首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Bisgrove SR  Kropf DL 《Protoplasma》2004,223(2-4):163-173
Summary. The mechanism of cytokinesis was investigated during the first asymmetric division in fucoid zygotes. A plate of actin assembled midway between daughter nuclei where microtubules interdigitated and defined the cytokinetic plane. A membrane was then deposited in islands throughout the cytokinetic plane; the islands eventually fused into a continuous partition membrane and cell plate material was deposited in the intermembrane space. All of these structures matured from the center of the cell outward (centrifugal maturation). Pharmacological agents were used to investigate the roles of microtubules, actin, and secretion in cytokinesis. The findings indicate a mechanism of cytokinesis that may be unique to the brown algae.Correspondence and reprints: Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, U.S.A.  相似文献   

2.
Fucoid zygotes are model cells for the study of symmetry breaking in plants. After fertilization, their initial spherical symmetry reduces to an axial symmetry, even in the absence of any external cue. This indicates that zygotes have an intrinsic ability to break symmetry in a way that is solely dependent on their internal biochemical and/or biophysical state. In our opinion, symmetry breaking is a self-organized process. It arises around the fucoid zygotes from the ion dynamics through channels (voltage-dependent calcium channels and a potassium leak) and outside the membrane (electrodiffusion owing to slower calcium diffusion compared with potassium). The robustness of this self-organized process and its lability ensure its relevance in plants where symmetry breaking is correlated with transcellular ion currents.  相似文献   

3.
The apical cell of Sphacelaria (Fucophyceae) exhibits a permanent polarized organization throughout asymmetric divisions. The apex organization was studied by immunolocalization of tubulin, vitronectin, alpha-actinin and beta 1 integrin. Microfilaments were stained directly by fluorescein phalloidin. The apex was highly organized around a patch of microfilaments densely packed at the tip, where vitronectin-like and alpha-actinin-like proteins colocalized. In the same area, an actin-dependent targeted secretion of sulfated polysaccharides was shown. The permanent localization of these components throughout cell elongation suggests that a cortical site involving transmembrane connections between the cytoskeleton and the extracellular matrix is required for cell polarity. A model of the organization of the tip is proposed.  相似文献   

4.
The acquisition and expression of polarity during early embryogenesis underlies developmental pattern. In many multicellular organisms an initial asymmetric division of the zygote is critical to the determination of different cell fates of the early embryonic cells. Zygotes of the marine fucoid algae are initially apolar and become polarized in response to external cues. This results in an initial asymmetric division of the zygote. Subsequent divisions occur in a highly ordered spatial and temporal pattern. A combination of cell biological and biochemical studies is providing new details, and some controversies concerning the mechanisms by which zygotic polarity is acquired and amplified. Here, we discuss some of the more recent studies that are allowing improved understanding of polarization in this system.  相似文献   

5.
Zygotes of fucoid algae have long been studied as a paradigm for cell polarity. Polarity is established early in the first cell cycle and is then expressed as localized growth and invariant cell division. The fertilized egg is a spherical cell and, by all accounts, bears little or no asymmetry. Polarity is acquired epigenetically a few hours later in the form of a rhizoid/thallus axis. The initial stage of polarization is axis selection, during which zygotes monitor environment gradients to determine the appropriate direction for rhizoid formation. In their natural setting in the intertidal zone, sunlight is probably the most important polarizing vector; rhizoids form away from the light. The mechanism by which zygotes perceive environmental gradients and transduce that information into an intracellular signal is unknown but may involve a phosphatidylinositol cycle. Once positional information has been recorded, the cytoplasm and membrane are reorganized in accordance with the vectorial information. The earliest detectable asymmetries in the polarizing zygote are localized secretion and generation of a transcellular electric current. Vesicle secretion and the inward limb of the current are localized at the presumptive rhizoid. The transcellular current may establish a cytoplasmic Ca2+ gradient constituting a morphogenetic field, but this remains controversial. Localized secretion and establishment of transcellular current are sensitive to treatment with cytochalasins, indicating that cytoplasmic reorganization is dependent on the actin cytoskeleton. The nascent axis at first is labile and susceptible to reorientation by subsequent environmental vectors but soon becomes irreversibly fixed in its orientation. Locking the axis in place requires both cell wall and F-actin and is postulated to involve an indirect transmembrane bridge linking cortical actin to cell wall. This bridge anchors relevant structures at the presumptive rhizoid and thereby stabilizes the axis. Approximately halfway through the first cell cycle, the latent polarity is expressed morphologically in the form of rhizoid growth. Elongation is by tip growth and does not appear to be fundamentally different from tip growth in other organisms. The zygote always divides perpendicular to the growth axis, and this is controlled by the microtubule cytoskeleton. Two microtubule-organizing centers on the nuclear envelope rotate such that they align with the growth axis. They then serve as spindle poles during mitosis. Cytokinesis bisects the axial spindle, resulting in a transverse crosswall. Although the chronology of cellular events associated with polarity is by now rather detailed, causal mechanisms remain obscure.  相似文献   

