首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high diversity of pleurostomatid ciliates has been discovered in the last decade, and their systematics needs to be improved in the light of new findings concerning their morphology and molecular phylogeny. In this work, a new genus, Protolitonotus gen. n., and two new species, Protolitonotus magnus sp. n. and Protolitonotus longus sp. n., were studied. Furthermore, 19 novel nucleotide sequences of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2 were collected to determine the phylogenetic relationships and systematic positions of the pleurostomatid ciliates in this study. Based on both molecular and morphological data, the results demonstrated that: (i) as disclosed by the sequence analysis of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2, Protolitonotus gen. n. is sister to all other pleurostomatids and thus represents an independent lineage and a separate family, Protolitonotidae fam. n., which is defined by the presence of a semi‐suture formed by the right somatic kineties near the dorsal margin of the body; (ii) the families Litonotidae and Kentrophyllidae are both monophyletic based on both SSU rDNA and LSU rDNA sequences, whereas Amphileptidae are non‐monophyletic in trees inferred from SSU rDNA sequences; and (iii) the genera Loxophyllum and Kentrophyllum are both monophyletic, whereas Litonotus is non‐monophyletic based on SSU rDNA analyses. ITS1‐5.8S‐ITS2 sequence data were used for the phylogenetic analyses of pleurostomatids for the first time; however, species relationships were less well resolved than in the SSU rDNA and LSU rDNA trees. In addition, a major revision to the classification of the order Pleurostomatida is suggested and a key to its families and genera is provided.  相似文献   

2.
Abstract: The ability of the internal transcribed spacers (ITS regions) of ribosomal DNA to resolve phylogenetic relationships within the euascomycetous order Arthoniales, focusing on the family Roccellaceae was investigated. The effect of alignment on phylogenetic hypotheses was evaluated. A data matrix from the ITS regions was constructed from 33 specimens representing 14 genera, including the outgroup Arthothelium spectabile. Six different alignments were analysed cladistically using parsimony jackknifing. Most groups in the six trees were congruent and well supported under the different alignment settings. In a conservative analysis, where only unambiguously alignable regions were included, the resolution was low. These results indicate that the ITS regions contain phylogenetic structure, and all information, including the variable regions, should be utilised. A data matrix from the SSU rDNA sequences was constructed for the same taxa. The SSU rDNA tree was less resolved than the ITS trees. There were only minor conflicts between the two sources of data and an incongruence test confirmed that the ITS and SSU rDNA data matrices were not significantly incongruent. The six differently aligned data matrices generated from the ITS regions were each combined with the SSU rDNA data. Simultaneous analysis of the combined data sets is the best approach as it uses all available evidence. As with the ITS trees, most groups in the combined trees were congruent and well supported. The SSU rDNA provided resolution within one clade, otherwise the ITS sequences provided most of the signal in the combined analysis, both at the basal nodes and at the tips of the tree. Molecular data clearly indicates that the fruticose/crustose habits have evolved multiple times even in comparatively small groups as in the family Roccellaceae and that the characters such as fruticose-crustose may be overemphasized in morphological analyses.  相似文献   

3.
According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10.  相似文献   

4.
5.
6.
In this study, evidence for at least three independent losses of photosynthesis in the freshwater cryptophyte genus Cryptomonas is presented. The phylogeny of the genus was inferred by molecular phylogenetic analyses of the nuclear internal transcribed spacer 2 (nuclear ITS2), partial nuclear large subunit ribosomal DNA (LSU rDNA), and nucleomorph small subunit ribosomal DNA (SSU rDNA, NM). Both concatenated and single data sets were used. In all data sets, the colorless Cryptomonas strains formed three different lineages, always supported by high bootstrap values (maximum parsimony, neighbor joining and maximum likelihood) and posterior probabilities (Bayesian analyses). The three leukoplast-bearing lineages displayed differing degrees of accelerated evolutionary rates in nuclear and nucleomorph rDNA. Also an increase in A+T-content in highly variable regions of the nucleomorph SSU rDNA was observed in one of the leukoplast-bearing lineages.This article contains three online-only supplementary tables.Reviewing Editor: Dr. Yves Van de Peer  相似文献   

