首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1986,112(2):153-157
New complexes of the type cis-[MX2(PP′)] (M= Ni, Pd and Pt; X=Cl, Br, I or NCS and PP′=(m- FC6H4)2PCH2CH2PPh2 or (p-FC6H4)2PCH2CH2PPh2) have been synthesized and characterized on the basis of 31P{1H}NMR1H NMR, IR and UV spectroscopy, elemental analysis and magnetic susceptibility measurements. All these complexes are found to be low spin, diamagnetic and square planar. 31P{1H} spectra of these complexes exhibit extraordinarily large downfield coordination chemical shifts, J(31P31P′) and J(195pt31P) couplings are discussed. Ring contribution (ΔR) values for palladium and platinum complexes are calculated from 31P NMR data.  相似文献   

2.
Two new pyrazole-derived ligands, 1-ethyl-3,5-bis(2-pyridyl)pyrazole (L1) and 1-octyl-3,5-bis(2-pyridyl)pyrazole (L2), both containing alkyl groups at position 1 were prepared by reaction between 3,5-bis(2-pyridyl) pyrazole and the appropriate bromoalkane in toluene using sodium ethoxide as base.The reaction between L1, L2 and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) resulted in the formation complexes of formula [MCl2(L)] (M = Pd(II), L = L1 (1); M = Pd(II), L = L2 (2); M = Pt(II), L = L1 (3); M = Pt(II), L = L2 (4)). These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 13C{1H} NMR and HMQC spectroscopies. The X-ray structure of the complex [PtCl2(L2)] (4) was determined. In this complex, Npyridine and Npyrazole donor atoms coordinate the ligand to the metal, which complete its coordination with two chloro ligands in a cis disposition.  相似文献   

3.
Reactions of ligands 1-ethyl-5-methyl-3-phenyl-1H-pyrazole (L1) and 5-methyl-1-octyl-3-phenyl-1H-pyrazole (L2) with [PdCl2(CH3CN)2 and K2PtCl4 gave complexes trans-[MCl2(L)2] (L = L1, L2). The new complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H and 13C{1H} NMR spectroscopies and X-ray diffraction. The NMR study of the complex [PdCl2(L1)2], in CDCl3 solution, is consistent with a very slow rotation of ligands around the Pd-N bond, so that two conformational isomers can be observed in solution (syn and anti). Different behaviour is observed for complexes [PdCl2(L2)2] and [PtCl2(L)2] (L = L1, L2), which present an isomer in solution at room temperature (anti). The crystal structure of [PdCl2(L1)2] complex is described, where the Pd(II) presents a square planar geometry with the ligands coordinated in a trans disposition.  相似文献   

4.
Two tellurium ligands 1-(4-methoxyphenyltelluro)-2-[3-(6-methyl-2-pyridyl)propoxy]ethane (L1) and 1-ethylthio-2-[2-thienyltelluro]ethane (L2) have been synthesized by reacting nucleophiles [4-MeO-C6H4Te] and [C4H3S-2-Te] with 2-[3-(6-methyl-2-pyridyl)propoxy]ethylchloride and chloroethyl ethyl sulfide, respectively. Both the ligands react with HgBr2 resulting in complexes of stoichiometry [HgBr2 · L1/L2] (1/4), which show characteristic NMR (1H and 13C{1H}). On crystallization of 1 from acetone-hexane (2:1) mixture, the cleavage of L1 occurs resulting in 4-MeOC6H4HgBr (2) and [RTe+→HgBr2]Br (3) (where R = -CH2CH2OCH2CH2CH2-(2-(6-CH3-C5H3N))). The 2 is characterized by X-ray diffraction on its single crystal. It is a linear molecule and is the first such system which is fully characterized structurally. The Hg-C and Hg-Br bond lengths are 2.085(6) and2.4700(7) Å. The distance of four bromine atoms (3.4041(7)-3.546(7) Å) around Hg (cis to C) is greater than the sum of van der Waal’s radii 3.30 Å. This mercury promoted cleavage is observed for an acyclic ligand of RArTe type for the first time and is unique, as there appears to be no strong intramolecular interaction to stabilize the cleavage products. The 4 on crystallization shows the cleavage of organotellurium ligand L2 and formation of a unique complex [(EtS(CH2)2SEt)HgBr(μ-Br)Hg(Br)(μ-Br)2Hg(Br)(μ-Br)BrHg(EtS(CH2)2SEt)] · 2HgBr2 (5), which has been characterized by single crystal structure determination and 1H and 13C{1H} NMR spectra. The elemental tellurium and [C4H3SCH2]2 are the other products of dissociation as identified by NMR (proton and carbon-13). The cleavage appears to be without any transmetalation and probably first of its kind. The centrosymmetric structure of 5 is unique as it has [HgBr3] unit, one Hg in distorted tetrahedral geometry and one in pseudo-trigonal bipyramidal one. The molecule of 5 may also be described as having [(EtSCH2CH2SEt)HgBr]+ [HgBr3] units, which dimerize and co-crystallize with two HgBr2 moieties. There are very weak Hg?Br interactions between co-crystallized HgBr2 units and rest of the molecule. [Hg(3)-Br(1)/Hg(3)-Br(4) = 3.148(1)/3.216(1) Å]. The bridging Hg?Br distances, Hg(2)-Br(4)′, Hg(2)′-Br(4) and Hg(1)-Br(2), are from 2.914(1) to 3.008(1) Å.  相似文献   

