首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calicioid lichens and fungi are a polyphyletic grouping of tiny ascomycetes that accumulate a persistent spore mass (mazaedium) on top of their usually well-stalked ascomata (‘mazaediate fungi’). In addition to extant forms, six fossils of the group were previously known from European Paleogene amber. Here we report nine new fossils and analyze the preserved features of all fossils to assess their applicability for dating molecular phylogenies. Many fossils are extremely well preserved, allowing detailed comparisons with modern taxa. SEM investigation reveals that even fine details of ascospore wall ultrastructure correspond to those seen in extant specimens. All fossils can confidently be assigned to modern genera: three to Calicium (Caliciaceae, Lecanoromycetes), five to Chaenotheca (Coniocybaceae, Coniocybomycetes), six to Chaenothecopsis (Mycocaliciaceae, Eurotiales), and one to Phaeocalicium (Mycocaliciaceae, Eurotiales). Several Calicium and Chaenotheca fossils are assignable to specific lineages within their genera, while the Chaenothecopsis fossils demonstrate the extent of intraspecific variation within one such lineage. Some features in the morphology of Chaenotheca succina nov. sp. seem to be ancestral as they have not been reported from modern species of the genus.  相似文献   

2.
Three new species of fossil snipe flies (Insecta, Diptera, Rhagionidae) from the Daohugou Formation of Chifeng City in Nei Monggol Autonomous Region (= Inner Mongolia), northeastern China are described as Palaeobolbomyia sinica nov. sp., Ussatchovia robusta nov. sp. and Ussatchovia gracilenta nov. sp. They represent the first records of the genera Palaeobolbomyia Kovalev and Ussatchovia Kovalev in China and have implications for stratigraphic correlation of the formations in which they are found. Although the precise age of the Daohugou Formation is currently unresolved, it is most likely Callovian-Oxfordian (latest Middle Jurassic-earliest Late Jurassic) rather than early Middle Jurassic (late Aalenian-early Bajocian) or Early Cretaceous.  相似文献   

3.
Polyphenol oxidases (PPO) are very important enzymes group in many industrial applications, especially in food, medicine and cosmetics. PPO from Macrolepiota gracilenta, a wild edible mushroom, was purified using a Sepharose 4B-l-tyrosine-p-amino benzoic acid affinity column and characterized in terms of mono- and diphenolase activity. The highest activities for pure enzyme were observed in the presence of PHPPA and DHPPA for monophenolase and diphenolase, respectively. The enzyme showed pH optimum values at 7.0 and 5.0, respectively, for monophenolase and diphenolase activities. Km values calculated as 0.8 mM for monophenolase and 1 mM for diphenolase activity at the presence of PHPPA and DHPPA as substrate, respectively. Vmax values were calculated as 2000 U/mg protein for both activity. Monophenolase and diphenolase activities were conserved approximately 40% and 60%, respectively, in their optimum pH at 4 °C after 5 day incubation. The activities were inhibited most effectively by thiourea. The data obtained from this study showed that this enzyme could be useful for some industrial purposes.  相似文献   

4.
Abstract:A phylogenetic hypothesis based on nuclear ITS sequence data is presented for the familyPhysciaceae , based on various representatives of foliose and fruticose groups and a number of species selected from the crustose genera Rinodina and Buellia s.l. The analysis supports the monophyly of the Physcia - and theBuellia -groups. This is in agreement with existing morphological evidence, particularly ascus characters. ThePhyscia group in the analysis includes the genera Anaptychia, Heterodermia, Hyperphyscia,Mobergia , Phaeophyscia, Phaeorrhiza, Physcia, Physconia, Rinodina, andRinodinella , while the Buellia group includes Amandinea, Buellia and Diploicia. The genera Physcia, Phaeophyscia, Phaeorrhiza and Rinodinella were well supported as monophyletic groups. The support for Physconia is low. Rinodina and Buellia are not supported as monophyletic genera. In agreement with ascus and ascospore characters, Buellia lindingeri is placed within the Rinodina group, close to R. lecanorina. The genus Amandinea as currently circumscribed was not supported as a monophyletic group. The analysis confirms results from other lichen families that foliose members have evolved more than once from crustose lichens.Rinodina and Rinodinella species without chemical compounds in their thalli form the sister group toPhaeophyscia , and both groups form a monophyletic assemblage. A more detailed analysis of the Physcia group is presented. Whilst several of the foliose genera were well supported, there is only poor support for traditionally accepted crustose genera. The taxonomic implications of these findings are discussed.  相似文献   

