首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An NAD-linked aldehyde dehydrogenase which in addition to aliphatic and aromatic aldehydes, metabolizes aminoaldehydes and betaine aldehyde, has been purified to homogeneity from male Sprague-Dawley rat liver mitochondria. The properties of the rat mitochondrial enzyme are similar to those of a rat liver cytoplasmic betaine aldehyde dehydrognase and the human cytoplasmic E3 isozyme. The primary structure. of four tryptic peptides were also similar; only one difference in primary structure was observed. The close similarity of properties of the cytoplasmic with the mitochondrial form suggest that the cytoplasmic and mitochondrial betaine aldehyde dehydrogenase may be coded for by the same nuclear gene. Investigation of the mitochondrial form by isoelectric focusing resulted in visualization of multiple forms, different from those seen in the cytoplasm suggesting that the enzyme may be processed in the mitochondria.  相似文献   

2.
Betaine aldehyde dehydrogenase has been purified to homogeneity from rat liver mitochondria. The properties of betaine aldehyde dehydrogenase were similar to those of human cytoplasmic E3 isozyme in substrate specificity and kinetic constants for substrates. The primary structure of four tryptic peptides was also similar; only two substitutions, at most, per peptide were observed. Thus, betaine aldehyde dehydrogenase is not a specific enzyme, as formerly believed; activity with betaine aldehyde is a property of aldehyde dehydrogenase (EC 1.2.1.3), which has broad substrate specificity. Up to the present time the enzyme was thought to be cytoplasmic in mammals. This report establishes, for the first time, mitochondrial subcellular localization for aldehyde dehydrogenase, which dehydrogenates betaine aldehyde, and its colocalization with choline dehydrogenase. Betaine aldehyde dehydrogenation is an important function in the metabolism of choline to betaine, a major osmolyte. Betaine is also important in mammalian organisms as a major methyl group donor and nitrogen source. This is the first purification and characterization of mitochondrial betaine aldehyde dehydrogenase from any mammalian species.  相似文献   

3.
1. The properties and distribution of the NAD-linked unspecific aldehyde dehydrogenase activity (aldehyde: NAD+ oxidoreductase EC 1.2.1.3) has been studied in isolated cytoplasmic, mitochondrial and microsomal fractions of rat liver. The various types of aldehyde dehydrogenase were separated by ion exchange chromatography and isoelectric focusing. 2. The cytoplasmic fraction contained 10-15, the mitochondrial fraction 45-50 and the microsomal fraction 35-40% of the total aldehyde dehydrogenase activity, when assayed with 6.0 mM propionaldehyde as substrate. 3. The cytoplasmic fraction contained two separable unspecific aldehyde dehydrogenases, one with high Km for aldehydes (in the millimolar range) and the other with low Km for aldehydes (in the micromolar range). The latter can, however, be due to leakage from mitochondria. The high-Km enzyme fraction contained also all D-glucuronolactone dehydrogenase activity of the cytoplasmic fraction. The specific formaldehyde and betaine aldehyde dehydrogenases present in the cytoplasmic fraction could be separated from the unspecific activities. 4. In the mitochondrial fraction there was one enzyme with a low Km for aldehydes and another with high Km for aldehydes, which was different from the cytoplasmic enzyme. 5. The microsomal aldehyde dehydrogenase had a high Km for aldehydes and had similar properties as the mitochondrial high-Km enzyme. Both enzymes have very little activity with formaldehyde and glycolaldehyde in contrast to the other aldehyde dehydrogenases. They are apparently membranebound.  相似文献   

4.
A new assay procedure for measurement of rat liver mitochondrial choline dehydrogenase was developed. Oxidation of [methyl-14C]choline to [methyl-14C]betaine aldehyde and [methyl-14C]betaine was measured after isolating these compounds using HPLC. We observed that NAD+ was required for conversion of betaine aldehyde to betaine in rat liver mitochondria. In the absence of this cofactor, oxidation of choline led to the accumulation of betaine aldehyde. The apparent Km of the mitochondrial choline dehydrogenase for choline was 0.14-0.27 mM, which is significantly lower than previously reported. A partially purified preparation of choline dehydrogenase catalyzed betaine aldehyde formation only in the presence of exogenous electron acceptors (e.g., phenazine methosulfate). This preparation failed to catalyze the formation of betaine even in the presence of NAD+, indicating that betaine aldehyde dehydrogenase may be a separate enzyme from choline dehydrogenase.  相似文献   

