首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic nitrogen use by mycorrhizal fungi and associated plants could fuel productivity in nitrogen-limited systems. To test whether fungi assimilated soil-derived organic nitrogen, we compared the 14C signal (expressed as Δ14C) from 1950s to 1960s thermonuclear testing in protein and structural carbon of ectomycorrhizal fungi. As expected, structural carbon had Δ14C similar to recent photosynthesis; however, protein Δ14C was either higher or lower than structural carbon depending on the fungal taxa. This suggests that some protein carbon derived from uptake of organic nitrogen with different Δ14C signals. Specimens from two taxa (Lactarius and Russula) adapted to taking up soluble nutrients had protein higher than structural carbon in Δ14C, indicating uptake of young, post-bomb organic nitrogen, whereas two taxa (Cortinarius and Leccinum) adapted to using insoluble, complex organic nutrients had protein lower than structural carbon in Δ14C, indicating uptake of old, pre-bomb organic nitrogen. Tuber, a genus common in mineral soil, was also consistently lower in Δ14C for protein than for structural carbon, with an estimated 10 % of protein carbon originating from old, deep organic nitrogen for this taxon. Our results indicate that radiocarbon can provide evidence of organic nitrogen use in ectomycorrhizal fungi and reflects the exploration depth of different taxa.  相似文献   

2.
δ13C data are often used in trophodynamic research where diet-tissue fractionation (Δδ13C) is assumed to be 0-1‰ per trophic level and unaffected by the size of animals or their environment. Variation in Δδ13C will influence conclusions about food sources, energy pathways and trophic level. To assess the effects of body size, age and environmental conditions on Δδ13C, European sea bass (Dicentrarchus labrax) were reared on constant diets of dab (Limanda limanda) or (Ammodytes marinus) for 2years under natural environmental regimes. Bass were sampled approximately monthly to determine Δδ13C for muscle, heart and liver tissue and were 1.66‰, − 0.18‰, − 1.77‰ (sandeel diet) and 1.34‰, − 1.18‰, − 1.75‰ (dab diet) respectively. Arithmetic lipid correction increased Δδ13C to > 2‰ for muscle and liver. Δδ13C was dependent on body mass and experimental duration (age) and generally declined with weight or time even after correction for lipid content. For liver, increasing temperature increased Δδ13C. The Δδ13C estimates from this study were compared with all available published Δδ13C estimates for fish. Bass muscle Δδ13C was similar to previous estimates for fish white muscle Δδ13C (1.56 ± 1.10‰) and whole body Δδ13C (1.52 ± 1.13‰). Fractionations derived in this study, combined with those from the literature, support the use of diet-tissue fractionation values of between 1‰-2‰ for δ13C, rather than the commonly used 0‰ − 1‰. For muscle Δδ13C, 1.5‰ is appropriate.  相似文献   

3.
The white shark, Carcharodon carcharias, has a complex life history that is characterized by large scale movements and a highly variable diet. Estimates of age and growth for the white shark from the eastern North Pacific Ocean indicate they have a slow growth rate and a relatively high longevity. Age, growth, and longevity estimates useful for stock assessment and fishery models, however, require some form of validation. By counting vertebral growth band pairs, ages can be estimated, but because not all sharks deposit annual growth bands and many are not easily discernable, it is necessary to validate growth band periodicity with an independent method. Radiocarbon (14C) age validation uses the discrete 14C signal produced from thermonuclear testing in the 1950s and 1960s that is retained in skeletal structures as a time-specific marker. Growth band pairs in vertebrae, estimated as annual and spanning the 1930s to 1990s, were analyzed for Δ14C and stable carbon and nitrogen isotopes (δ13C and δ15N). The aim of this study was to evaluate the utility of 14C age validation for a wide-ranging species with a complex life history and to use stable isotope measurements in vertebrae as a means of resolving complexity introduced into the 14C chronology by ontogenetic shifts in diet and habitat. Stable isotopes provided useful trophic position information; however, validation of age estimates was confounded by what may have been some combination of the dietary source of carbon to the vertebrae, large-scale movement patterns, and steep 14C gradients with depth in the eastern North Pacific Ocean.  相似文献   