5.
Solanum section Petota, containing the cultivated potato and its wild relatives, is a group of around 200 species. Many of these species are morphologically very variable with unclear boundaries, and the group as a whole appears to be somewhat over-classified. Describing a new species in this group should only be undertaken with caution, and molecular data can be used to test the distinctness of any putative new taxon. AFLP markers have shown the ability to reliably distinguish species in several groups within the genus Solanum. We tested the distinctness of a new tuber-bearing Solanum species using morphological and AFLP data, and tried to establish its affiliation to the series within the section. There was clear support for the species status of the material known as Solanum hannemanii in genebank collections, but the AFLP data were inconclusive about its relationships to the other investigated species. Also, the distinction of the series Tuberosa and Megistacroloba, to which these species belong, was not supported.  相似文献   

6.
The distribution of crustose Caliciales has been surveyed in 100 spruce forest patches in Sør-Trøndelag, central Norway. Relationships between occurrence of the species and a number of site and stand variables were analysed by detrended correspondence analysis (DCA) and direct gradient analysis. Species diversity was significantly higher in old forests and in forests at higher altitudes compared to young forests and forests at lower altitudes. Old trees and snags are considered to be the most important structural components in old forests promoting species diversity of the Caliciales. Threatened or vulnerable species, such asChaenotheca gracillima, Cybebe gracilenta, Sclerophora coniophaeaandS. peronellawere confined to forest on rich soils showing no correlation with forest stand age.Chaenotheca brachypodaandC. trichialiswere found to be the most typical old forest species among the Caliciales. Humidiphilous species are considered to be less affected by forestry in a humid climate. A change in forestry practice towards methods imitating the natural dynamic processes is considered necessary to maintain species diversity of the Caliciales in boreal forests.  相似文献   

7.
Inonotus tenuicontextus collected from Guizhou, southwest China was described and illustrated as a new species based on a combination of phylogenetic and morphological evidence. It is characterized by perennial and effused-reflexed to pileate basidiocarps; duplex and very thin context; a monomitic hyphal system in context; a dimitic hyphal system in trama; and broadly ellipsoid, hyaline and thick-walled basidiospores. Phylogenetically I. tenuicontextus clustered within Inonotus s. s. clade; moreover, it formed a well supported monophyletic subclade with Inonotus baumii, I. linteus, I. lonicericola, I. vaninii and I. weirianus. In morphology I. tenuicontextus distinguishes from I. linteus, also a species with duplex context, by its smaller basidiospores, while its duplex context makes it different from the other four species with homogeneous context. We proposed this subclade as a medicinal group for most of its members with medicinal functions. The phylogeny of the six species in this medicinal group was briefly discussed based on our results. An identification key to them is also provided.  相似文献   

8.
9.
Philobryids (Bivalvia: Arcoida) are one of the most speciose marine bivalve families in the Southern Ocean and are common throughout the Southern Hemisphere. Considering this diversity and their brooding reproductive mode (limiting long-distance dispersal), this family may have been present in the Southern Ocean since its inception. However Philobrya and Adacnarca appear only in the Quaternary fossil record of the Antarctic, suggesting a much more recent incursion. Molecular dating provides an independent means of measuring the time of origin and radiation of this poorly known group. Here we present the first combined molecular and morphological investigation of the Philobryidae in the Southern Ocean. Two nuclear loci (18S and 28S) were amplified from 35 Southern Ocean Adacnarca and Philobrya specimens, with a combined sequence length of 2,282 base pairs (bp). Adacnarca specimens (A. nitens and A. limopsoides) were resolved as a strongly supported monophyletic group. Genus Philobrya fell into two strongly supported groups (‘sublaevis’ and ‘magellanica/wandelensis’), paraphyletic with Adacnarca. The A. nitens species complex is identified as at least seven morpho-species through morphological and genetic analysis of taxon clustering. Phylogenetic analyses resolve Philobryidae as a strongly supported monophyletic clade and sister taxon to the Limopsidae, as anticipated by their classification into the superfamily Limopsoidea. Bayesian relaxed clock analyses of divergence times suggest that genus Adacnarca radiated in the Southern Ocean from the Early Paleogene, while P. sublaevis and P. wandelensis clades radiated in the late Miocene, following the formation of the Antarctic Circumpolar Current.  相似文献   

