首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two field exercises were carried out to compare chlorophyll a fluorescence measurements taken in the field by field teams working on the same project. In the first exercise (2007, Passo Pura, Ampezzo, Udine, Northern Italy) the operators took measurements on the same leaf areas (maintaining fixed leaf clips); in the second (2009, Monterotondo Marittimo, Grosseto, Central Italy) the teams worked independently, but addressing a common research question. The results of the first exercise showed that: (a) FV/FM was stable and had little variation among teams and instruments; (b) the results from the different teams correlated well; (c) the most suitable parameters of fast kinetics analysis are those measured on the normalized fluorescence transients. In the second exercise, when the teams worked independently, the results were much more variable and the correlations between measurements of different operators were weak. These results suggest that field chlorophyll a fluorescence measurements taken by different teams/operators can be comparable only if particular care is taken to the internal variability of the samples and a standardized sampling strategy is applied. A statistically sound representation of a population can be then reached.  相似文献   

2.
The photosynthetic characteristics of thalli of cultured Pyropia yezoensis strains collected in January, February, and March in seaweed cultivation area of South China Yellow Sea were studied. Results showed that the maximum quantum efficiency (F v/F m) of all P. yezoensis thallus collected at different times was 0.65. The actual quantum efficiency (ΔF/F m′) of samples in January was the lowest of all samples, while the ΔF/F m′ of samples in March was significantly higher than those in January and February. The increase of temperature and photosynthetic pigments ratios of phycoerythrin and chlorophyll a (PE/Chla) and phycocyanin and chlorophyll a (PC/Chla) from January to March may be the important reasons for the increase in light use efficiency of thallus; although the thallus in March was significantly thicker than in January which may have reduced the light energy absorbed by photosynthetic pigments, the increase of relative high energy use efficiency also helped to maintain the photosynthetic oxygen evolution rate in March. The thicker thallus also reduced photodamage, and the thallus area was increased obviously in March, so the growth rate of thallus in March was over 35 % higher than that in February. Our research indicates that the photosynthetic characteristics of P. yezoensis strains thalli have a close relationship with their growth stage and environmental factors especially temperature, and those photosynthetic characteristics are also reflected in the growth rate of the thalli.  相似文献   

3.
The impact that the parasitic plant field dodder (Cuscuta campestris Yunk.) has on chlorophyll fluorescence and chlorophyll content of infested alfalfa (Medicago sativa L.) and sugar beet (Beta vulgaris L.) was examined under controlled conditions. Several parameters of chlorophyll fluorescence were measured in infested and non-infested alfalfa and sugar beet plants over a period of twenty days, beginning with the day of infestation. Chlorophyll contents (total, relative and ratio of chlorophyll a to b) were determined 1, 7, 14 and 20 days after infestation (DAI). Field dodder was found to affect both the total and relative chlorophyll contents in infested alfalfa and sugar beet, causing significant reduction in chlorophyll content in both host plants. This parasitic plant also affects a number of parameters of chlorophyll fluorescence (Fo, Fv/Fm, ΦPSII, Fv and IF), showing that these parameters may be considered sensitive indicators of the impact that field dodder has on its host plants.  相似文献   

4.
A good correlation exists between the extent of thylakoid aggregation (grana reconstitution) and the increase in the chlorophyll a fluorescence yield (FDCMU; DCMU = 3-(3′,4′-dichlorophenyl)-1, 1-dimethyl urea) caused by the addition of monovalent or divalent cations to low-salt disorganized (agranal) chloroplasts. The extent of grana stacking was monitored by the yield of heavy subchloroplast fractions after digitonin disruption of chloroplasts. A good correlation of the cation effect on both parameters was also found in light subchloroplast fractions (10,000g supernatants) obtained from sonicated “low-salt” Tricine-suspended pea chloroplasts. Addition of cations to the agranal protochloroplasts of etiolated pea or bean leaves exposed to periodic light-dark cycles, suspended in low-salt Tricine buffer, does not affect formation of heavy subchloroplast fractions, nor does it affect their chlorophyll a fluorescence yield level (FDCMU). The cation effect on the increase of the chlorophyll a fluorescence yield level seems to be due to the cation-induced thylakoid structural changes leading to grana stacking.  相似文献   