7.
Abstract: The nuclear LSU rRNA gene was examined in order to evaluate the current phylogeny of ascomycetes, which is mainly based on nuclear SSU rRNA data. Partial LSU rRNA gene sequences of 19 ascomycetes were determined and aligned with the corresponding sequences of 13 other ascomycetes retrieved from Genbank, including all classes traditionally distinguished and most of the recently accepted classes. The classification based on SSU rDNA data and morphological characters is supported, while the traditional classification and classifications based on the ascus type are rejected. Ascomycetes with perithecia and cleistothecia form monophyletic groups, while the discomycetes are a paraphyletic assemblage. The Pezizales are basal to all other filamentous ascomycetes. The monophyly of Loculoascomycetes is uncertain. The results of the LSU rDNA analysis agree with those of the SSU rDNA and RPB2 gene analyses, suggesting that most classes circumscribed in the filamentous ascomycetes are monophyletic. The branching order and relationships among these classes, however, cannot be elucidated with any of these data sets.  相似文献   

8.
Views on myxosporean phylogeny and systematics have recently undergone substantial changes resulting from analyses of SSU rDNA. Here, we further investigate the evolutionary trends within myxosporean lineages by using 35 new sequences of the LSU rDNA. We show a good agreement between the two rRNA genes and confirm the main phylogenetic split between the freshwater and marine lineages. The informative superiority of the LSU data is shown by an increase of the resolution, nodal supports and tree indexes in the LSU rDNA and combined analyses. We determine the most suitable part of LSU for the myxosporean phylogeny by comparing informative content in various regions of the LSU sequences. Based on this comparison, we propose the D5–3′-end part of the LSU rRNA gene as the most informative region which provides in concatenation with the complete SSU a well resolved and robust tree. To allow for simple amplification of the marker, we design specific primer set for this part of LSU rDNA.  相似文献   

9.
The photosynthetic euglenoid genus Cryptoglena is differentiated from other euglenoid genera by having a longitudinal sulcus, one chloroplast, two large trough‐shaped paramylon plates positioned between the chloroplast and pellicle, and lack of metaboly. The genus contains only two species. To understand genetic diversity and taxonomy of Cryptoglena species, we analyzed molecular and morphological data from 25 strains. A combined data set of nuclear SSU and LSU and plastid SSU and LSU rRNA genes was analyzed using Bayesian, maximum likelihood, maximum parsimony, and distance (neighbor joining) methods. Although morphological data of all strains showed no significant species‐specific pattern, molecular data segregated the taxa into five clades, two of which represented previously known species: C. skujae and C. pigra, and three of which were designated as the new species, C. soropigra, C. similis, and C. longisulca. Each species had unique molecular signatures that could be found in the plastid SSU rRNA Helix P23_1 and LSU rRNA H2 domain. The genetic similarity of intraspecies based on nr SSU rDNA ranged from 97.8% to 100% and interspecies ranged from 95.3% to 98.9%. Therefore, we propose three new species based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

10.
The contiguous sequence of the SSU rDNA, ITS 1, 5.8S, ITS 2, and approximately 1370 bp at the 5(') end of the LSU rDNA was determined in 25 stichotrichs, one oligotrich, and two hypotrichs. Maximum parsimony, neighbor-joining, and quartet-puzzling analyses were used to construct individual phylogenetic trees for SSU rDNA, for LSU rDNA, and ITS 1+5.8S+ITS 2, as well as for all these components combined. All trees were similar, with the greatest resolution obtained with the combined components. Phylogenetic relationships were largely consistent with classical taxonomy, with notable disagreements. DNA sequences indicate that Oxytricha granulifera and Oxytricha longa are rather distantly related. The oligotrich, Halteria grandinella, is placed well within the order Stichotrichida. Uroleptus pisces and Uroleptus gallina probably belong to different genera. Holosticha polystylata (family Holostichidae) and Urostyla grandis (family Urostylidae) are rather closely related. These rDNA sequence analyses imply the need for some modifications of classical taxonomic schemes.  相似文献   