5.
Copper(II) and nickel(II) complexes of potentially N2O4 Schiff base ligands 2-({[2-(2-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}ethoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L1) and 2-({[2-(4-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}butoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L2) prepared of 5-phenylazo salicylaldehyde (1) and two various diamines 2-[2-(2-aminophenoxy)ethoxy]aniline (2) and 2-[4-(2-aminophenoxy)butoxy]aniline (3) were synthesized and characterized by a variety of physico-chemical techniques. The single-crystal X-ray diffractions are reported for CuL1 and NiL2. The CuL1 complex contains copper(II) in a near square-planar environment of N2O2 donors. The NiL2 complex contains nickel(II) in a distorted octahedral geometry coordination of N2O4 donors. In all complexes, H2L1 behaves as a tetradentate and H2L2 acts as a hexadentate ligand. Cyclic voltammetry of copper(II) complexes indicate a quasi-reversible redox wave in the negative potential range.  相似文献   

6.
Copper(II) complexes of a series of linear pentadentate ligands containing two benzimidazoles, two thioether sulfurs and a amine nitrogen, viz. N,N-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}amine(L1), N,N-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}N-methylamine (L2), 2,6-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}pyridine(L3), N,N-bis{4-(2″-benzimidazolyl)-2-thiabutyl}amine (L4), N,N-bis{4-(2″-benzimidazolyl)-2-thiabutyl}N-methylamine (L5) and 2,6-bis{4-(2″-benzimidazolyl)-2-thiabutyl}-3pyridine (L6) have been isolated and characterized by electronic absorption and EPR spectroscopy and cyclic and differential pulse voltammetry. Of these complexes, [Cu(L1)](BF4)2 (1) and [Cu(L2)](BF4)2 (4) have been structurally characterized by X-ray crystallography. The coordination geometries around copper(II) in 1 and 4 are described as trigonal bipyramidal distorted square based pyramidal geometry (TBDSBP). The distorted CuN3S basal plane in them is comprised of amine nitrogen, one thioether sulphur and two benzimidazole nitrogens and the other thioether sulfur is axially coordinated. The ligand field spectra of all the complexes are consistent with a mostly square-based geometry in solution. The EPR spectra of complexes [Cu(L1)](BF4)2 (1), [Cu(L1)](NO3)2 (2), [Cu(L2)](BF4)2 (4) and [Cu(L3)](ClO4)2 (6) are consistent with two species indicating the dissociation/disproportionation of the complex species in solution. All the complexes exhibit an intense CT band in the range 305-395 nm and show a quasireversible to irreversible CuII/CuI redox process with relatively positive E1/2 values, which are consistent with the presence of two-coordinated thioether groups. The addition of N-methylimidazole (mim) replaces the coordinated thioether ligands in solution, as revealed from the negative shift (222-403 mV) in the CuII/CuI redox potential. The present study reveals that the effect of incorporating an amine nitrogen donor into CuN2S2 complexes is to generate an axial copper(II)-thioether coordination and also to enforce lesser trigonality on the copper(II) coordination geometry.  相似文献   

