. However, cAMP alone only induced a weak and rapid channel activation, without inhibitory effects. The expression of these channels in the growth cones of leech neurons, their permeability to Ca2+ and their sensitivity to intracellular cAMP are consistent with a role in the Ca2+ oscillations associated with cell growth.  相似文献   

17.
Calcium-dependent activation of tryptophan hydroxylase by ATP and magnesium   总被引:10,自引:0,他引:10  
Tryptophan hydroxylase [EC 1.14.16.4; L-tryptophan, tetrahydropteridine: oxygen oxidoreductase (5-hydroxylating)] in rat brainstem extracts is activated 2 to 2.5-fold by ATP and Mg++ in the presence of subsaturating concentrations of the cofactor 6-methyltetrahydropterin (6MPH4). The activation of tryptophan hydroxylase under these conditions results from a reduction in the apparent Km for 6MPH4 from 0.21 mM to 0.09 mM. The activation requires Mg++ and ATP but is not dependent on either cAMP or cGMP. The effect of ATP and Mg++ on enzyme activity was enhanced by μM concentrations of Ca++ and totally blocked by EGTA. These data suggest that tryptophan hydroxylase can be activated by a cyclic nucleotide independent protein kinase which requires low calcium concentrations for the expression of its activity.  相似文献   

18.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold.Activation of K+-stimulated ATPase activity by Ca2+ was maximal at anionized Ca2+ concentration of approx. 1 μM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

19.
Fluorescein isothiocyanate (FITC) is a highly specific inhibitor of rabbit muscle phosphorylase kinase. The rapid inhibition process is accompanied by an almost exclusive incorporation of fluorescein into the α sub-unit. A molar ratio of 0.8 mol FITC per mol α subunit for a 60% inhibited kinase was calculated. Mg2+ and Mg2+-ATP completely block the inhibitory effect of FITC, but ATP, ADP and Ca2+ have no significant effect on FITC inhibition. Trypsin-activated phosphorylase kinase is not inactivated by FITC, while the fluorescein-modified enzyme can be activated by digestion with trypsin to the same level of activity of trypsin-activated unmodified enzyme.  相似文献   

20.
Abstract: The effect of replacement of extracellular Na+ with N-methyl-d -glucamine (NMG) on P2 receptor signaling pathways was investigated in dibutyryl cyclic AMP-differentiated NG108-15 cells. Benzoylbenzoic ATP (BzATP) dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]i) with an EC50 value of 230 µM. Replacement of Na+ with NMG as well as removal of Mg2+ from the bathing buffer potentiated ethidium bromide uptake, [Ca2+]i increase, and 45Ca2+ uptake in response to ATP or BzATP. In contrast, in the presence of 5 mM Mg2+ to limit the amount of ATP4?, replacement of Na+ with NMG had no effect on the ATP-induced [Ca2+]i increase but caused a markedly larger [Ca2+]i increase when the calculated concentration of ATP4? was >10 µM. The calculated EC50 value for ATP4? stimulation of the [Ca2+]i increase was 23 µM in NG108-15 cells. In vascular smooth muscle cells, intracellular Ca2+ release was the major pathway for the ATP-induced [Ca2+]i increase; both removal of Mg2+ and replacement of Na+ with NMG did not affect the action of ATP. These data suggest that ATP4?-promoted pores are antagonized by Na+ and Mg2+ in dibutyryl cyclic AMP-differentiated NG108-15 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号