5.
T Koivula 《Life sciences》1975,16(10):1563-1569
The subcellular distribution of human liver aldehyde dehydrogenases (E.C. 1.2.1.3) have been studied and the different types have been separated by ion exchange chromatography. The cytoplasmic fraction contained at least two chromatographically separable aldehyde dehydrogenases, which accounted for about 30% of the total activity. One of the cytoplasmic aldehyde dehydrogenases had a high Km for aldehydes (in the millimolar range). A considerable part of the activity found in this fraction was due to an enzyme with a low Km for aldehydes (in the micromolar range). It had properties similar to those of the mitochondrial main enzyme fraction, from where it may have originated as a contamination during subcellular fractionation. Specific betaine aldehyde and formaldehyde dehydrogenases were separated from these unspecific activities in the cytoplasmic fraction. In mitochondria, where more than 50% of the total aldehyde dehydrogenase activity was found, there was also evidence for slight high-Km activity. The microsomal fraction contained only a high-Km aldehyde dehydrogenase, which accounted for about 10% of the total activity.  相似文献   

6.
The subcellular distribution and certain properties of rat liver aldehyde dehydrogenase are investigated. The enzyme is shown to be localized in fractions of mitochondria and microsomes. Optimal conditions are chosen for detecting the aldehyde dehydrogenase activity in the mentioned fractions. The enzyme of mitochondrial fraction shows the activity at low (0,03-0.05 mM; isoenzyme I) and high (5 mM; isoenzyme II) concentrations of the substrate. The seeming Km and V of aldehyde dehydrogenase from fractions of mitochondria and microsomes of rat liver are calculated, the acetaldehyde and NAD+ reaction being used as a substrate.  相似文献   

7.
1. The question of the ability or inability of rat liver mitochondria to oxidize externally added or internally generated betaine aldehyde has been reexamined. Well washed mitochondria were demonstrated to contain approx. 7% of the post-nuclear betaine aldehyde dehydrogenase as an integral component. The enzyme is approximately equally distributed between the inner membrane and the intermembrane plus matrix fractions. Significantly, none was found in the outer membrane fraction. The mitochondrial enzyme was shown to be functional under all the conditions tested; betaine aldehyde generated within the mitochondria by choline oxidation or added externally was oxidized to betaine in significant amounts.

2. The stoichiometry for the complete oxidation of choline or externally added betaine aldehyde was confirmed to be 2 and 1 moles, respectively, of O2 utilized per mole of substrate added. Depending on the reaction conditions employed, considerable variation in the relative amount of choline oxidase and betaine aldehyde oxidase activities of mitochondria was observed when they were allowed to oxidize only a portion of the choline added. The necessity of measuring the contribution of betaine aldehyde oxidase in studies of choline oxidase is discussed.

3. Reasons for the discrepancies in the literature concerning the ability of mitochondria to oxidize betaine aldehyde are discussed.  相似文献   


8.
Imamura Y  Wu X  Noda A  Noda H 《Life sciences》2002,70(22):2687-2697
We examined the metabolism of N-desisopropylpropranolol (NDP), which is generated from propranolol (PL) by side-chain N-desisopropylation, to naphthoxylactic acid (NLA) in rat liver. S(-)-NDP (S-NDP) and R(+)-NDP (R-NDP) were enantioselectively metabolized to NLA in isolated rat hepatocytes and in an enzyme reaction system of rat liver mitochondria with cofactor NAD+. Furthermore, the clearance profiles of NDP enantiomers were examined in an enzyme reaction system of rat liver mitochondria without NAD+. The amounts of S-NDP remaining in the incubation medium were similar to those of R-NDP, suggesting that monoamine oxidase (MAO) catalyzes the deamination of NDP to the aldehyde intermediate, but fails to deaminate enantioselectively S-NDP or R-NDP. Cyanamide, a potent inhibitor of aldehyde dehydrogenase (ALDH), markedly decreased the formation of NLA from racemic NDP in the enzyme reaction system of rat liver mitochondria with NAD+. When rat liver cytosol and microsomes were added to this enzyme reaction system, no significant alterations were observed in the amount of NLA generated from racemic NDP. We concluded that MAO deaminates NDP to an aldehyde intermediate, and that mitochondrial ALDH subsequently catalyzes the enantioselective metabolism of the aldehyde intermediate to NLA in rat liver.  相似文献   

