首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Western Arctic bowhead whale (Balaena mysticetus) is highly adapted to sea ice and annually migrates through the Bering, Chukchi, and Beaufort seas. While the overall distribution and seasonal movements of bowhead whales are mostly understood, information about their distribution in the Alaskan Beaufort Sea in early to mid-summer has not been well documented. In July 2011, we conducted an exploratory flight in the Alaskan Beaufort Sea, north of Camden Bay (71°N 144°W), near the location of a single satellite-tagged bowhead whale. Eighteen bowhead whales were observed, and behavior consistent with feeding was documented. To our knowledge, this is the first documentation of behavior consistent with feeding north of Camden Bay in mid-July. Few studies have focused on bowhead whale distribution in the Alaskan Beaufort Sea in early to mid-summer, and no long-term, region-wide surveys have been conducted during summer. Bowhead whales are already exposed to anthropogenic disturbance in the Canadian Beaufort Sea in summer, the Alaskan Beaufort Sea in fall, and the Chukchi and Bering seas from fall through spring. The presence of bowhead whale aggregations in the Alaskan Beaufort Sea in summer should be considered when assessing the cumulative effects of human-related activities.  相似文献   

2.
Whale sharks, Rhincodon typus, aggregate by the hundreds in a summer feeding area off the northeastern Yucatan Peninsula, Mexico, where the Gulf of Mexico meets the Caribbean Sea. The aggregation remains in the nutrient-rich waters off Isla Holbox, Isla Contoy and Isla Mujeres, Quintana Roo for several months in the summer and then dissipates between August and October. Little has been known about where these sharks come from or migrate to after they disperse. From 2003–2012, we used conventional visual tags, photo-identification, and satellite tags to characterize the basic population structure and large-scale horizontal movements of whale sharks that come to this feeding area off Mexico. The aggregation comprised sharks ranging 2.5–10.0 m in total length and included juveniles, subadults, and adults of both sexes, with a male-biased sex ratio (72%). Individual sharks remained in the area for an estimated mean duration of 24–33 days with maximum residency up to about 6 months as determined by photo-identification. After leaving the feeding area the sharks showed horizontal movements in multiple directions throughout the Gulf of Mexico basin, the northwestern Caribbean Sea, and the Straits of Florida. Returns of individual sharks to the Quintana Roo feeding area in subsequent years were common, with some animals returning for six consecutive years. One female shark with an estimated total length of 7.5 m moved at least 7,213 km in 150 days, traveling through the northern Caribbean Sea and across the equator to the South Atlantic Ocean where her satellite tag popped up near the Mid-Atlantic Ridge. We hypothesize this journey to the open waters of the Mid-Atlantic was for reproductive purposes but alternative explanations are considered. The broad movements of whale sharks across multiple political boundaries corroborates genetics data supporting gene flow between geographically distinct areas and underscores the need for management and conservation strategies for this species on a global scale.  相似文献   

3.
Studies have shown that the whale shark (Rhincodon typus), a vulnerable large filter feeder, seasonally aggregates at highly productive coastal sites and that individuals can perform large, trans-boundary migrations to reach these locations. Yet, the whereabouts of the whale shark when absent from these sites and the potential oceanographic and biological drivers involved in shaping their present and future habitat use, including that located at the fringes of their suitable oceanic habitat, are largely unknown. We analysed a 16-year (1998–2013) observer dataset from the pole-and-line tuna fishery across the Azores (mid-North Atlantic) and used GAM models to investigate the spatial and temporal patterns of whale shark occurrence in relation to oceanographic features. Across this period, the whale shark became a regular summer visitor to the archipelago after a sharp increase in sighting frequency seen in 2008. We found that SST helps predicting their occurrence in the region associated to the position of the seasonal 22°C isotherm, showing that the Azores are at a thermal boundary for this species and providing an explanation for the post 2007 increase. Within the region, whale shark detections were also higher in areas of increased bathymetric slope and closer to the seamounts, coinciding with higher chl-a biomass, a behaviour most probably associated to increased feeding opportunities. They also showed a tendency to be clustered around the southernmost island of Santa Maria. This study shows that the region integrates the oceanic habitat of adult whale shark and suggests that an increase in its relative importance for the Atlantic population might be expected in face of climate change.  相似文献   