4.
Meadowfoam (Limnanthes spp.) species are unique in that their seeds are rich in the unusual fatty acids Δ5-eicosenoic acid (C20:1Δ5) and the diene, C22:2Δ5, Δ13. Previously the cloning of Δ5 desaturase (Des5) and fatty acid elongase 1 (FAE1) meadowfoam genes and their expression in soybean were reported. Here, we present the first successful expression of the Limnanthes Des5 in yeast, resulting in the desaturation of C16:0, C18:0 and C20:0 to their corresponding cis Δ5 isomers. In soybean (Glycine max L.), Limnanthes Des5/FAE1 double transformant somatic embryos fed with radiolabeled C14:0 or C16:0 could elongate these substrates to C18:0, C20:0 and C22:0 and C24:0. However, radiolabeled C18:1Δ9 or C20:1Δ11 were not elongated to their respective monounsaturated very long-chain products, confirming that the cloned Limnanthes FAE1 homolog gene product was specific for elongating saturated fatty acids. To understand better the biosynthetic pathway for C22:2Δ5, Δ13, soybean somatic embryos transformed with the Des5 cDNA were fed in culture with 〚1-14C〛C 22:1Δ13 fatty acid, which resulted in the biosynthesis of 〚1-14C〛-labeled C22:2Δ5, Δ13. Cell-free preparations enriched with detergent-solubilized Δ5 desaturase activity extracted from both developing meadowfoam seeds and from Des5 transgenic soybean embryos, produced 14C-22:2Δ5, Δ13 when supplied with 〚1-14C〛 C22:1-CoA. Thus, both the in vivo and in vitro experiments showed that the biosynthesis of C22:2Δ5, Δ13 can occur in somatic soybean embryos transformed with the Limnanthes Des5 cDNA, and confirmed that the pathway for C22:2 biosynthesis in meadowfoam involves further desaturation of erucoyl-CoA by a Δ5-regiospecific desaturase.  相似文献   

5.
6.
Flowers of Calendula officinalis were incubated with mevalonic acid doubly labelled with 14C in position 2 and 3H in positions 2R, 2S, 4R or 5R,S and the [3H/14C] ratios determined in squalene β-sitosterol, stigmasterol, Δ7-sterols and stigmastan-3 β-ol. The results indicated that in the biosynthesis of these sterols: formation of the Δ7 double bond is associated with elimination of hydrogen from the 7β position, formation of the Δ5 double bond with elimination of hydrogens from the 5 and 6α positions, and formation of the Δ22 double bond with elimination of the 22-pro-S and 23 hydrogens. Demethylation in position 4 is associated with elimination of hydrogen from the 3α position whereas demethylation in position 14 occurs without hydrogen loss from position 15. Alkylation in position 24 is associated with hydrogen elimination from this position.  相似文献   

7.
By means of differential scanning calorimetry, effects of systematic series of Group I and VII ions on the phase state of model multibilayer dimyristoylphosphatidylcholine (di(14:0)PC) membranes have been studied at a lipid/ion molar ratio of 3/1. The sign-changing correlations between the ionic radii of cations and temperature shifts of di(14:0)PC phase transition were obtained. For cosmotropic Li+ and Na+, the observed shifts were positive (LiCl: ΔT m = 0.6°C; ΔT p = 1.9°C), whereas chaotropic K+ and Rb+ presence resulted in negative shifts (RbCl: ΔT m = ?0.3°C; ΔT p = ?2.5°C). The anions (Cl?, Br?, I?) showed a similar effect increasing with the ion chaotropicity. An essentially weaker effect of Cs+ as compared to other alkali metal ions (CsCl: ΔT m ≈ 0°C; ΔT p = ?0.1°C) can be one of the reasons of its accumulation in living organisms. Generalization of all available data allowed us to specify some important factors of lipid-ion interactions that should be taken into account in further investigations in this field.  相似文献   