11.
We characterized six tintinnid ciliates from Antarctic waters using molecular markers and morphological traits: Amphorellopsis quinquealata, Codonellopsis gaussi, Cymatocylis convallaria, Cy. calyciformis, Cy. drygalskii, and Laackmanniella prolongata. The 100% similarity in SSU‐ITS1‐5.8S rDNA‐ITS2‐partial LSU rDNA sequences among Cy. convallaria, Cy. calyciformis, and Cy. drygalskii is supportive of synonymy. Codonellopsis gaussi and L. prolongata also showed high levels of similarity in SSU rDNA (99.83%) and the D2 domain of LSU rDNA (95.77%), suggesting that they are closely related. Phylogenetic analysis placed Cymatocylis in the Rhabdonellidae, Amphorellopsis in the Tintinnidae and L. prolongata/Co. gaussi within the Dictyocystidae.  相似文献   

12.
13.
The heterotrophic marine dinoflagellate genus Protoperidinium is the largest genus in the Dinophyceae. Previously, we reported on the intrageneric and intergeneric phylogenetic relationships of 10 species of Protoperidinium, from four sections, based on small subunit (SSU) rDNA sequences. The present paper reports on the impact of data from an additional 5 species and, therefore, an additional two sections, using the SSU rDNA data, but now also incorporating sequence data from the large subunit (LSU) rDNA. These sequences, in isolation and in combination, were used to reconstruct the evolutionary history of the genus. The LSU rDNA trees support a monophyletic genus, but the phylogenetic position within the Dinophyceae remains ambiguous. The SSU, LSU and SSU + LSU rDNA phylogenies support monophyly in the sections Avellana, Divergentia, Oceanica and Protoperidinium, but the section Conica is paraphyletic. Therefore, the concept of discrete taxonomic sections based on the shape of 1′ plate and 2a plate is upheld by molecular phylogeny. Furthermore, the section Oceanica is indicated as having an early divergence from other groups within the genus. The sections Avellana and Excentrica and a clade combining the sections Divergentia/Protoperidinium derived from Conica‐type dinoflagellates independently. Analysis of the LSU rDNA data resulted in the same phylogeny as that obtained using SSU rDNA data and, with increased taxon sampling, including members of new sections, a clearer idea of the evolution of morphological features within the genus Protoperidinium was obtained. Intraspecific variation was found in Protoperidinium conicum (Gran) Balech, Protoperidinium excentricum (Paulsen) Balech and Protoperidinium pellucidum Bergh based on SSU rDNA data and also in Protoperidinium claudicans (Paulsen) Balech, P. conicum and Protoperidinium denticulatum (Gran et Braarud) Balech based on LSU rDNA sequences. The common occurrence of base pair substitutions in P. conicum is indicative of the presence of cryptic species.  相似文献   

14.
The ribosomal RNA (rRNA) gene region of the fourNosema sp. isolates (C01, C02, C03 and C04) fromPieris rapae in Korea has been examined. Complete DNA sequence data (3779 bp) of The rRNA gene ofNosema sp. C01 are presented for the small subunit gene (SSU rRNA: 1236 bp), the internal transcribed spacer (ITS: 37 bp), and the large subunit gene (LSU rRNA 2506 bp). The secondary structures ofNosema sp. COI SSU and LSU rRNA genes are constructed and described. The SSU rRNA showed a hypervariable V4 region identified four additional stems including a pseudoknot. Phylogenetic analysis based on the SSU rRNA suggests that the four isolates belong to the ‘true’Nosema group. In contrast to theNosema/Vairimorpha clade, the members of the group are highly divergent.  相似文献   