9.
The oxidation of choline by both freshly prepared and aged rat liver mitochondria is inhibited by amytal. Whereas rotenone inhibits choline-cytochromec reductase only in the case of freshly prepared mitochondria, the extent of inhibition is influenced by preincubation, but the inhibition is not secondary to the inhibited oxidation of betaine aldehyde, the product of choline oxidation. Evidence shows that rotenone is able to inhibit the swelling of rat liver mitochondria and the inhibition of choline-cytochromec reductase by rotenone is related to the inhibition of mitochondrial swelling. Nine inhibitors of choline dehydrogenase have been reported. Among those, some belong to the category of acetylcholine esterase inhibitor. In view of the structure of those inhibitors, it seems quite likely that there is an anionic site at the active center of choline dehydrogenase. Purification of choline dehydrogenase in its native form has been accomplished by solubilization with Lubrol WX, hydroxyapatite, and DEAE-Sepharose chromatography and sucrose gradient ultracentrifugation. The preparation is pure as judged by SDS-PAGE and Ultrogel AcA 34 column chromatography. The molecular weight determined by SDS-PAGE is approximately 61,000. There is 0.23 mg phospholipid/mg protein and the Stokes' radius of protein-Lubrol-phospholipid mixed micelles is about 59 A.  相似文献   

10.
Preparations of sheep liver cytoplasmic aldehyde dehydrogenase obtained by published methods were found by analytical isoelectric focusing in the pH range 5--8 to contain 5--10% by weight of the mitochondrial aldehyde dehydrogenase. Under the conditions used the pI of the cytoplasmic enzyme is 6.2 and that of the mitochondrial enzyme 6.6. The mitochondrial enzyme can be removed from the preparation by selective precipitation of the cytoplasmic enzyme with (NH4)2SO4. Kinetic experiments and inhibition experiments with disulfiram show that the properties of the two sheep liver enzymes are so different that the presence of 10% mitochondrial enzyme in preparations of the cytoplasmic enzyme can introduce serious errors into results. Our results suggest that the presence of 10 microM-disulfiram in assays may completely inactivate the pure cytoplasmic enzyme. This result is in contrast with a previous report [kitson (1978) Biochem. U. 175, 83--90].  相似文献   

11.
Betaine is the major oxidation product of [Me-14C] choline produced by rat liver slices. Liver slices from adult rats rapidly oxidize [Me-14C] choline to betaine and the bulk of the betaine produced is recovered in the incubation medium. Considerably more choline is oxidized to betaine than is phosphorylated to phosphorylcholine. The rate of phosphorylation of choline appears to be independent of the rate of choline oxidation. Liver slices from fetal and young rats oxidize choline to betaine at a lower rate than adult liver slices.The ability of mitochondria to oxidize [Me-14C] choline to betaine aldehyde and betaine is considerably lower in fetal liver than in adult liver. The major product with both fetal and adult mitochondria is betaine aldehyde. Choline oxidation by mitochondria begins to increase 1 day prior to birth and increases progressively to adult levels by 18 days. The developmental pattern for choline oxidation is similar to the pattern for succinic dehydrogenase activity.  相似文献   

12.
Aldehyde dehydrogenase has been purified to homogeneity from mitochondria of potato tubers and pea epicotyls. Although the enzyme had a high affinity for glycolaldehyde it also had a high affinity for a number of other aliphatic and arylaldehydes. It is proposed that the codification glycolaldehyde dehydrogenase (EC 1.2.1.22) should be abandoned in favour of mitochondrial aldehyde dehydrogenase (EC 1.2.1.3). The purified enzyme showed esterase activity and had properties similar to those reported for the mammalian mitochondrial aldehyde dehydrogenase. Although the natural substrate(s) for the enzyme is not known, the kinetic properties of the enzyme are consistent with it playing a role in the oxidation of acetaldehyde, glycolaldehyde and indoleacetaldehyde.  相似文献   