5.
Barták  M.  Hájek  J.  Gloser  J. 《Photosynthetica》2000,38(4):531-537
Spatial heterogeneity of chlorophyll (Chl) fluorescence over thalli of three foliose lichen species was studied using Chl fluorescence imaging (CFI) and slow Chl fluorescence kinetics supplemented with quenching analysis. CFI values indicated species-specific differences in location of the most physiologically active zones within fully hydrated thalli: marginal thallus parts (Hypogymnia physodes), central part and close-to-umbilicus spots (Lasallia pustulata), and irregulary-distributed zones within thallus (Umbilicaria hirsuta). During gradual desiccation of lichen thalli, decrease in Chl fluorescence parameters (FO - minimum Chl fluorescence at point O, FP - maximum Chl fluorescence at P point, 2 - effective quantum yield of photochemical energy conversion in photosystem 2) was observed. Under severe desiccation (>85 % of water saturation deficit), substantial thalli parts lost their apparent physiological activity and the resting parts exhibited only a small Chl fluorescence. Distribution of these active patches was identical with the most active areas found under full hydration. Thus spatial heterogeneity of Chl fluorescence in foliose lichens may reflect location of growth zones (pseudomeristems) within thalli and adjacent newly produced biomass. When exposed to high irradiance, fully-hydrated thalli of L. pustulata and U. hirsuta showed either an increase or no change in FO, and a decrease in FP. Distribution of Chl fluorescence after the high irradiance treatment, however, remained the same as before the treatment. After 60 min of recovery in the dark, FO and FP did not recover to initial values, which may indicate that the lichen used underwent a photoinhibition. The CFI method is an effective tool in assessing spatial heterogeneity of physiological activity over lichen thalli exposed to a variety of environmental factors. It may be also used to select a representative area at a lichen thallus before application of single-spot fluorometric techniques in lichens.  相似文献   

6.
The cadmium (Cd), being a widespread soils pollutant and one of the most toxic heavy metals in the environment, adversely affects sustainable crop production and food safety. Pot experiment was conducted to quantify and simulate the response of purslane (Portulaca oleracea L.) plants to Cd toxicity. The purslane germinated seeds were cultivated in twelve Cd concentrations (from 0 to 300 mg/kg of Cd in soil) for six weeks and then some growth characteristics, photosynthesis pigments, and chlorophyll a fluorescence parameters were measured. The influence of Cd gradients in the soil on all growth parameters, photosynthesis pigments and chlorophyll a fluorescence parameters (except Fm and carotenoid content) were described by a segmented model. Furthermore, Fm and carotenoid contents were fitted to a linear model. The growth characteristics, chlorophyll content, photosynthetic pigments and some parameters of chlorophyll a fluorescence such as Fv, Fv/Fm, Y(II) and ETR decreased when Cd concentration increased. In contrast, F0, Y(NPQ) and Y(NO) increased and Fm was not significantly affected. In general, most variations in the studied parameters were recorded with low concentrations of cadmium, which ranged from 0 to 125 mg/kg. Also, the growth characteristics (especially stem, leaf, and shoot dry weights) were more sensitive to Cd contamination than other parameters. Moreover, among chlorophyll fluorescence parameters, Y(NPQ) was the most sensitive to Cd concentration gradients in the soil that can be due to disturbances of antennae complex of PSII.  相似文献   