15.
A combined data set of nuclear SSU rDNA, LSU rDNA, and mitochondrial SSU rDNA sequences was analyzed in order to examine the relationships of the major clades of euascomycetes. Partial sequences of 14 ascomycetes were determined and aligned with the corresponding sequences of 16 other ascomycetes retrieved from Genbank. The alignment was analyzed using maximum parsimony (MP) and a Bayesian analysis with Markov chain Monte Carlo (B/MCMC). The classification based on single-gene studies is supported, but the confidence is enhanced in the concatenated analysis. The monophyly of the superclass Leotiomyceta, which includes all euascomycetes with inoperculate asci, is strongly supported. The polyphyly of ascolocularous fungi is supported. The group is divided into two groups: the Dothideomycetes basal to all other Leotiomyceta and the Chaetothyriomycetes as sister-group to Eurotiomycetes. The Lecanoromycetes appear as a monophyletic group with strong support and form a sister-group to the Chaetothyriomycetes/Eurotiomycetes clade, but this lacks support. The Leotiomycetes and Sordariomycetes form a strongly supported sister-group. Alternative topologies are tested using parametric bootstrapping; a basal position of the Eurotiomycetes and Leotiomycetes in the Leotiomyceta cannot be rejected, while such a position can be rejected for Chaetothyriomycetes, Lecanoromycetes and Sordariomycetes. The character evolution with regard to ascoma type, ascus type and ascoma-ontogeny is examined using MP and maximum likelihood (ML). While it appears most likely that the ancestor of the inoperculate ascomycetes had apothecia and an ascohymenial ascoma-ontogeny using MP methods, the ML approach shows that there is some uncertainty at the current state of knowledge. The improvement of confidence of the combined data set in comparison with single-gene studies makes us confident that analyses with additional data sets will further improve the confidence and eventually uncover the branching order of euascomycetes.  相似文献   

16.
Differentiation of anaerobic polycentric fungi by rDNA PCR-RFLP   总被引:1,自引:0,他引:1  
The suitability of restriction fragment length polymorphism (RFLP) analysis of the ribosomal DNA cluster for discriminating two genera of anaerobic polycentric fungi, Orpinomyces and Anaeromyces, was determined. Three PCR-amplified DNA fragments--nuclear small subunit (SSU; 18S rDNA), the nuclear large subunit (LSU; 28S rDNA) and internal transcribed spacer (ITS)--were restricted with endonucleases AluI, DraI, HinfI and MboI. Although the SSU DNA fragment could be restricted successfully by all four enzymes, no differences were observed between restriction patterns of Orpinomyces and Anaeromyces. The most polymorphic restriction pattern between Orpinomyces and Anaeromyces resulted from cleavage of LSU rDNA fragments cut by AluI and HinfI and ITS fragment cut by DraI and HinfI. Genus-specific RFLP patterns were determined for Orpinomyces and Anaeromyces genera; the results showed that the PCR-RFLP analysis of rDNA offers an easy and rapid tool for differentiation of two polycentric genera of anaerobic fungi, which could be hardly separated on the basis of morphology.  相似文献   

17.
The systematic position of Amphidoma caudata Halldal within the genus Amphidoma has remained uncertain as a result of its plate formula and the absence of molecular phylogenetic data. Also, this thecate dinoflagellate taxon has been used to designate two distinct morphotypes. The present study aims to clarify the generic affiliation of Amphidoma caudata and the taxonomic value of two different morphotypes M1 and M2. The new examination of the plate formula using SEM showed that it was the same for both morphotypes and that it corresponded to the tabulation of the recent erected genus Azadinium Elbrächter et Tillmann. Morphometric analysis, using cell size, length of apical projection in conjunction with the cell length, and the ratio of horn and spine showed that M1 and M2 formed two distinct groups. These results were supported by a molecular approach, revealing notable differences in the sequences of LSU rDNA and ITS region between these two morphotypes. Phylogenetic analyses inferred either from LSU and combined SSU, ITS region and COI data positioned M1 and M2 in a sister cluster of Azadinium species while Amphidoma languida Tillmann, Salas et Elbrächter, the only species of Amphidoma for which sequence data were available, was situated in a basal position of the Azadinium clade. Thus, we propose the transfer of Amphidoma caudata to the genus Azadinium and, consequently, the rehabilitation of the original tabulation of the genus Amphidoma Stein. To discriminate the two morphotypes, we propose a rank of variety with the following designations: Azadinium caudatum var. caudatum and Azadinium caudatum var. margalefii.  相似文献   