10.
Onosma is a species-rich genus with complicated patterns of morphological and karyological variation, and controversial taxonomic treatments. In the present study we focused on the Asterotricha group, one of three major infrageneric groups, in the area of central and southern Europe. Ribosomal internal transcribed spacer (ITS) sequences and amplified fragment length polymorphism (AFLP) markers were used to assess species differentiation and relationships, and to gain insight into the evolutionary history of the group. ITS data supported the monophyly of the asterotrichous taxa. Six genetically differentiated entities were resolved by AFLP markers, corresponding to O. echioides, O. heterophylla s.l., O. thracica including O. rigida, O. malkarmayorum, O. taurica, and O. stellulata. Onosma stellulata is identified as the most differentiated lineage within the Asterotricha group, which is consistent with its unique chromosome number. Within O. heterophylla s.l., recognition of O. viridis as a species distinct from O. heterophylla s.str. is supported. On the other hand, O. tornensis appears to be conspecific with O. viridis. Inferring from the patterns of genetic diversity and divergence, the evolutionary history of O. heterophylla s.l. is discussed. Genetic variation within the polymorphic Apennine–Dalmatian O. echioides is almost continuous and shaped by isolation by distance, thus none of the previous intraspecific taxonomic concepts are valid. The assumed hybrid origin of O. malkarmayorum is supported, and its affinity to potential ancestors, O. heterophylla s.l. and O. thracica incl. O. rigida, is indicated. Future studies of asterotrichous Onosma species should focus on diversity centers in the eastern Mediterranean and Asia Minor, to build up a comprehensive taxonomic concept of the group and to clarify its evolution.  相似文献   

11.
Molecular data inferred from three nuclear DNA regions were used to re-examine the phylogenetic position and taxonomic status of former Phoxinellus taxa. Using either distance method, maximum likelihood or MCMC, phylogenetic tree revealed statistically well supported clade of Delminichthys adspersus, Delminichthys ghetaldii, Delminichthys jadovensis, and Delminichthys krbavensis occupying a sister position to Pelasgus prespensis; furthermore, Phoxinellus pseudalepidotus emerged as a sister taxon to Delminichthys–Pelasgus group. There was a moderate support for sister relationship between Telestes croaticus and Telestes fontinalis, while the position of Telestes metohiensis varied depending on the region and method used. The topology of taxa within Delminichthys was weakly supported and remained pretty much unresolved. Our results confirm a previous notion that the former genus Phoxinellus is not a monophyletic group but rather a grouping of independent lineages.  相似文献   

12.
A eukaryotic protein family, the tubulin polymerization promoting proteins (TPPPs), has recently been identified. It has been termed after its first member, TPPP/p25 or TPPP1, which exhibits microtubule-stabilizing function and plays a role in neurodegenerative diseases. In mammalian genomes, two further paralogues, TPPP2 and TPPP3, can be found. In this article, I show that TPPP1 and TPPP3, but not TPPP2, are included in paralogons, on human chromosomes, Hsa5 and Hsa16, respectively. I suggest that the single non-vertebrate tppp gene was duplicated in the first round of whole-genome duplication in the vertebrate lineage giving rise to tppp1 and the precursor of tppp2/tppp3. The existence of a teleost fish-specific fourth paralogue, tppp4, has also been raised, but it is not supported by synteny analysis. Alternatively, the new group can be considered as the fish orthologue of TPPP2. The case that the new group is the consequence of the teleost fish-specific whole-genome duplication (3R) cannot be excluded.  相似文献   

13.
The acalyptrate fly superfamily Opomyzoidea, as currently recognized, is a poorly-known group of 14 families. The composition of this group and relationships among included families have been controversial. Furthermore, the delimitation of two opomyzoid families, Aulacigastridae and Periscelididae, has been unstable with respect to placement of the genera Stenomicra, Cyamops, and Planinasus. To test the monophyly of Opomyzoidea, previously proposed relationships between families, and the position of the three problematic genera, we sequenced over 3300 bp of nucleotide sequence data from the 28S ribosomal DNA and CAD (rudimentary) genes from 29 taxa representing all opomyzoid families, as well as 13 outgroup taxa. Relationships recovered differed between analyses, and only branches supporting well-established monophyletic families were recovered with high support, with a few exceptions. Opomyzoidea and its included subgroup, Asteioinea, were found to be non-monophyletic. Stenomicra, Cyamops, and Planinasus group consistently with Aulacigastridae, contrary to recent classifications. Xenasteiidae and Australimyzidae, two small, monogeneric families placed in separate superfamilies, were strongly supported as sister groups.  相似文献   