8.
Separating ecosystem and soil respiration into autotrophic and heterotrophic component sources is necessary for understanding how the net ecosystem exchange of carbon (C) will respond to current and future changes in climate and vegetation. Here, we use an isotope mass balance method based on radiocarbon to partition respiration sources in three mature black spruce forest stands in Alaska. Radiocarbon (Δ14C) signatures of respired C reflect the age of substrate C and can be used to differentiate source pools within ecosystems. Recently‐fixed C that fuels plant or microbial metabolism has Δ14C values close to that of current atmospheric CO2, while C respired from litter and soil organic matter decomposition will reflect the longer residence time of C in plant and soil C pools. Contrary to our expectations, the Δ14C of C respired by recently excised black spruce roots averaged 14‰ greater than expected for recently fixed photosynthetic products, indicating that some portion of the C fueling root metabolism was derived from C storage pools with turnover times of at least several years. The Δ14C values of C respired by heterotrophs in laboratory incubations of soil organic matter averaged 60‰ higher than the contemporary atmosphere Δ14CO2, indicating that the major contributors to decomposition are derived from a combination of sources consistent with a mean residence time of up to a decade. Comparing autotrophic and heterotrophic Δ14C end members with measurements of the Δ14C of total soil respiration, we calculated that 47–63% of soil CO2 emissions were derived from heterotrophic respiration across all three sites. Our limited temporal sampling also observed no significant differences in the partitioning of soil respiration in the early season compared with the late season. Future work is needed to address the reasons for high Δ14C values in root respiration and issues of whether this method fully captures the contribution of rhizosphere respiration.  相似文献   

9.
Abstract:14C/C ratios in samples from radial transects across individual thalli ofCaloplaca trachyphylla collected at two sites were measured and the results used to investigate whether 14C/C data might provide some insight into the magnitude of carbon turnover in this lichen species. The 14C/C data suggest that significant internal recycling/translocation of carbon is unlikely in the sampled thalli. However, converting the14 C/C data for the larger intact thalli sampled at each site to calendar years, using the atmospheric 14C record, does not yield constant or even monotonically varying growth rates. Since crustose lichen growth rates are constant or decrease with thallus size, and since the 14C/C data from these larger thalli show a relatively small spread in14 C/C data values compared to the Northern Hemisphere atmospheric 14C record over the past 50 years, the14 C/C data suggest that carbon turnover may be occurring. Carbon turnover was modelled starting with the atmospheric14 C record. Turnover was incorporated so that for each year in the record a constant percentage of the total carbon was lost annually and replaced by new photosynthetically fixed carbon with a 14C/C ratio equal to that of the contemporary atmosphere. The 14C/C data from the radial samples were then converted to a calendar year using the model record. Constant annual carbon turnover values of 0, 0·5, 1, 1·5, 2, 2·5, 3, 3·5, 4, 4·5, 5, 5·5, 6, 7, 8, 9, 10, 15, 20, 25 and 50% were modelled. Carbon turnover values between 3 and 6% created 14C model records that when applied to 14C/C data from the thalli produced constant radial growth rates that were: (1) identical for all lichens at a given site, and (2) independent of lichen size at a given site. The 14C/C data further indicate that annual carbon turnover in this species of lichen is <10%, independent of the nature of thallus radial growth. The data and modelling suggest that carbon turnover might provide a simple explanation for the 14C/C data from the thalli and might explain the discrepancies between the standard atmospheric 14C record and the 14C/C ratios observed in C. trachyphylla.  相似文献   

10.
This study determined the natural abundance isotopic compositions (13C, 14C) of the primary carbon pools and microbial communities associated with modern freshwater microbialites located in Pavilion Lake, British Columbia, Canada. The Δ14C of dissolved inorganic carbon (DIC) was constant throughout the water column and consistent with a primarily atmospheric source. Observed depletions in DIC 14C values compared with atmospheric CO2 indicated effects due either to DIC residence time and/or inputs of 14C‐depleted groundwater. Mass balance comparisons of local and regional groundwater indicate that groundwater DIC could contribute a maximum of 9–13% of the DIC. 14C analysis of microbial phospholipid fatty acids from microbialite communities had Δ14C values comparable with lake water DIC, demonstrating that lake water DIC was their primary carbon source. Microbialite carbonate was also primarily derived from DIC. However, some depletion in microbialite carbonate 14C relative to lake water DIC occurred, due either to residence time or mixing with a 14C‐depleted carbon source. A detrital branch covered with microbialite growth was used to estimate a microbialite growth rate of 0.05 mm year?1 for the past 1000 years, faster than previous estimates for this system. These results demonstrate that the microbialites are actively growing and that the primary carbon source for both microbial communities and recent carbonate is DIC originating from the atmosphere. While these data cannot conclusively differentiate between abiotic and biotic formation mechanisms, the evidence for minor inputs of groundwater‐derived DIC is consistent with the previously hypothesized biological origin of the Pavilion Lake microbialites.  相似文献   