13.
Crotonaldehyde was oxidized by disrupted rat liver mitochondrial fractions or by intact mitochondria at rates that were only 10 to 15% that of acetaldehyde. Although a poor substrate for oxidation, crotonaldehyde is an effective inhibitor of the oxidation of acetaldehyde by mitochondrial aldehyde dehydrogenase, by intact mitochondria, and by isolated hepatocytes. Inhibition by crotonaldehyde was competitive with respect to acetaldehyde, and the Ki for crotonaldehyde was about 5 to 20 microM. Crotonaldehyde had no effect on the oxidation of glutamate or succinate. Very low levels of acetaldehyde were detected during the metabolism of ethanol. Crotonaldehyde increased the accumulation of acetaldehyde more than 10-fold, indicating that crotonaldehyde, besides inhibiting the oxidation of added acetaldehyde, also inhibited the oxidation of acetaldehyde generated by the metabolism of ethanol. Formaldehyde was a substrate for the low-Km mitochondrial aldehyde dehydrogenase, as well as for a cytosolic, glutathione-dependent formaldehyde dehydrogenase. Crotonaldehyde was a potent inhibitor of mitochondrial oxidation of formaldehyde, but had no effect on the activity of formaldehyde dehydrogenase. In hepatocytes, crotonaldehyde produced about 30 to 40% inhibition of formaldehyde oxidation, which was similar to the inhibition produced by cyanamide. This suggested that part of the formaldehyde oxidation occurred via the mitochondrial aldehyde dehydrogenase, and part via formaldehyde dehydrogenase. The fact that inhibition by crotonaldehyde is competitive may be of value since other commonly used inhibitors of aldehyde dehydrogenase are irreversible inhibitors of the enzyme.  相似文献   

14.
Adrenodoxin (Ad) is synthesized as a larger precursor (preAd) by cytoplasmic polysomes and then transported into mitochondria concomitant with its proteolytic processing to the mature form. The protease in bovine adrenal cortex mitochondria, which converts preAd to the mature form, is a metalloprotease in the matrix (Sagara, Y., Ito, A. & Omura, T. (1984) J. Biochem. 96, 1743-1752). In this study, the protease was purified about 100-fold from the matrix fraction of bovine adrenal cortex mitochondria. The partially purified protease converted not only preAd, but also the precursors of malate dehydrogenase (MDH) and 27 kDa protein (P-27) to the corresponding mature forms. However, it was inactive toward the precursors of P-450(SCC) and of P-450(11 beta). Since isolated rat liver mitochondria can import and process preAd as efficiently as bovine adrenal cortex mitochondria, we partially purified a preAd-processing protease from rat liver mitochondria and compared its properties with those of the bovine adrenal cortex enzyme. The properties of the rat liver protease were indistinguishable from those of the bovine adrenal cortex enzyme in molecular weight determined from Sephadex G-150 gel filtration, metal requirement and ability to process preMDH and preP-27. The rat liver enzyme was also inactive toward the precursors of P-450(SCC) and P-450(11 beta). These results indicate the presence in both adrenal cortex and liver mitochondria of the same type of processing protease, which processes preAd and also the precursors of some other mitochondrial proteins.  相似文献   

15.
The complete amino acid sequence of mitochondrial malate dehydrogenase from rat heart has been determined by chemical methods. Peptides used in this study were purified after digestions with cyanogen bromide, trypsin, endoproteinase Lys C, and staphylococcal protease V-8. The amino acid sequence of this mature enzyme is compared with that of the precursor form, which includes the primary structure of the transit peptide. The transit peptide is required for incorporation into mitochondria and appears to be homologous to the NH2-terminal arm of a related cytoplasmic enzyme, pig heart lactate dehydrogenase. The amino acid differences between the rat heart and pig heart mitochondrial malate dehydrogenases are analyzed in terms of the three-dimensional structure of the latter. Only 12/314 differences are found; most are conservative changes, and all are on or near the surface of the enzyme. We propose that the transit peptide is located on the surface of the mitochondrial malate dehydrogenase precursor.  相似文献   

16.
Formaldehyde can be metabolized primarily by two different pathways, one involving oxidation by the low-Km mitochondrial aldehyde dehydrogenase, the other involving a specific, glutathione-dependent, formaldehyde dehydrogenase. To estimate the roles played by each enzyme in formaldehyde metabolism by rat hepatocytes, experiments with acetaldehyde and cyanamide, a potent inhibitor of the low-Km aldehyde dehydrogenase were carried out. The glutathione-dependent oxidation of formaldehyde by 100,000g rat liver supernatant fractions was not affected by either acetaldehyde or by cyanamide. By contrast, the uptake of formaldehyde by intact mitochondria was inhibited 75 to 90% by cyanamide. Acetaldehyde inhibited the uptake of formaldehyde by mitochondria in a competitive fashion. Formaldehyde was a weak inhibitor of the oxidation of acetaldehyde by mitochondria, suggesting that, relative to formaldehyde, acetaldehyde was a preferred substrate. In isolated hepatocytes, cyanamide, which inhibited the oxidation of acetaldehyde by 75 to 90%, produced only 30 to 50% inhibition of formaldehyde uptake by cells as well as of the production of 14CO2 and of formate from [14C]formaldehyde. The extent of inhibition by cyanamide was the same as that produced by acetaldehyde (30-40%). In the presence of cyanamide, acetaldehyde was no longer inhibitory, suggesting that acetaldehyde and cyanamide may act at the same site(s) and inhibit the same formaldehyde-oxidizing enzyme system. These results suggest that, in rat hepatocytes, formaldehyde is oxidized by cyanamide- and acetaldehyde-sensitive (low-Km aldehyde dehydrogenase) and insensitive (formaldehyde dehydrogenase) reactions, and that both enzymes appear to contribute about equally toward the overall metabolism of formaldehyde.  相似文献   