14.
《Journal of Asia》2023,26(4):102133
Craneflies (Tipuloidea or Tipulidae sensu lato) are one of the most diverse groups of true flies (Insecta, Diptera). The Tipuloidea and perhaps the Trichoceridae formed the infraorder Tipulomorpha, which is traditionally considered the most basal group of Diptera. Relationships among Tipulomorpha and the phylogenetic position of this infraorder within the whole Diptera remain to be settled. A mitochondrial genome (mitogenome) phylogeny of Diptera was produced to test the relationships within Tipulomorpha and its phylogenetic position. A complete mitogenome of Nephrotoma scalaris parvinotata (Tipuloidea, Tipulidae) was firstly sequenced with a next-generation sequencing approach. Compared with the published mitogenomes of Tipuloidea, the new mitogenome had a larger genome size (17,862 nt), due to a longer non-coding control region. The gene order was identical to Drosophila yakuba. Phylogenetic reconstructions using different inference methods recovered Tipulomorpha as monophyletic. And the Tipulomorpha was retrieved in a relatively basal position in Diptera. Within Tipulomorpha, the Tipuloidea and the Trichoceridae were strongly supported as reciprocally monophyletic. Relationships within Tipuloidea were resolved as (Pedicidae + (Limoniidae + (Cylindrotomidae + Tipulidae))). Well supported relationships include: Pedicidae was the sister group of (Limoniidae + (Tipulidae + Cylindrotomidae)); Limoniidae was paraphyletic with respect to (Tipulidae + Cylindrotomidae); Cylindrotomidae was the sister group of Tipulidae. The newly sequenced N. scalaris parvinotata clustered with other two Nephrotoma species at a derived position in Tipuloidea.  相似文献   

15.
The chloroplast gene matK and the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced from 17 samples of 13 species representing 6 genera of the angiosperm family Rhizophoraceae from China. Phylogenetic analyses were initially conducted based on sequences of the matK gene and the ITS regions, respectively, using Byrsonima crassifolia and Bunchosia armeniaca (Malpighiaceae) as outgroups. The partition–homogeneity test indicated that the two data sets are homogeneous. A combined analysis of the matK and ITS data generated a well supported phylogeny, which is topologically congruent with the two gene trees based on the Templeton test. The combined phylogeny shows that each genus formed a monophyletic group and the monophyletic relationships of the mangrove genera and of the inland genera were strongly supported.  相似文献   

16.
Subtribe Galipeinae (tribe Galipeeae, subfamily Rutoideae) is the most diverse group of Neotropical Rutaceae, with 28 genera and approximately 130 species. One of its genera is Almeidea, whose species are morphologically similar to those of the genus Conchocarpus. Species of Almeidea occur in the Atlantic Rain Forest of Eastern Brazil, with one species (Almeidea rubra) also present in Bolivia. The objective of this study was to perform a phylogenetic analysis of Almeidea, using a broader sampling of Galipeinae and other Neotropical Rutaceae, the first such study focused on this subtribe. To achieve this objective, morphological data and molecular data from the nuclear markers ITS-1 and ITS-2 and the plastid markers trnL-trnF and rps16 were obtained. Representatives of eight genera of Galipeinae and three genera of Pilocarpinae (included also in Galipeeae) and Hortia (closely related to Galipeeae) were used. Five species of Almeidea and seven of Conchocarpus were included, given the morphological proximity between these two genera. Individual (for each molecular marker) and combined phylogenetic analyses were made, using parsimony and Bayesian inference as optimization criteria. Results showed Galipeinae as monophyletic, with the species of Almeidea also monophyletic (supported by the presence of pantocolporate pollen) and nested in a clade with a group of species of Conchocarpus, a non-monophyletic group. Additionally, C. concinnus appeared in a group with Andreadoxa, Erythrochiton, and Neoraputia, other members of Galipeinae. As a result, Conchocarpus would be monophyletic only with the exclusion of a group of species related to C. concinnus and with the inclusion of all species of Almeidea with the group of species of Conchocarpus that includes its type species, C. macrophyllus. Thus, species of Almeidea are transferred to Conchocarpus, and the new combinations are made here.  相似文献   