7.
A chiral Schiff base N-(S)-2-(6-methoxylnaphthyl)-propanoyl-N′-(2-hydroxylbenzylidene)hydrazine (H2L) has been synthesized. Reaction of H2L with Cu(OAc)2 · H2O led to the formation of a metal complex {[CuL] · H2O · 2DMF} (1). In complex 1, the potential dinegative tridentate L2− ligand acting as tetradentate bridging ligand coordinate to two metal ions so as to form a novel infinite metal-organic coordination chain structure. The enantiomerically pure ligand H2L presents two different sets of signals in the 1H NMR spectrum either in chloroform solution or in dimethylsulfoxide solution, showing the presence of both (E) and (Z) isomers. The X-ray structural investigations of H2L revealed that it is the fully extended E-configuration in the solid state.  相似文献   

8.
Hexa-coordinated chelate complex cis-[Ru(CO)2I2(P∩S)] (1a) {P∩S = η2-(P,S)-coordinated} and penta-coordinated non-chelate complexes cis-[Ru(CO)2I2(P∼S)] (1b-d) {P∼S = η1-(P)-coordinated} are produced by the reaction of polymeric [Ru(CO)2I2]n with equimolar quantity of the ligands Ph2P(CH2)nP(S)Ph2 {n = 1(a), 2(b), 3(c), 4(d)} in dichloromethane at room temperature. The bidentate nature of the ligand a in the complex 1a leads to the formation of five-membered chelate ring which confers extra stability to the complex. On the other hand, 1:2 (Ru:L) molar ratio reaction affords the hexa-coordinated non-chelate complexes cis,cis,trans-[Ru(CO)2I2(P∼S)2] (2a-d) irrespective of the ligands. All the complexes show two equally intense terminal ν(CO) bands in the range 2028-2103 cm−1. The ν(PS) band of complex 1a occurs 23 cm−1 lower region compared to the corresponding free ligand suggesting chelation via metal-sulfur bond formation. X-ray crystallography reveals that the Ru(II) atom occupies the center of a slightly distorted octahedral geometry. The complexes have also been characterized by elemental analysis, 1H, 13C and 31P NMR spectroscopy.  相似文献   

9.
《Inorganica chimica acta》1988,149(2):177-185
CpRuCl(PPh3)2 reacted with excess R-DAB in refluxing toluene to give CpRuCl(R-DAB(4e)) (1a: R = i-Pr; 1b: R = t-Bu; 1c: R = neo-Pent; 1d: R =p-Tol). 1H NMR and 13C NMR spectroscopic data indicated that in these complexes the R-DAB ligand is bonded in a chelating 4e coordination mode.Reaction of 1a and 1b with one equivalent of [Co(CO)4] afforded CpRuCo(CO)3(R-DAB(6e)) (2a: R = i-Pr; 2b: R = t-Bu). The structure of 2b was determined by a single crystal X-ray structure determination. Crystals of 2b are monoclinic, space group P21/n, with four molecules in a unit cell of dimensions: a = 16.812(4), b = 12.233(3), c = 9.938(3) Å and β = 105.47(3)°. The structure was solved via the heavy atom method and refined to R = 0.060 and Rw = 0.065 for the 3706 observed reflections. The molecule contains a RuCo bond of 2.660(3) Å and a cyclopentadienyl group that is η5-coordinated to ruthenium [RuC(cyclopentadienyl) = 2.208(3) Å (mean)]. Two carbonyls are terminally coordinated to cobalt (CoC(1) = 1.746(7) and CoC(2) = 1.715(6) Å) while the third is slightly asymmetrically bridging the RuCo bond (RuC(3) = 2.025(6) and CoC(3) = 1.912(6) Å). The RuC(3)O(3) and CoC(3)O(3) angles are 138.4(5)° and 136.5(5)°, respectively. The t-Bu-DAB ligand is in the bridging 6e coordination mode: σ-N coordinated to Ru (RuN(2) = 2.125(4) Å), μ2-N′ bridging the RuCo bond and η2-CN coordinated to Co (RuN(1) = 2.113(5), CoN(1) = 1.941(4) and CoC(4) = 2.084(5) Å). The η2-CN′ bonded imine group has a bond length of 1.394(7) Å indicating substantial π-backbonding from Co into the anti-bonding orbital of this CN bond.1H NMR spectroscopy indicated that 2a and 2b are fluxional on the NMR time scale. The fluxionality of 6e bonded R-DAB ligands is rarely observed and may be explained by the reversible interchange of the σ-N and η2-CN′ coordinated imine parts of the R-DAB ligand.  相似文献   