4.
Mid-frequency military (1–10 kHz) sonars have been associated with lethal mass strandings of deep-diving toothed whales, but the effects on endangered baleen whale species are virtually unknown. Here, we used controlled exposure experiments with simulated military sonar and other mid-frequency sounds to measure behavioural responses of tagged blue whales (Balaenoptera musculus) in feeding areas within the Southern California Bight. Despite using source levels orders of magnitude below some operational military systems, our results demonstrate that mid-frequency sound can significantly affect blue whale behaviour, especially during deep feeding modes. When a response occurred, behavioural changes varied widely from cessation of deep feeding to increased swimming speed and directed travel away from the sound source. The variability of these behavioural responses was largely influenced by a complex interaction of behavioural state, the type of mid-frequency sound and received sound level. Sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health.  相似文献   

5.
Whale shark (Rhincodon typus, Smith, 1828) is an endangered species with anthropogenic pressures due to increasing demand of encounter tourism activities. Research efforts to identify management and conservation strategies for this species are needed. The Northern Mexican Caribbean is one of the most important feeding aggregation sites of whale sharks worldwide. In this study, Mexican Caribbean whale shark feeding habits are assessed by means of fatty acid (FA) signature analysis, a biochemical non-destructive technique widely applied in trophic ecology studies. Sub-dermal tissue biopsies of 68 whale sharks and samples of their potential prey (zooplankton) were collected during 2010 and 2011 in two areas with high R. typus abundance. Zooplankton samples (n?=?17) were divided in two categories: mixed zooplankton (several groups of zooplankton) and fish eggs (> 95% of sample components were fish eggs). FA profiles of whale shark tissue sampled between years showed significant variability; while there was no intraspecific differences in FA signature related to sex, size and location. FA profiles of whale sharks and their potential prey were dominated by saturated fatty acids (SFA). R. typus FA signature was significantly different from that of mixed zooplankton; on the other hand, whale shark and fish egg FA profiles formed groups with overlapping values and registered high levels of oleic acid. PUFA average ω3/ ω6 ratio on whale shark FA profiles for both years was below 1. Arachidonic acid (ARA) percentage was higher in whale shark biopsies (13.2% in 2010, 6.8% in 2011) compared to values observed in fish eggs (2.0%) and mixed zooplankton (1.4%). Similarity between FA profiles of whale sharks and fish eggs, low levels of bacterial FA found in R. typus biopsies, as well as whale shark feeding behavior observations in the study area, suggest that R. typus is feeding mainly on surface zooplankton in Mexican Caribbean; however, elevated ARA percentages in whale shark samples may indicate that this species has complementary feeding sources, such as demersal zooplankton, which has been reported in other aggregation sites. Results obtained contribute to the knowledge of the whale shark trophic ecology in the area, but are inconclusive. Further studies are recommended to evaluate whale shark FA profiles from different tissues (muscle or blood); also, broader information is needed about zooplankton FA signature in the study area.  相似文献   

6.
Rorqual whales (Family: Balaenopteridae) are the world's largest predators and sometimes feed near or at the sea surface on small schooling prey. Most rorquals capture prey using a behavioral process known as lunge‐feeding that, when occurring at the surface, often exposes the mouth and head above the water. New technology has recently improved historical misconceptions about the natural variation in rorqual lunge‐feeding behavior yet missing from the literature is a dedicated study of the identification, use, and evolution of these behaviors when used to capture prey at the surface. Here we present results from a long‐term investigation of three rorqual whale species (minke whale, Balaenoptera acutorostrata; fin whale, B. physalus; and blue whale, B. musculus) that helped us develop a standardized classification system of surface lunge‐feeding (SLF) behaviors. We then tested for differences in frequency of these behaviors among the three species and across all rorqual species. Our results: (1) propose a unified classification system of six homologous SLF behaviors used by all living rorqual whale species; (2) demonstrate statistically significant differences in the frequency of each behavior by minke, fin, and blue whales; and (3) provide new information regarding the evolution of lunge‐feeding behaviors among rorqual whales.  相似文献   