17.
Hyaloscyphaceae is the largest family in Helotiales, Leotiomycetes. It is mainly characterized by minute apothecia with well-differentiated hairs, but its taxonomic delimitation and infrafamilial classification remain ambiguous. This study performed molecular phylogenetic analyses using multiple genes including the ITS-5.8S rDNA, the D1–D2 region of large subunit of rDNA, RNA polymerase II subunit 2, and the mitochondrial small subunit. The primary objective was to evaluate the phylogenetic utility of morphological characters traditionally used in the taxonomy of Hyaloscyphaceae through reassessment of the monophyly of this family and its genera. The phylogenetic analyses inferred Hyaloscyphaceae as being a heterogeneous assemblage of a diverse group of fungi and not supported as monophyletic. Among the three tribes of Hyaloscyphaceae only Lachneae formed a monophyletic lineage. The presence of hairs is rejected as a synapomorphy, since morphologically diversified hairs have originated independently during the evolution of Helotiales. The true- and false-subiculum in Arachnopezizeae are hypothesized to have evolved through different evolutionary processes; the true-subiculum is likely the product of a single evolutionary origin, while the false-subiculum is hypothesized to have originated multiple times. Since Hyaloscyphaceae sensu lato was not resolved as monophyletic, Hyaloscyphaceae sensu stricto is redefined and only applied to the genus Hyaloscypha.  相似文献   

18.
Wang XP  Yu L  Roos C  Ting N  Chen CP  Wang J  Zhang YP 《PloS one》2012,7(4):e36274

Background

Phylogenetic relationships among Asian and African colobine genera have been disputed and are not yet well established. In the present study, we revisit the contentious relationships within the Asian and African Colobinae by analyzing 44 nuclear non-coding genes (>23 kb) and mitochondrial (mt) genome sequences from 14 colobine and 4 non-colobine primates.

Principal Findings

The combined nuclear gene and the mt genome as well as the combined nuclear and mt gene analyses yielded different phylogenetic relationships among colobine genera with the exception of a monophyletic ‘odd-nosed’ group consisting of Rhinopithecus, Pygathrix and Nasalis, and a monophyletic African group consisting of Colobus and Piliocolobus. The combined nuclear data analyses supported a sister-grouping between Semnopithecus and Trachypithecus, and between Presbytis and the odd-nosed monkey group, as well as a sister-taxon association of Pygathrix and Rhinopithecus within the odd-nosed monkey group. In contrast, mt genome data analyses revealed that Semnopithecus diverged earliest among the Asian colobines and that the odd-nosed monkey group is sister to a Presbytis and Trachypithecus clade, as well as a close association of Pygathrix with Nasalis. The relationships among these genera inferred from the analyses of combined nuclear and mt genes, however, varied with the tree-building methods used. Another remarkable finding of the present study is that all of our analyses rejected the recently proposed African colobine paraphyly and hybridization hypothesis and supported reciprocal monophyly of the African and Asian groups.

Significance

The phylogenetic utility of large-scale new non-coding genes was assessed using the Colobinae as a model, We found that these markers were useful for distinguishing nodes resulting from rapid radiation episodes such as the Asian colobine radiation. None of these markers here have previously been used for colobine phylogenetic reconstruction, increasing the spectrum of molecular markers available to mammalian systematics.  相似文献   

19.

Background

One clade of Malagasy leaf chameleons, the Brookesia minima group, is known to contain species that rank among the smallest amniotes in the world. We report on a previously unrecognized radiation of these miniaturized lizards comprising four new species described herein.

Methodology/Principal Findings

The newly discovered species appear to be restricted to single, mostly karstic, localities in extreme northern Madagascar: Brookesia confidens sp. n. from Ankarana, B. desperata sp. n. from Forêt d''Ambre, B. micra sp. n. from the islet Nosy Hara, and B. tristis sp. n. from Montagne des Français. Molecular phylogenetic analyses based on one mitochondrial and two nuclear genes of all nominal species in the B. minima group congruently support that the four new species, together with B. tuberculata from Montagne d''Ambre in northern Madagascar, form a strongly supported clade. This suggests that these species have diversified in geographical proximity in this small area. All species of the B. minima group, including the four newly described ones, are characterized by very deep genetic divergences of 18–32% in the ND2 gene and >6% in the 16S rRNA gene. Despite superficial similarities among all species of this group, their status as separate evolutionary lineages is also supported by moderate to strong differences in external morphology, and by clear differences in hemipenis structure.

Conclusion/Significance

The newly discovered dwarf chameleon species represent striking cases of miniaturization and microendemism and suggest the possibility of a range size-body size relationship in Malagasy reptiles. The newly described Brookesia micra reaches a maximum snout-vent length in males of 16 mm, and its total length in both sexes is less than 30 mm, ranking it among the smallest amniote vertebrates in the world. With a distribution limited to a very small islet, this species may represent an extreme case of island dwarfism.  相似文献   

20.
Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号