7.
Diverse measurements of nutrient status indicators were used to test the severity of physiological phosphorus (P) limitation of phytoplankton among lake systems ranging from oligotrophic to eutrophic, based on P and chlorophyll a (Chl a) concentrations. Metabolic assays and particulate nutrient ratios were used to estimate nutrient status at sites located in Lake Erie, Lake Ontario and Lake Huron. Variable fluorescence ratios (F v/F m), relative electron transport rates and their response to irradiance were measured by the pulse-amplitude-modulated fluorometer. Under summer stratified conditions, P deficiency was strongest in the oligotrophic sites and nitrogen (N) status indicators and Chl a variable parameters revealed no severe N deficiency. Nutrient amendment assays showed positive associations with P additions and Chl a fluorescence parameters at P-deficient sites. In the most oligotrophic sites, N additions revealed a modest increase only detected by the Chl a fluorescence parameters. Phytoplankton communities were also associated with nutrient status, where chrysophytes and cryptophytes were important in P-deficient sites and cyanobacteria, phyrrophyta, and diatoms were prevalent in nutrient-rich sites. The results confirmed that Chl a fluorescence parameters can reveal P deficiency and indicate its severity among the range of trophic status in aquatic systems.  相似文献   

8.
This study aims to assess the photoprotective potential of desiccation-induced curling in the light-susceptible old forest lichen Lobaria pulmonaria by using chlorophyll fluorescence imaging. Naturally curled thalli showed less photoinhibition-induced limitations in primary processes of photosynthesis than artificially flattened specimens during exposures to 450 μmol m−2 s−1 in the laboratory after both 12- (medium dose treatment) and 62-h duration (high dose treatment). Thallus areas shaded by curled lobes during light exposure showed unchanged values of measured chlorophyll fluorescence parameters (F V/F M, ΦPS II), whereas non-shaded parts of curled thalli, as well as the mean for the entire flattened thalli, showed photoinhibitory limitation after light treatments. Furthermore, the chlorophyll fluorescence imaging showed that the typical small-scale reticulated ridges on the upper side of L. pulmonaria caused a spatial, small-scale reduction in damage due to minor shading. Severe dry-state photoinhibition readily occurred in flattened and light-treated L. pulmonaria, although the mechanisms for such damage in a desiccated and inactive stage are not well known. Natural curling is one strategy to reduce the chance for serious photoinhibition in desiccated L. pulmonaria thalli during high light exposures.  相似文献   

9.
《Flora》2007,202(5):417-428
The role of different sources of water (rain, dew and water vapor) has been investigated under natural conditions in order to explain the activity and the distribution patterns of Teloschistes lacunosus (Rupr.) Sav. in the Tabernas Desert (Almeria, Spain). This field work was carried out at two neighboring sites: a pediment where T. lacunosus is well developed and an east-facing slope where only few small thalli are developed. Diurnal courses of photosynthetic activity were assessed by the use of chlorophyll a fluorescence measurements, at each site for a total of 12 days distributed among different seasons over the year. Microclimatic data (thallus temperature, relative humidity (RH) and light intensity) were recorded continuously for a period of 1 year including all the days on which fluorescence measurements were made. Dried T. lacunosus in its natural habitat only became photosynthetically active after re-hydration with liquid water (dew or rain). In contact with an atmosphere of high RH (higher than 90%) but without dew condensation, thalli were not able to obtain sufficient water to become physiologically active. The microclimatic study showed notably differences between the two studied expositions. After dawn, thalli from the east-facing slope were exposed to higher temperatures and light intensity (PPFD) levels than thalli from the pediment. This was reflected in the length of time that the air remained saturated and the lichen remained wet and active. The high incident PPFD and the resultant increased temperatures at the east-facing slope led to short dew duration and, therefore to shorter periods of morning photosynthetic activity than on the pediment as fluorescence measurements showed. Additionally, the microclimatic differences between the two sites indicated a high frequency of dew fall events on the thalli from the pediment. The time periods of thallus dew imbibition vary strongly with the exposure of the lichens.  相似文献   