7.
The environmental conditions of the breeding and feeding grounds of the gray whale (Eschrichtius robustus) fluctuates at inter-annual scales in response to regional and basin climate patterns. Thus, the goals of this study were to assess if there are any relationships between summer sea ice on their feeding ground and counts of gray whale mother-calf (MC) pairs at Ojo de Liebre Lagoon (OLL); and if El Niño Southern Oscillation (ENSO) influences the winter distribution of gray whales MC pairs in the three primary breeding lagoons of OLL, San Ignacio Lagoon (SIL) and Santo Domingo Channel north of Bahia Magdalena (SDCh). Maximum February counts of MC pairs were compared with the length of the open-water season at the Bering Sea during the previous year. Then, an ENSO index and sea surface temperature anomalies outside the primary lagoons was compared with the maximum February counts of MC pairs at these lagoons. Results showed that maximum counts of MC pairs in OLL correlates with sea ice conditions in their feeding grounds from the previous feeding season, and this relationship can be attributed to changes in nutritive condition of females. ENSO-related variability influences distribution of MC pairs in the southern area of SDCh during the warm 1998 El Niño and cold 1999 La Niña. This supports the hypothesis that changes in the whales’ distribution related to sea temperature occurs to reduce thermal-stress and optimize energy utilization for newborn whales. Although this last conclusion should be considered in view of the limited data available from all the whales’ wintering locations in all the years considered.  相似文献   

8.
Knowledge of humpback whale (Megaptera novaeangliae) foraging on feeding grounds is becoming increasingly important as the growing North Pacific population recovers from commercial whaling and consumes more prey, including economically important fishes. We explored spatial and temporal (interannual, within‐season) variability in summer foraging by humpback whales along the eastern side of the Kodiak Archipelago as described by stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of humpback whale skin (n = 118; 2004–2013). The trophic level (TL) of individual whales was calculated using basal food web δ15N values collected within the study area. We found evidence for the existence of two subaggregations of humpback whales (“North,” “South”) on the feeding ground that fed at different TLs throughout the study period. Linear mixed models suggest that within an average year, Kodiak humpback whales forage at a consistent TL during the feeding season. TL estimates support mixed consumption of fish and zooplankton species in the “North” (mean ± SE; 3.3 ± 0.1) and predominant foraging on zooplankton in the “South” (3.0 ± 0.1). This trend appears to reflect spatial differences in prey availability, and thus, our results suggest North Pacific humpback whales may segregate on feeding aggregations and target discrete prey species.  相似文献   

9.
The song of Antarctic blue whales (Balaenoptera musculus intermedia) comprises repeated, stereotyped, low-frequency calls. Measurements of these calls from recordings spanning many years have revealed a long-term linear decline as well as an intra-annual pattern in tonal frequency. While a number of hypotheses for this long-term decline have been investigated, including changes in population structure, changes in the physical environment, and changes in the behaviour of the whales, there have been relatively few attempts to explain the intra-annual pattern. An additional hypothesis that has not yet been investigated is that differences in the observed frequency from each call are due to the Doppler effect. The assumptions and implications of the Doppler effect on whale song are investigated using 1) vessel-based acoustic recordings of Antarctic blue whales with simultaneous observation of whale movement and 2) long-term acoustic recordings from both the subtropics and Antarctic. Results from vessel-based recordings of Antarctic blue whales indicate that variation in peak-frequency between calls produced by an individual whale was greater than would be expected by the movement of the whale alone. Furthermore, analysis of intra-annual frequency shift at Antarctic recording stations indicates that the Doppler effect is unlikely to fully explain the observations of intra-annual pattern in the frequency of Antarctic blue whale song. However, data do show cyclical changes in frequency in conjunction with season, thus suggesting that there might be a relationship among tonal frequency, body condition, and migration to and from Antarctic feeding grounds.  相似文献   