10.
Complexes [Ru(p-cymene)Cl2(PPh2Py)] (1) and [Ru(p-cymene)Cl(PPh2Py)]BF4 (2) were studied by means of 1H, 13C{1H} 2-D NOESY and HMQC NMR spectral methods. NMR data agree with C1 and Cs symmetries for complexes 1 and 2, respectively. NOESY cross-peaks allowed the assignment of signals to CH arene protons and in the case of complex 2 the determination of the molecular stereochemistry. These results are in agreement with the X-ray molecular structures of both complexes.  相似文献   

11.
The new palladium(II) complex Pd[C5H3N-2,6-(CONPh)2](η1-NCMe) (1), prepared from N,N′-diphenyl-2,6-pyridinedicarboxamide and Pd(OAc)2 in acetonitrile, has been characterized via IR, 1H NMR and single-crystal X-ray diffraction. In this compound the palladium centre is coordinated to three nitrogen donors of the anionic ligand and to the nitrogen atom of acetonitrile.Moreover, the already known Pd[C5H3N-2,6-(CONCH2CH2Ph)2](η1-NCMe) (2) has been studied by 1H NMR spectrometry and found to readily convert into the macrocyclic tetranuclear species 3, {Pd[C5H3N-2,6-(CONCH2CH2Ph)2]}4 which has been isolated and characterized by IR, 1H and 13C{1H} NMR, 1H-13C HETCOR and mass spectrometry, as well as by single-crystal X-ray diffraction. In 3, of S4 symmetry, each palladium atom is coordinated to the three nitrogen atoms of the anionic ligand, while the fourth coordination position is occupied by the amidato oxygen atom of an adjacent unit. This structure is apparently maintained in CDCl3 solution. The substitution reactions of acetonitrile in 2 with the ligands EEt2 (E = S, Se) afford Pd[C5H3N-2,6-(CONCH2CH2Ph)2](EEt2) (4, E = S; 5, E = Se); these products can also be obtained by the addition of EEt2 to 3, as shown by means of 1H- and, in the case of E = Se, 77Se{1H} NMR spectroscopy in CDCl3 solution. These results show that the Pd-O bonds of the tetranuclear species are readily broken by weakly coordinating ligands such as acetonitrile and diethylchalcogenides. Nevertheless, we are dealing with equilibrium reactions and, in some solvents, 3 can be obtained from 2, 4 or 5 being favoured by its low solubility.  相似文献   

12.
The new aqua-soluble rhodium(I) complex trans-[RhCl2(PTA)(PTAH)] (1) {PTAH = N-protonated form of 1,3,5-triaza-7-phosphaadamantane (PTA)} has been synthesized via the reaction of trans-[RhCl(CO)(PTA)2] with aqueous HCl or N-chlorosuccinimide, or by the treatment of RhCl3 with PTA. Compound 1 has been characterized by IR, 1H and 31P{H} NMR spectroscopies, ESI-MS(+), elemental and single crystal X-ray diffraction analyses, the latter showing a square planar {RhCl2P2} geometry. Besides, the stepwise addition of diluted HCl to an aqueous solution of trans-[RhCl(CO)(PTA)2] has been monitored by 31P{1H} NMR and ESI-MS(+) techniques, allowing to detect a number of intermediate Rh(I) species.  相似文献   

13.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RNHC(S)NHP(S)(OiPr)2 [R = pyridin-2-yl (HLa), pyridin-3-yl (HLb), 6-amino-pyridin-2-yl (HLc)] with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to mononuclear [Cu(PPh3)2La,b-S,S′] (1, 2) and [Cu(PPh3)Lc-S,S′] (3) complexes. Using copper(I) iodide instead of Cu(PPh3)3I, polynuclear complexes [Cun(L-S,S′)n] (4-6) were obtained. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy, ES-MS and elemental analyses. The crystal structures of Cu(PPh3)2Lb (2) and Cu(PPh3)Lc (3) were determined by single-crystal X-ray diffraction.  相似文献   