18.
Parmotrema is one of the larger genera segregated from Parmelia s. lat. Additional genera recently have been segregated from this large genus based mainly on morphological and chemical features. We have employed molecular data from three genes to continue a revision of the generic concept within the parmelioid lichens. A Bayesian analysis of nuclear ITS, LSU rDNA and mitochondrial SSU rDNA sequences was performed. The genera Canomaculina, Concamerella, Parmelaria and Rimelia appear nested within Parmotrema. Alternative hypotheses to maintain the independence of Canomaculina, Concamerella and Rimelia are shown to be highly unlikely and are rejected. As a consequence these three genera are reduced to synonymy with Parmotrema. An alternative topology segregating Parmelaria from Parmotrema s. lat. cannot be rejected with the dataset at hand. However we have established that this genus is closely related to Parmotrema rather than to cetrarioid species as was considered previously. The revised genus Parmotrema includes species that have an upper cortex consisting of a palisade plectenchyma or rarely paraplectenchyma with vaults, have a pored or fenestrated epicortex, lack pseudocyphellae, have or lack cilia, have laminal, perforate or eperforate apothecia, usually have simple rhizines and filiform, cylindrical, bacilliform or sublageniform conidia. It is closely related to Flavoparmelia but the status of these genera requires further investigation. Nineteen new combinations are made.  相似文献   

19.
Analyses of small subunit ribosomal RNA genes (SSU rDNAs) have significantly influenced our understanding of the composition of aquatic microbial assemblages. Unfortunately, SSU rDNA sequences often do not have sufficient resolving power to differentiate closely related species. To address this general problem for uncultivated bacterioplankton taxa, we analysed and compared sequences of polymerase chain reaction (PCR)-generated and bacterial artificial chromosome (BAC)-derived clones that contained most of the SSU rDNAs, the internal transcribed spacer (ITS) and the large subunit ribosomal RNA gene (LSU rDNA). The phylogenetic representation in the rRNA operon PCR library was similar to that reported previously in coastal bacterioplankton SSU rDNA libraries. We observed good concordance between the phylogenetic relationships among coastal bacterioplankton inferred from SSU or LSU rDNA sequences. ITS sequences confirmed the close intragroup relationships among members of the SAR11, SAR116 and SAR86 clades that were predicted by SSU and LSU rDNA sequence analyses. We also found strong support for homologous recombination between the ITS regions of operons from the SAR11 clade.  相似文献   

20.
The objectives of this study were to determine rDNA sequences of the most common Dinophysis species in Scandinavian waters and to resolve their phylogenetic relationships within the genus and to other dinoflagellates. A third aim was to examine the intraspecific variation in D. acuminata and D. norvegica, because these two species are highly variable in both morphology and toxicity. We obtained nucleotide sequences of coding (small subunit [SSU], partial large subunit [LSU], 5.8S) and noncoding (internal transcribed spacer [ITS]1, ITS2) parts of the rRNA operon by PCR amplification of one or two Dinophysis cells isolated from natural water samples. The three photosynthetic species D. acuminata, D. acuta, and D. norvegica differed in only 5 to 8 of 1802 base pairs (bp) within the SSU rRNA gene. The nonphotosynthetic D. rotundata (synonym Phalacroma rotundatum[Claparède et Lachmann] Kofoid et Michener), however, differed in approximately 55 bp compared with the three photosynthetic species. In the D1 and D2 domains of LSU rDNA, the phototrophic species differed among themselves by 3 to 12 of 733 bp, whereas they differed from D. rotundata by more than 100 bp. This supports the distinction between Dinophysis and Phalacroma. In the phylogenetic analyses based on SSU rDNA, all Dinophysis species were grouped into a common clade in which D. rotundata diverged first. The results indicate an early divergence of Dinophysis within the Dinophyta. The LSU phylogenetic analyses, including 4 new and 11 Dinophysis sequences from EMBL, identified two major clades within the phototrophic species. Little or no intraspecific genetic variation was found in the ITS1–ITS2 region of single cells of D. norvegica and D. acuminata from Norway, but the delineation between these two species was not always clear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号