10.
The Barents Sea system is often depicted as a simple food web in terms of number of dominant feeding links. The most conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world''s largest cod stock which is presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal communities. Previous diet studies may suggest that these top predators (cod, bird and sea mammals) compete for food particularly with respect to pelagic fish such as capelin and juvenile herring (Clupea harengus), and krill. In this paper we explored the diet of some Barents Sea top predators (cod, Black-legged kittiwake Rissa tridactyla, Common guillemot Uria aalge, and Minke whale Balaenoptera acutorostrata). We developed a GAM modelling approach to analyse the temporal variation diet composition within and between predators, to explore intra- and inter-specific interactions. The GAM models demonstrated that the seabird diet is temperature dependent while the diet of Minke whale and cod is prey dependent; Minke whale and cod diets depend on the abundance of herring and capelin, respectively. There was significant diet overlap between cod and Minke whale, and between kittiwake and guillemot. In general, the diet overlap between predators increased with changes in herring and krill abundances. The diet overlap models developed in this study may help to identify inter-specific interactions and their dynamics that potentially affect the stocks targeted by fisheries.  相似文献   

11.
The Norwegian spring-spawning (NSS) herring (Clupea harengus), blue whiting (Micromesistius poutassou) and Northeast Atlantic (NEA) mackerel (Scomber scombrus) are extremely abundant pelagic planktivores that feed in the Norwegian Sea (NS) during spring and summer. This study investigated the feeding ecology and diet composition of these commercially important fish stocks on the basis of biological data, including an extensive set of stomach samples in combination with hydrographical data, zooplankton samples and acoustic abundance data from 12 stock monitoring surveys carried out in 2005–2010. Mackerel were absent during the spring, but had generally high feeding overlap with herring in the summer, with a diet mainly based on calanoid copepods, especially Calanus finmarchicus, as well as a similar diet width. Stomach fullness in herring diminished from spring to summer and feeding incidence was lower than that of mackerel in summer. However, stomach fullness did not differ between the two species, indicating that herring maintain an equally efficient pattern of feeding as mackerel in summer, but on a diet that is less dominated by copepods and is more reliant on larger prey. Blue whiting tended to have a low dietary overlap with mackerel and herring, with larger prey such as euphausiids and amphipods dominating, and stomach fullness and feeding incidence increasing with length. For all the species, feeding incidence increased with decreasing temperature, and for mackerel so did stomach fullness, indicating that feeding activity is highest in areas associated with colder water masses. Significant annual effects on diet composition and feeding-related variables suggested that the three species are able to adapt to different food and environmental conditions. These annual effects are likely to have an important impact on the predation pressure on different plankton groups and the carrying capacity of individual systems, and emphasise the importance of regular monitoring of pelagic fish diets.  相似文献   

12.
In Clayquot Sound, British Columbia, gray whales (Eschrichtius robustus) forage primarily on mysids (Family Mysideae) and also on crab larvae (Family Porcellanidae) that are constrained to specific habitat, which relate to bathymetric depths. In this paper we characterize the interactions of gray whales and their prey by analyzing fine scale spatial‐temporal patterns in foraging gray whale distribution within a season. Kernel density estimators are applied to two seasons (1998 and 2002) of high‐resolution data on foraging by gray whales. By partitioning data from each foraging season into several time periods (12 in 1998 and 11 in 2002), using a temporal autocorrelation function, and generating kernel density estimated surfaces for each time period, it is possible to identify discrete areas of increasing and declining foraging effort. Our results indicate that gray whales forage on mysids throughout a season and opportunistically forage on crab larvae. The episodic crab larvae feeding may reduce, but not eliminate, pressure to mysid populations enabling mysids to reassemble swarms and continue to support gray whale foraging in the latter part of the season. Results suggest that when managing marine environments, gray whale populations require multiple and connected habitats for summer foraging.  相似文献   