14.
Complexes of Ru(II) and Ru(III) with the bidentate ligand diphenylphosphinoacetic acid (POH) are reported. The ligand POH reacts with RuCl2(PPh3)3 in a 1:3 ratio to give a five-coordinate complex of composition Ru(PO)2(POH) with complete displacement of PPh3. In a 1:2 ratio however the complex Ru(PO)2(PPh3) is formed. The reaction of POH with RuCl2(DMSO)4 in a 2:1 ratio afforded a yellow complex of composition HRu(PO)2Cl(DMSO). In a 3:1 ratio of POH to RuCl2(DMSO)4 however, the complex HRu(PO)3 was obtained. Neutral complexes of the composition Ru(PO)2Cl(AsPh3) and Ru(PO)3 were obtained by the reaction of RuCl3(AsPh3)2·MeOH with POH in 1:2 and 1:3 mole ratios in acetone solution, respectively. A dimeric chloro bridged complex of composition [Ru(PO)2Cl]2 was obtained on reaction of RuCl33H2O with POH in methanol. The complexes have been characterized on the basis of elemental analysis 1H, 13C{1H} and 31P{1H} NMR, EPR and electrochemical studies.The square pyramidal complexes 1 and 2 undergo facile addition reactions with CO, H2, PPh3 and DMSO to form octahedral species. The redox potentials RuIII/RuII of the complexes become more positive with an increase in the π-acidity of the ligand coordinated to the metal ion.  相似文献   

15.
A series of the first zinc(II) complexes of the general composition [Zn(Ln)2Cl2xSolv (1-5) involving kinetin [N6-furfuryladenine, L1, xSolv = CH3OH, complex 1] and its derivatives, i.e. N6-(5-methylfurfuryl)adenine (L2, xSolv = 2H2O, 2), 2-chloro-N6-furfuryladenine (L3, 3), 2-chloro-N6-(5-methylfurfuryl)adenine (L4, 4) and 2-chloro-N6-furfuryl-9-isopropyladenine (L5, 5), as N-donor ligands has been synthesized. The complexes have been fully characterized by elemental analyses (C, H, N), FTIR, Raman, 1H and 13C NMR spectroscopy, conductivity measurements, thermogravimetric (TG) and differential thermal (DTA) analyses. Single crystal X-ray analysis determined the molecular structures of 2-chloro-N6-furfuryl-9-isopropyladenine (L5) and the complex [Zn(L1)2Cl2]·CH3OH. The Zn(II) ion is tetrahedrally coordinated by two chlorido ligands and two molecules of the L1 organic compound. The two ligands L1 are coordinated to the central Zn(II) ion via the N7 atoms. This conclusion can also be drawn from multinuclear NMR spectroscopic experiments.  相似文献   

16.
Two oxazolone-derived potential ligands with enethioether substituents have been synthesized that differ by the terminal thioether moiety (S-Et in L1, S-C6H4(OMe)-2 in L2). Both L1 and L2 behave as bidentate {NS} chelate ligands to form stable complexes with copper(I) triflate that crystallize as dimeric complexes [L2Cu2(OTf)2] (4 and 5) featuring a central {Cu2S2} diamond core with distinctly different Cu-S bonds. L1 as well as 4 and 5 have been characterized by single crystal X-ray diffraction. NMR spectroscopy including 1H and 19F DOSY experiments reveals that 4 and 5 dissociate into monomeric species [LCu(OTf)] (4′ and 5′) in CDCl3 solutions. 4′ and 5′ retain the {NS} binding motif of the oxazolone-derived ligands, but are in slow equilibrium with their {OS} isomers 4″ and 5″ that result from E/Z isomerization of the exocyclic enethioether double bond.  相似文献   