6.
We determined the distribution of F-actin in fucoid (Pelvetia, Fucus) embryos with nitrobenzoxadiazole-phallacidin, and studied the effect of cytochalasin upon the endogenous currents associated with cell polarization by using the vibrating probe. F-actin is not localized at the presumptive rhizoid immediately after experimental induction of the polar axis with a light gradient; however, a preferential distribution of F-actin develops at the presumptive rhizoid by the time the position of the polar axis is fixed. F-actin continues to be localized at the tip of the rhizoid after germination, except during cytokinesis, when the furrow is the only brightly staining region of the embryo. Incubation with cytochalasin can result in either an enhanced or a diminished pool of F-actin in the embryonic cortex (see Results). Cytochalasin D (100 micrograms/ml) significantly reduces the inward current at the rhizoid pole (n = 11) after a 2.5-h incubation. This drop is concentration dependent and occurs within approximately 30 min at 100 micrograms/ml and approximately 60 min at 10 micrograms/ml. Cytochalasin treatment eliminates the pulsatile component of the current. Preliminary results suggest that 100 micrograms/ml cytochalasin D prevents development of inward current at the presumptive rhizoid but does not completely delocalize this locus if added after photopolarization. We conclude that microfilaments are required for the establishment and maintenance of the pattern of endogenous currents observed during early embryogenesis. This suggests a new model for axis formation and fixation.  相似文献   

7.
1. In Golgi-Cox-impregnated coronal sections of albino rat brains at 1, 4, 26, 24, 30, 60 and 90 days it is presented the evolution of the spine-less, bare initial zone ("nude zone", NZ) at the proximal apical main dendrites of the layer V pyramidal neurons in the somatosensory and anterior limbie cortex. The quantitative results are analyzed by statistical methods. 2. The NZ is comprehended as a morphological correlate of the endodendritic neuroplasmic flow (Weiss 1944, Globus, Lux and Schuberl 1968, Kreutzberg 1973). The observed changes of the percental frequency and the average length of NZ increases rapidly. 3. The NZ occurs at first in the (12th) 16 postnatal day, thus in a time, when the organs of hearing and the eyes are differentiated completely. Between 16th and 24th day the percental frequency as well as the longitude of NZ increases. During this time the rats will be independent of the mother animals. With the full differentiation of the urogenital tract and especially with the sexual maturity the percentage frequency of NZ increases only at pyramidal cells in the anterior limbie cortex between 24th and 60th day. During 3rd month the NZ is occuring percental more frequently in the anterior limbic cortex than in the somatosensory cortex. At this time the average length of NZ is shorter in the limbic cortex. 4. As to the enriched, vivid movement of the animals and the playing impulse of the young rats the average length of NZ will be extended at pyramidal neurons in the somatosensory cortex during 2nd month, as well as the pattern of spine distribution will be changed along apical dendrites (Schlerhorn, unpublished). During the following (3rd) month the NZ will be shorteded in the somatosensory cortex, obviously caused by new formation of spines at the proximal main dendrites. 5. These newly formed spines in the initial zone of apical dendrites may be inhibitory spines. The inhibitory spines are stained only when using the mercury chromate impregnation according to Golgi-Cox, but not when using the silver chromate methods according to Golgi-Kopsch or Golgi-Bubenaite. The different tingibility of these spines by different Golgi techniques is discussed by Doedens, Nagel and Schierhorn (1974). The pyramidal neurons in the somatosensory cortex possess a longer average length of NZ (Lnz = 7,3[mum]) than the pyramidal cells in the anterior limbic cortex (Lnz = 6.2[mum]). As to NZ the differences between silver and mercury chromate stained pyramidal neurons are greater in the somatosensory cortex than in limbic cortex (see Tab. 7). Therefore we assume that there are in the initial zone of somatosensory pyramidal neurons more inhibitory spines than at the pyramidal neurons in the anterior limbic cortex. 6. The regional differences in the percentual frequency and in the average length of NZ between somatosensory and limbic cortex are new identifying marks of architectonic differentiation of the pyramidal neurons in cortical regions of phylogenetically different ages.  相似文献   