13.
Singing by males is a major feature of the mating system of humpback whales, Megaptera novaeangliae (Borowski). Although a few songs have been opportunistically recorded on the whales' high-latitude feeding grounds, singing in these regions was thought to be only sporadic. We report results from the first continuous acoustic monitoring of a humpback whale feeding ground (off Cape Cod, MA, USA) in spring. Using autonomous sea-floor recording systems, we found singing on a daily basis over the entire 25 day monitoring period, from 14 May to 7 June 2000. For much of the period, song was recorded 24 h per day. These results, combined with evidence for aseasonal conceptions in whaling catch data, suggest that the humpback whale breeding season should no longer be considered as confined to lower-latitude regions in winter. Rather, we suggest breeding extends geographically and temporally onto feeding grounds into at least spring and early summer. Singing at these times represents either low-cost opportunistic advertising by (perhaps relatively few) males to court females that failed to conceive during the winter, and/or possibly an intrasexual display.  相似文献   

14.
Humpback whales sing long, complex songs on their wintering grounds. On 25 August 1979 and 3 September 1981, we made recordings of humpback whale songs in southeastern Alaska, showing that humpback whales also sing on the summer feeding grounds. Both these Alaskan samples are songs in that they are repeating cyclical sound patterns and follow the known structure for humpback whale song. The Alaskan songs contain all the same material sung in the same order as that heard off Mexico and Hawaii in the surrounding wintering seasons. However, song, theme and some phrase durations are abbreviated in the Alaskan songs. The recording of these two songs represents the full sample of song recorded from 155 days over five years of attempting to record humpback whale song in Alaskan waters.  相似文献   

15.
We describe the first record of a whale shark, Rhincodon typus, feeding in Brazilian coastal waters, and the first stranding record in the state of Bahia, Northeast Brazil. In April 2008, an individual of R. typus was observed surface feeding on Dromiidae crab larvae in the continental shelf off the coast of Bahia, near a gas platform. Other fishes were observed foraging in association with the whale shark. We also document the first stranding of R. typus on the coast of Bahia in October 2013. Biometric data confirmed that the stranded whale shark was a juvenile. Stomach content analysis revealed the ingestion of Geryonidae crab larvae. Plastic debris were also found in the gastric lumen of the stranded juvenile whale shark, and we speculate that it could have been a contributing factor to the stranding, and subsequent death of the whale shark. Crab larvae were observed in both of our records and likely to consist as relevant prey items for R. typus in Brazilian continental shelf. Our study provided a contribution on the diet and feeding behaviour of whale sharks in tropical oligotrophic waters and highlights the risks of marine pollution for the species conservation.  相似文献   

16.
Sharks segregate by sex and size, but few studies have attempted to explain such behaviors. To address this, we examined aggregations and the foraging ecology of whale sharks in Bahía de La Paz (BLP) with aerial and ship surveys and direct observation. Zooplankton abundance and composition, and hydrographic conditions were analyzed in relation to whale shark occurrence to explore underlying factors causing segregations. We observed large aggregations of juveniles (<9 m total length, TL) inshore, comprised by 60 % male individuals, and small aggregations of adults (>9 m TL) offshore, composed of 84 % females. Juvenile sharks were associated to turbid shallow waters in BLP, where they performed stationary and dynamic suction feeding on dense copepod swarms. Adults occurred in oceanic waters and fed by ram-filtering on diffuse patches of euphausiids, with no association to oceanographic conditions. Such segregation may be advantageous to juvenile R. typus utilizing shallow coastal waters to find abundant preferred prey needed for their fast growth rates. Our studies suggest that the main driving forces of whale shark segregation by sex and size in BLP may be diet preference for juveniles and habitat preference for adult sharks.  相似文献   