17.
Reactions of 1-{[2-(arylazo)phenyl]iminomethyl}-2-phenol, HLsal, 1, [where H represents the dissociable protons upon complexation and aryl groups of HLsal are phenyl for HL1sal, p-methylphenyl for HL2sal, and p-chlorophenyl for HL3sal], ligands with Ru(H)(CO)(Cl)(PPh3)3 afforded complexes of composition [(Lsal)Ru(CO)(Cl)(PPh3)] and (Lsal)2Ru where the N,N,O donor tridentate (Lsal) ligands coordinated the metal centre facially and meridionally, respectively. Stepwise formation of [(Lsal)2Ru] has been ascertained. Reaction of 1-{[2-(arylazo)phenyl]iminomethyl}-2-napthol, HLnap, 2, [where H represents the dissociable protons upon complexation and aryl groups of HLnap are phenyl for HL1nap, p-methylphenyl for HL2nap, and p-chlorophenyl for HL3nap], ligands with Ru(H)(CO)(Cl)(PPh3)3 afforded exclusively the complexes of composition [(Lnap)Ru(CO)(Cl)(PPh3)], where N,N,O donor tridentate (Lnap) was facially coordinated. The ligand 1-{[2-(phenylazo)phenyl]aminomethyl}-2-phenol, HL, 3, was prepared by reducing the aldimine function of HL1sal. Reaction of HL with Ru(PPh3)3Cl2 afforded new azosalen complex of Ru(III) in concert with regiospecific oxygenation of phenyl ring of HL. All the new ligands were characterized by analytical and spectroscopic techniques. The complexes were characterized by analytical and spectroscopic techniques and subsequently confirmed by the determination of X-ray structures of selected complexes.  相似文献   

18.
《Inorganica chimica acta》1988,151(4):249-253
A series of water-soluble N-substituted iminodiacetato (diammine)platinum(II) complexes [Pt(NRIDA)(NH3)2] have been synthesized and characterized by measurement of physical properties (conductivity and pH) and by various spectroscopic techniques (infrared, 1H and 13C{1H} nuclear magnetic resonance). The iminodiacetate ligand is coordinated to platinum through an O,N linkage. The results obtained suggest that these complexes are relatively stable for more than 24 h in aqueous solution. Preliminary in vitro and in vivo screening test for antitumor activity of these complexes against L1210 murine leukemia were performed. Many of complexes had acceptable in vitro cytotoxicity, but none displayed a significant level of in vivo antitumor efficacy.  相似文献   

19.
Treatment of 2,6-bis[(dimethylamino)methyl]-4-methylphenol (1) with [Pd(PhCN)2Cl2] in a 1:1 molar ratio gives the mononuclear Pd(II) complex [PdCl2(OC6H2(CH2NMe2)-2-Me-4-(CH2NHMe2)-6)] (2) containing one ligand with an ammonium hydrogen atom, which forms a bifurcated hydrogen bonding to the phenoxy oxygen and the chlorine atoms, as shown by the single crystal X-ray diffraction study. The reaction between the lithium salt of 1 and [Pd(COD)Cl2] gives the mononuclear Pd(II) complex [Pd(OC6H2(CH2NMe2)2-2,6-Me-4)2] (3). The X-ray structure of 3 showed the presence of two ligands coordinated to one palladium metal center in a trans fashion with two dangling dimethylamine groups. The yield of the complex 3 was improved by carrying out the reaction between [Pd(OAc)2] and 1 in acetone. The solid state structures of the complexes 2 and 3 were confirmed by 1H, 13C, HETCOR NMR, IR and elemental analysis methods. The 1H NMR spectra of 2 and 3 showed two different chemical shifts corresponding to the coordinated and uncoordinated amine groups of the ligand. No decoalescence of signals for the chelate ring puckering process was observed in variable-temperature NMR spectra.  相似文献   

20.
A new NNS tridentate ligand, S-allyl-3-(2-pyridyl-methylene)dithiocarbazate (HL) has been prepared. Three coordination complexes, Mn(L)2 (1), [Co(L)2]NO3 (2) and Ni(L)2 (3) (L is the deprotonated monoanionic form of HL) have been synthesized and characterized by elemental analysis, molar conductivity, FT-IR, 1H NMR and UV-Vis spectroscopy. 1 and 3 are neutral complexes, while 2 is cationic with nitrate as the counter ion. Single crystal X-ray diffraction analysis shows that bis-chelate complexes have a distorted octahedral geometry in which two ligands in thiolate tautomeric form coordinate to the metal center through N atoms of the pyridine and imino moieties and one S atom. Molecular geometry from X-ray analysis, molecular geometry optimization, atomic charges distribution and bond analysis of the ligand and complexes have been performed using the density functional theory (DFT) with the B3LYP functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号