8.
Treatment of interphase apical cells of Sphacelaria rigidula Kützing with 10 μmol L?1 taxol for 4 h induced drastic changes in microtubule (MT) organization. In normal cells these MTs converge on the centrosomes and are nucleated from the pericentriolar area. After treatment, the endoplasmic, perinuclear and centrosome‐associated MT almost disappeared, and a massive assembly of cortical/subcortical, well‐organized MT bundles was observed. The bundles tended to be axially oriented, usually following the cylindrical wall, although other orientations were not excluded. The MTs in the apical part of the cell seemed to reach the cortex of the apical dome, sometimes bending to follow its curvature, whereas those in the basal portion of the cell terminated close to the transverse wall. Mitotic cells were also highly affected. Typical metaphase stages were very rarely found, and typical anaphase arrangements of chromosomes were completely absent. The chromosomes usually appeared to be dispersed singly or in small groups. Different atypical mitotic configurations were observed, depending on the stage of the cell cycle when the treatment started. The position and the orientation of the atypical mitotic spindles was disturbed. The nuclear envelope was completely disintegrated. The separation of the duplicated centrioles, as well as their usual perinuclear position, was also disturbed. Cortical MT bundles similar to those found in interphase cells were not found in the affected mitotic cells. In contrast, numerous MTs, without definite focal points, were found in the pericentriolar areas. Cytokinesis was inhibited by taxol treatment. The perinuclear and centrosome‐associated MTs found in mitotic cells were gradually replaced by a MT system similar to that of interphase cells. When the cytokinetic diaphragm had already been initiated when taxol treatment began, MTs were found on the cytokinetic plane, a phenomenon not observed in normal untreated cells. The results show clearly that: (i) in interphase cells the ability of centrosomes to nucleate MTs is intensely disturbed by taxol; (ii) centrosome dynamics in MT nucleation vary during the cell cycle; and (iii) taxol strongly affects mitosis and cytokinesis. In addition, it seems that the cortical/subcortical cytoplasm of interphase cells assumes the capacity to form numerous MT bundles.  相似文献   

9.
Rusig  A. M.  Le Guyader  H.  Ducreux  G. 《Hydrobiologia》1993,(1):167-172
The growth of the filamentous brown alga Sphacelaria depends on a large, strongly polarized, apical cell. The protoplast derived from this cell can be distinguished in a heterogeneous suspension by cytological markers, so it is possible to study development of the cytoskeleton during protoplast isolation and the first steps of regeneration. In the initial cell, microtubules show an asymmetric distribution along the axis; they are mainly located at the distal part around the physodes. After protoplast isolation, this polarity initially seems to be maintained; subsequently, the microtubules radiate from the two centrioles and spread out to the plasmalemma. This experimental model is suitable for investigating the development of the polarity of the initial cell, and the sequence of the first morphogenetic events leading to protoplast regeneration.  相似文献   

10.
GOODBAND  S. J. 《Annals of botany》1971,35(5):957-980
An attempt has been made to apply some simple statistical techniquesto the taxonomy of a problematical group of species within thegenus Sphacelaria Lyngb. Measurements were carried out on materialcollected from the field, material made available from Herbariumcollections and on material grown under experimental conditionsThe main characteristics considered are cell and filament dimensions,although certain reproductive structures have also been measured. It has been found that the number of longitudinal divisionsin each segment of the main axes and the primary branches hasa profound effect on the over-all appearance of the fronds ofthe three species investigated. Segment length breadth ratioand frond stiffness have been shown to be dependent on the numberof longitudinal walls. This characteristic has enabled one ofthe species, S. cirrosa (Roth) Ag., to be readily distinguishedfrom the other two. Another factor shown to be important is the determinate patternof growth displayed by S. cirrosa as opposed to the indeterminatepattern displayed by S. fusca (Huds ) Ag. and S. furcigera (Kutz.)Sauv. The pattern of growth affects the number of longitudinalwalls, filament width, and the relative lengths of the primarybranches. The angle at which branches emanate from the main axes has beenshown to be a useful characteristic in this group of species. The variability in the number of arms produced by each propagulepresents an interesting problem which has only been described,experimental work suggesting no explanation for this phenomenon.The degree of variability is clearly different in each speciesand is useful taxonomically if a large enough sample is availablefor examination.  相似文献   

11.
The authors report the time of appearance, morphology and topographic distribution of gastrin/cholecystochinin- (G/CCK-), somatostatin- (SRIF-), neurotensin- (NT-), motilin- (MO-) and substance P-like immunoreactive (SP-LI) elements during embryonic and postnatal development, in ileum, caeca and colon of chick embryos (from 8 days of incubation to hatching), newborn chicks (up to 15-days old) and adult chickens. In the ileum, G/CCK-LI and SP-LI cells appeared on day 11, the others on about day 13. In the caeca the first cells of all types were seen from about day 17. In the colon, NT-LI cells appeared early, on day 9, SP-LI and occasional SRIF-LI cells from day 13 on and MO-LI and G/CCK-LI only from day 17. In the ileum all the cells studied were present, in the caeca and colon they were extremely scarce, apart from NT-LI cells which were more numerous. In the prenatal stages, SP-LI was found only in epithelial cells; after hatching, it was also present in metasympathetic nerve elements.  相似文献   