17.
Habitat prediction models were developed for 13 cetacean species of the mid-western North Atlantic Ocean: beaked whale, fin whale, humpback whale, minke whale, pilot whale, sperm whale, bottlenose dolphin, common dolphin, Risso's dolphin, spotted dolphin, whitesided dolphin, and harbor porpoise. Using the multiple logistic regression, sightings of cetaceans during the 1990–1996 summer (June-September) surveys were modeled with oceanographic (sea surface temperature, monthly probability of front occurrence) and topographic (depth, slope) variables for the same period. Predicted habitat maps for June and August were created for each species using a Geographical Information System. The predicted habitat locations matched with current and historic cetacean sighting locations. The model also predicted habitat shifts for some species associated with oceanographic changes. The correct classification rate of the prediction models with 1997–1998 summer survey data ranged from 44% to 70%, of which most of the misclassifications were caused by false positives ( i.e. , absence of sightings at locations where the models predicted).  相似文献   

18.
Understanding the population structure of a species is critical to its effective management and conservation. The humpback whale ( Megaptera novaeangliae ) has been the target of numerous research projects in several ocean basins, but no clear picture of its population structure has emerged. In the North Atlantic Ocean, genetic analyses and photo-identification movements have shown significant heterogeneity among the summer feeding grounds. Building on this knowledge, we test the hypothesis that the feeding grounds represent distinct populations by analyzing the spatial pattern of summer humpback whale sightings and survey effort. Controlling for the spatial pattern of effort, sightings are clustered, with peaks at radial distances of 300 km, 600 km, and 1,500 km. These results provide insight into the spatial extent of the summer population structure of humpback whales in the North Atlantic Ocean. Fine-scale clustering at distances of 300 km and 600 km is compatible with multiple populations consisting of the Gulf of Maine, eastern Canada, western Greenland, and Iceland. Broad-scale clustering at distances of 1,500 km may represent divisions between the western and eastern North Atlantic populations. These results provide spatial bounds to the feeding grounds of humpback whales and emphasize their distinct nature as management units.  相似文献   

19.
Understanding the degree of genetic exchange between subspecies and populations is vital for the appropriate management of endangered species. Blue whales (Balaenoptera musculus) have two recognized Southern Hemisphere subspecies that show differences in geographic distribution, morphology, vocalizations and genetics. During the austral summer feeding season, the Antarctic blue whale (B. m. intermedia) is found in polar waters and the pygmy blue whale (B. m. brevicauda) in temperate waters. Here, we genetically analyzed samples collected during the feeding season to report on several cases of hybridization between the two recognized blue whale Southern Hemisphere subspecies in a previously unconfirmed sympatric area off Antarctica. This means the pygmy blue whales using waters off Antarctica may migrate and then breed during the austral winter with the Antarctic subspecies. Alternatively, the subspecies may interbreed off Antarctica outside the expected austral winter breeding season. The genetically estimated recent migration rates from the pygmy to Antarctic subspecies were greater than estimates of evolutionary migration rates and previous estimates based on morphology of whaling catches. This discrepancy may be due to differences in the methods or an increase in the proportion of pygmy blue whales off Antarctica within the last four decades. Potential causes for the latter are whaling, anthropogenic climate change or a combination of these and may have led to hybridization between the subspecies. Our findings challenge the current knowledge about the breeding behaviour of the world's largest animal and provide key information that can be incorporated into management and conservation practices for this endangered species.  相似文献   

20.
A total of 326 humpback whales (Megaptera novaeangliae) were individually identified in southeastern Alaska during five summer seasons (July to September) and four late seasons (November to February) spanning the years 1979 to 1983. Peak numbers of whales were found late in August or early in September. Whales arrived 1–2 wk later in 1982 than in 1981. Whales sighted in both the summer and late seasons of 1981 and 1982 remained about 3.7 mo and one whale remained for at least 4.9 mo. Humpback whales from southeastern Alaska wintered in Hawaiian or Mexican waters, but generally did not travel to other feeding regions. The most rapid migratory transit between Hawaii and southeastern Alaska was 79 d. Based on mark-recapture analyses of the photographic data, we estimate a population of 270–372 whales in the southeastern Alaska feeding herd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号