11.
Examination of the sterols of Zea mays shoots has established that the 24-ethylcholesterol is predominately the 24α-epimer, sitosterol, but the 24-methylcholesterol is a mixture of the 24α- and 24β-epimers. After incubation of Z. mays shoots with [2-14C, (4R)4-3H1]mevalonic acid the sitosterol had a 3H: 14C atomic ratio of 2.09:5 which is consistent with previous results indicating that a Δ24(25) -sterol is implicated in its biosynthesis. By contrast, the 24α- and 24β-methylcholesterol mixture had a higher 3H: 14C atomic ratio of 2.82:5. This can be explained by the operation of two routes for the elaboration of the 24-methylcholesterol side chain. One may proceed via Δ24(25)- and Δ24(25)-sterols to produce the 24α-methylcholesterol with a 3H: 14C atomic ratio of 2:5. The other route may involve reduction of either a Δ24(28)-, a Δ23- or a Δ25-sterol intermediate to give the 24β1-methylcholesterol with a 3H: 14C atomic ratio of 3:5. The proportion of these two labelled compounds in the mixture then determines the observed 3H: 14C atomic ratio (2.82:5). Some evidence for the formation of a Δ25-compound, cyclolaudenol, by Z. mays shoots was provided by incorporation studies employing either [2-14C]mevalonic acid or [Me-14C]methionine as the sterol precursor.  相似文献   

12.
Age validation and estimates of longevity of yellowedge grouper (Epinephelus flavolimbatus) from the Gulf of Mexico (GOM) are needed to inform fishery management decisions. Yellowedge grouper sagittal otoliths (n = 100) were collected, aged using conventional means, and cores were submitted for radiocarbon (14C) measurement. Radiocarbon values of yellowedge grouper otoliths were compared to established radiocarbon chronologies in the region to validate the age and ageing methodology of this species. The yellowedge grouper chronology displayed a similar sigmoidal trend as previously published chronologies. In addition to the core analysis, multiple areas on otolith sections from eight specimens were analyzed for Δ14C to validate age estimates for fish born prior to the 14C increase. Our results indicate that yellowedge grouper live longer than previously reported (minimum of 40 years based on radiocarbon measurements). The validated ageing methodology supported an estimated maximum longevity of 85 years and established that yellowedge grouper have the longest lifespan currently known for any species of grouper in the GOM. Results also indicate a depth-age interaction in that material extracted from adult otolith sections assigned to post-bomb dates exhibited lower Δ14C values than cores (juvenile material) assigned to the same post-bomb dates. This finding is likely explained by lower 14C levels reported from water masses at deeper depths (>100 m) which are inhabited by adults.  相似文献   

13.
Following the theory on costs of reproduction, sexually dimorphic plants may exhibit several trade-offs in energy and resources that can determine gender dimorphism in morphological or physiological traits, especially during the reproductive period.In this study we assess whether the sexes of the dioecious species Empetrum rubrum differ in morphological and ecophysiological traits related to water economy and photochemical efficiency and whether these differences change in nearby populations with contrasting plant communities.We conducted physiological, morphological, sex ratio, and cover measurements in E. rubrum plants in the Magellanic steppe, North-Eastern part of Tierra del Fuego (Argentina), from two types of heathlands with differing community composition.We found differences between sites in soil pH and wind speed at the canopy level. E. rubrum plants exhibited lower photosynthetic height and higher LAI (leaf area index), lower RWC (relative water content) and higher water-use efficiency (lower Δ13C) in the heathland with harsher environmental conditions. Gender dimorphism in the physiological response was patent for photochemical efficiency and water use (RWC and Δ13C discrimination), with males showing a more conservative strategy in relation to females. Accordingly, male-biased sex ratio in the stress-prone community suggested a better performance of male plants under stressful environmental conditions. The integrated analysis of all variables (photochemical efficiency, RWC, leaf dry matter content (LDMC), pigments, and Δ13C) indicated an interaction between gender and heathland community effects in the physiological response. We suggest that female plants may exhibit compensatory mechanisms to face their higher reproductive costs.  相似文献   