17.
Kinetic studies were carried out on mitochondrial aldehyde dehydrogenase (EC 1.2.1.3) isolated from sheep liver. Steady-state studies over a wide range of acetaldehyde concentrations gave a non-linear double-reciprocal plot. The dissociation of NADH from the enzyme was a biphasic process with decay constants 0.6s-1 and 0.09s-1. Pre-steady-state kinetic data with propionaldehyde as substrate could be fitted by using the same burst rate constant (12 +/- 3s-1) over a wide range of propionaldehyde concentrations. The quenching of protein fluorescence on the binding of NAD+ to the enzyme was used to estimate apparent rate constants for binding (2 X 10(4) litre.mol-1.s-1) and dissociation (4s-1). The kinetic properties of the mitochondrial enzyme, compared with those reported for the cytoplasmic aldehyde dehydrogenase from sheep liver, show significant differences, which may be important in the oxidation of aldehydes in vivo.  相似文献   

18.
The kinetic mechanisms of the beta-hydroxybutyrate dehydrogenase from rat heart and liver mitochondria were investigated. Both enzymes, show an Ordered Bi Bi mechanism and there are no major differences in the kinetic constants. In both cases, the solubilized enzyme, re-activated with phosphatidylcholine, shows kinetic properties very similar to those of the enzyme bound to the mitochondrial membrane.  相似文献   

19.
The behaviours of the principal NADPH-producing enzymes (glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, cytoplasmic and mitochondrial 'malic' enzyme and NAPD+-dependent isocitrate dehydrogenase) were studied during the development of rat heart and compared with those in brain and liver. 1. The enzymes belonging to the pentose phosphate pathway exhibit lower activities in heart than in other tissues throughout development. 2. The pattern of induction of heart cytoplasmic and mitochondrial 'malic' enzymes does not parallel that found in liver. Heart mitochondrial enzyme is slowly induced from birth onwards. 3. NADP+-dependent isocitrate dehydrogenase has similar activities in all tissues in 18-day foetuses. 4. Heart mitochondrial NADP+-dependent isocitrate dehydrogenase is greatly induced in the adult, where it attains a 10-fold higher activity than in liver. 5. The physiological functions of mitochondrial 'malic' enzyme and NADP+-dependent isocitrate dehydrogenase are discussed.  相似文献   

20.
The subcellular distribution and properties of four aldehyde dehydrogenase isoenzymes (I-IV) identified in 2-acetylaminofluorene-induced rat hepatomas and three aldehyde dehydrogenases (I-III) identified in normal rat liver are compared. In normal liver, mitochondria (50%) and microsomal fraction (27%) possess the majority of the aldehyde dehydrogenase, with cytosol possessing little, if any, activity. Isoenzymes I-III can be identified in both fractions and differ from each other on the basis of substrate and coenzyme specificity, substrate K(m), inhibition by disulfiram and anti-(hepatoma aldehyde dehydrogenase) sera, and/or isoelectric point. Hepatomas possess considerable cytosolic aldehyde dehydrogenase (20%), in addition to mitochondrial (23%) and microsomal (35%) activity. Although isoenzymes I-III are present in tumour mitochondrial and microsomal fractions, little isoenzyme I or II is found in cytosol. Of hepatoma cytosolic aldehyde dehydrogenase activity, 50% is a hepatoma-specific isoenzyme (IV), differing in several properties from isoenzymes I-III; the remainder of the tumour cytosolic activity is due to isoenzyme III (48%). The data indicate that the tumour-specific aldehyde dehydrogenase phenotype is explainable by qualitative and quantitative changes involving primarily cytosolic and microsomal aldehyde dehydrogenase. The qualitative change requires the derepression of a gene for an aldehyde dehydrogenase expressed in normal liver only after exposure to potentially harmful xenobiotics. The quantitative change involves both an increase in activity and a change in subcellular location of a basal normal-liver aldehyde dehydrogenase isoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号