12.
13.
Experimental field studies on the ecology of Scytosiphon lomentaria have been carried out in two types of Danish localities during 1981 and 1982: a sheltered and shallow fiord with a scanty vegetation, and a more exposed locality with a rather dense vegetation. Colonization experiments have been made by depositing artificial substrates several times during spring and autumn in both localities. These showed that Scytosiphon lomentaria is able to colonize and develop, i.e. produce prostrate systems with erect thalli under long–day as well as under short–day conditions, and even to become fertile. Transplantation experiments between the two localities have been made in both directions in spring and autumn. These proved that the transplanted prostrate systems are able to sprout into erect thalli in accordance with the normal seasonal distribution in the new locality. The difference in seasonal occurrence is thus environmentally determined.
Quantitative culture studies have confirmed that erect thalli develop independently of daylength.  相似文献   

14.
Summary Ontogenesis of gastrin cells was studied in the pyloroduodenal mucosa of the mouse using anti-human G17 serum, R-1301, and anti-human G34(1–15) serum, R-2703. R-1301-immunostained cells first appeared in the pyloric mucosa of 14-day-old fetuses. Cells stained with both R-1301 and R-2703 appeared immediately after birth, and gradually increased in number to the adult level. Most R-1301-reactive cells were also reactive to R-2703, whereas some cells that reacted with R-1301 exhibited very weak or no reaction with R-2703. The discrepancy between these two immunoreactivities is discussed.In the duodenum, a considerable number of R-1301-reactive cells were present from the perinatal stage and through out adult development. A few R-2703-reactive cells were seen in the duodenum of young mice but not of the adult.  相似文献   

15.
16.
17.
18.
19.
The ontogenesis of immunoreactive (ir) ACTH cells and ir alpha-MSH cells in rat hypothalamus was studied in vivo and in vitro. Ir ACTH cells first appeared in the neuroepithelial cell layer lining the floor of the third ventricle on Day 13.5 of gestation, whereas ir alpha-MSH first appeared in the cytoplasm of several ir ACTH cells in the basal part of the arcuate nucleus of the hypothalamus on Day 19.5. When the medial-basal hypothalamus of 12.5-day embryos was cultured alone, a few ir ACTH cells were found after culture for 10 days, but not 3 days, and no ir alpha-MSH cells were observed in the cultures. When the hypothalamus was cultured with Rathke's pouch (intact or without the intermediate lobe anlage), ir ACTH cells appeared within 3 days. In these cultures on Days 6 and 10, long beaded fibers were seen projecting from cells in the neuronal tissue, and some cells showed immunolabeling for alpha-MSH. When the hypothalamus was cocultured with oral epithelium instead of Rathke's pouch, the appearance of neuronal ir ACTH cells was like that in cultures of hypothalamus alone. These in vitro findings suggest that stimulus from the anterior lobe anlage of the pituitary is necessary for normal development of ir ACTH/alpha-MSH cells in the hypothalamus.  相似文献   

20.

Background

The human genome carries a high load of proviral-like sequences, called Human Endogenous Retroviruses (HERVs), which are the genomic traces of ancient infections by active retroviruses. These elements are in most cases defective, but open reading frames can still be found for the retroviral envelope gene, with sixteen such genes identified so far. Several of them are conserved during primate evolution, having possibly been co-opted by their host for a physiological role.

Results

To characterize further their status, we presently sequenced 12 of these genes from a panel of 91 Caucasian individuals. Genomic analyses reveal strong sequence conservation (only two non synonymous Single Nucleotide Polymorphisms [SNPs]) for the two HERV-W and HERV-FRD envelope genes, i.e. for the two genes specifically expressed in the placenta and possibly involved in syncytiotrophoblast formation. We further show - using an ex vivo fusion assay for each allelic form - that none of these SNPs impairs the fusogenic function. The other envelope proteins disclose variable polymorphisms, with the occurrence of a stop codon and/or frameshift for most - but not all - of them. Moreover, the sequence conservation analysis of the orthologous genes that can be found in primates shows that three env genes have been maintained in a fully coding state throughout evolution including envW and envFRD.

Conclusion

Altogether, the present study strongly suggests that some but not all envelope encoding sequences are bona fide genes. It also provides new tools to elucidate the possible role of endogenous envelope proteins as susceptibility factors in a number of pathologies where HERVs have been suspected to be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号