14.
Phytophthora infestans is the causative agent of potato blight that resulted in the great famine in Ireland in the nineteenth century. This microbe can release large amounts of the C20 very long-chain polyunsaturated fatty acids arachidonic acid (ARA; 20:4Δ5, 8, 11, 14) and eicosapentaenoic acid (EPA; 20:5Δ5, 8, 11, 14, 17) upon invasion that is known to elicit a hypersensitive response to their host plant. In order to identify enzymes responsible for the biosynthesis of these fatty acids, we blasted the recently fully sequenced P. infestans genome and identified three novel putatively encoding desaturase sequences. These were subsequently functionally characterized by expression in Saccharomyces cerevisiae and confirmed that they encode desaturases with Δ12, Δ6 and Δ5 activity, designated here as PinDes12, PinDes6 and PinDes5, respectively. This, together with the combined fatty acid profiles and a previously identified Δ6 elongase activity, implies that the ARA and EPA are biosynthesized predominantly via the Δ6 desaturation pathways in P. infestans. Elucidation of ARA and EPA biosynthetic mechanism may provide new routes to combating this potato blight microbe directly or by means of conferring resistance to important crops.  相似文献   

15.
The kinetics of malonate replacement in bis- (malonato)oxovanadate(IV), [VO(mal)2H2O]2−(hereafter water molecule will be omitted), by oxalate has been studied by the stopped-flow method. The reaction was found to consist of two consecutive steps (k1 and k2: first-order rate constants) passing through a mixed ligand complex, [VO(mal)(ox)]2−. The rates for each step depended linearly on the concentrations of free oxalate species, Hox and ox2−. The second-order rate constants for the replacement by ox2− were much larger in the k1 step than in the k2 step and the activation parameters were determined as follows: ΔH= 43.5 ± 5.6 kJ mol−1, ΔS±-53 ± 19 J K−1 mol−1 and ΔH≠= 43.6 ± 0.5 kJ mol−1, δS≠ = -62 ± 2 J K−l mol−1 for the k1 and k2 steps, respectively. The volume of activation was determined to be -0.65 ± 0.75 cm3 mol−1 at 20.2 °C by the high-pressure stopped-flow method for the apparent rate constants.  相似文献   

16.
Cryptoendolithic lichens and cyanobacteria living in porous sandstone in the high‐elevation McMurdo Dry Valleys are purported to be among the slowest growing organisms on Earth with cycles of death and regrowth on the order of 103–104 years. Here, organic biomarker and radiocarbon analysis were used to better constrain ages and carbon sources of cryptoendoliths in University Valley (UV; 1,800 m.a.s.l) and neighboring Farnell Valley (FV; 1,700 m.a.s.l). Δ14C was measured for membrane component phospholipid fatty acids (PLFA) and glycolipid fatty acids, as well as for total organic carbon (TOC). PLFA concentrations indicated viable cells comprised a minor (<0.5%) component of TOC. TOC Δ14C values ranged from ?272‰ to ?185‰ equivalent to calibrated ages of 1,100–2,550 years old. These ages may be the result of fractional preservation of biogenic carbon and/or sudden large‐scale community death and extended period(s) of inactivity prior to slow recolonization and incorporation of 14C‐depleted fossil material. PLFA Δ14C values were generally more modern than the corresponding TOC and varied widely between sites; the FV PLFA Δ14C value (+40‰) was consistent with modern atmospheric CO2, while UV values ranged from ?199‰ to ?79‰ (calibrated ages of 1,665–610 years). The observed variability in PLFA Δ14C depletions is hypothesized to reflect variations in the extent of fixation of modern atmospheric CO2 and the preservation and recycling of older organic carbon by the community in various stages of sandstone recolonization. PLFA profiles and microbial community compositions as determined by molecular genetic characterizations and microscopy differed between the two valleys (e.g., predominance of biomarker 18:2 [>50%] in FV compared to UV), representing microbial communities that may reflect distinct stages of sandstone recolonization and/or environmental conditions. It is thus proposed that Dry Valley cryptoendolithic microbial communities are faster growing than previously estimated.  相似文献   

17.
We have adapted the Sherlock® Microbial Identification system for identification of plant parasitic nematodes based on their fatty acid profiles. Fatty acid profiles of 12 separate plant parasitic nematode species have been determined using this system. Additionally, separate profiles have been developed for Rotylenchulus reniformis and Meloidogyne incognita based on their host plant, four species and three races within the Meloidogyne genus, and three life stages of Heterodera glycines. Statistically, 85% of these profiles can be delimited from one another; the specific comparisons between the cyst and vermiform stages of H. glycines, M. hapla and M. arenaria, and M. arenaria and M. javanica cannot be segregated using canonical analysis. By incorporating each of these fatty acid profiles into the Sherlock® Analysis Software, 20 library entries were created. While there was some similarity among profiles, all entries correctly identified the proper organism to genus, species, race, life stage, and host at greater than 86% accuracy. The remaining 14% were correctly identified to genus, although species and race may not be correct due to the underlying variables of host or life stage. These results are promising and indicate that this library could be used for diagnostics labs to increase response time.  相似文献   

18.
The thermodynamic parameters, log β, ΔH and ΔS, for formation of lanthanide-1-hydroxy-4,7- disulfo-2-naphthoic acid complexes have been determined at 25 °C in 0.10 M NaClO4 solutions by potentiometric and calorimetric titrations. Under the experimental conditions, the data can be explained with the formation of LnL, LnL25− and LnHL complexes (H2L2− = 1-hydroxy-4,7-disulfo-2- naphthoic acid anion). At pH < 3 the LnHL complex is the major species, whereas by increasing pH the formation of LnLn3−4n complexes becomes more important. The data are compared to the comparable data for complexing by aromatic carboxylic acids.  相似文献   

19.
Tree‐ring characteristics are commonly used to reconstruct climate variables, but divergence from the assumption of a single biophysical control may reduce the accuracy of these reconstructions. Here, we present data from bur oaks (Quercus macrocarpa Michx.) sampled within and beyond the current species bioclimatic envelope to identify the primary environmental controls on ring‐width indices (RWIs) and carbon stable isotope discrimination (Δ13C) in tree‐ring cellulose. Variation in Δ13C and RWI was more strongly related to leaf‐to‐air vapour pressure deficit (VPD) at the centre and western edge of the range compared with the northern and wettest regions. Among regions, Δ13C of tree‐ring cellulose was closely predicted by VPD and light responses of canopy‐level Δ13C estimated using a model driven by eddy flux and meteorological measurements (R2 = 0.96, P = 0.003). RWI and Δ13C were positively correlated in the drier regions, while they were negatively correlated in the wettest region. The strength and direction of the correlations scaled with regional VPD or the ratio of precipitation to evapotranspiration. Therefore, the correlation strength between RWI and Δ13C may be used to infer past wetness or aridity from paleo wood by determining the degree to which carbon gain and growth have been more limited by moisture or light.  相似文献   

20.
Correctly estimating the trophic fractionation factors (Δ15N and Δ13C) in controlled laboratory conditions is essential for the application of stable isotope analysis in studies on the trophic structure of soil communities. Laboratory experiments usually suggest large 15N/14N and small 13C/12C trophic fractionation, but in field studies litter-dwelling microarthropods and other invertebrates are consistently enriched in 13C relative to plant litter. In the present study, we report data from two laboratory experiments investigating both fungi–collembolans and litter–fungi–collembolans systems. In the fungi–collembolans system, Δ15N and Δ13C averaged 1.4 ± 0.1 and 1.0 ± 0.2 ‰, respectively. In microcosms with fungi-inoculated litter, the difference in δ15N between collembolans and plant litter averaged 1.5 ± 0.2 ‰, confirming the relatively small 15N/14N trophic fractionation at the basal level of detrital foodwebs reported in numerous field studies. In full agreement with field observations, the difference in δ13C between bulk litter and collembolans in laboratory microcosms averaged 3.6 ± 0.1 ‰ and only little depended on collembolan species identities or the presence of water-soluble compounds in the litter. We conclude that increased δ13C values typical of litter-dwelling decomposers are largely determined by an increased 13C content in saprotrophic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号