10.
Intertidal flats are frequently colonised by microphytobenthos (MPB) assemblages that form transient biofilms at the sediment surface which are responsible for large fractions of estuarine primary production. The large spatio-temporal variability in MPB biomass distribution in concert with the fact that tidal flats can cover many km2 makes the use of remote sensing particularly useful in assessing MPB distribution. Water content, sediment type and MPB vertical migration are variables that affect the relationship between ground truth measurements and remote sensing of benthic chlorophyll. The effect of chlorophyll depth distribution (top 2 mm) on the relationship between benthic chlorophyll and several remote sensing indices (NDVI, PI, R562/R647, derivative indices and PAM fluorescence) was investigated over a 2 year sampling period at 6 sites (Tagus estuary, Portugal). Additionally, the effect of the dark adaptation time required to measure the minimum fluorescence parameter (F0) was also tested. Sediment type strongly affected MPB depth distribution with muddy sites showing a strong negative exponential decay in chlorophyll with distance from the surface while sandy sites had a homogenous distribution over the same scale (2 mm). Chlorophyll content (mass per unit mass, μg g− 1) in the top 2 mm was better correlated with remote sensing indices than concentration (mass per unit volume, mg m− 3), both for NDVI (0.72 vs. 0.45) and for PAM fluorescence (0.70 vs. 0.55). Separating the data by transect increased the correlation values in all situations. A fitted model of chlorophyll depth distribution showed that the effect of asymmetrical chlorophyll depth distribution was stronger on the correlations between chlorophyll concentration and NDVI than on chlorophyll content and NDVI (0.46-2 mm vs. 0.74-125 μm, muddy site) the same was valid for fluorescence (0.66-2 mm vs. 0.92-125 μm, muddy site). Dark adapting the samples for more than 5 min did not result in any significant difference in the relationship between F0 and chlorophyll a. The residuals from the regression of chlorophyll content on NDVI were positively correlated (0.7) with the mass per unit of mass of sediment < 63 μm and negatively (− 0.6) with chlorophyll concentration, this indicates that if no correction is performed to account for chlorophyll depth distribution both units will be strongly affected by the mass of < 63 μm particles. The results demonstrate that although expressing chlorophyll a as concentration is generally a better option for ground truth measurements care should be taken to account for chlorophyll depth distribution since strong asymmetries within the sampling depth can introduce large errors.  相似文献   

11.
The red fluorescence of filtered sea water has been measured on 216 samples in the 0–150 m layer of the equatorial Atlantic Ocean.Soluble fluorescence is maximum where chlorophyll a and in vivo fluorescence are maximum, but the percentage of soluble fluorescence, (soluble fluorescence/in vivo fluorescence) × 100, is minimum at these levels; in recently upwelled waters of the equatorial divergence, the percentage of soluble fluorescence is equal to 10 in the 0–20 m layer and regularly increases to 60 or more at 100–150 m; in the nitrate depleted mixed layer of a convergence it averages 30, decreases to 15 in the thermocline maximum of chlorophyll a, and again reaches 60 in deep waters.A significant positive correlation has been found between the percentage of soluble fluorescence and the amount of phaeophytin, and soluble fluorescence in the open sea is thought to be the result of the degradation and release of chloroplastic products by aged or grazed phytoplankton populations. Low values (< 20) of the percentage soluble fluorescence indicate the presence of healthy phytoplankton cells, whereas high values (> 30) are evidence of unfavourable growth conditions (e.g., limiting nutrients or darkness) or high grazing pressure.The simultaneous measurement of in vivo fluorescence and soluble fluorescence is a method of obtaining valuable information rapidly on the physiological state of the phytoplankton population in the water column.  相似文献   

12.
Understanding the dynamics of upwelling systems, especially the interactions between nutrients and light, has benefited from the application of models of varying complexity. Validation of such models using unialgal cultures or field observations has often proven difficult, but short-term incubations of contained natural assemblages and use of instantaneous physiological indicators offer an alternative approach. In May and June 1996, phytoplankton communities deep in the euphotic zone were sampled from nearly identical physical environments. Replicate samples (20 l volume) were incubated on deck at 50% surface irradiance with either no nutrient additions (Controls) or additions of 20 μM nitrate (Enrichments). Over 24 h, variable fluorescence (F v:F m), nitrate reductase activity (NR), nutrients, chlorophyll a and particulate C and N were monitored. Initial chlorophyll a (~3 μg l?1), phosphate (~0.2 μM), nitrate (~1.5 μM) and silicate (~3 μM) were similar in both months. Changes in NR and F v:F m indicated clear physiological responses to changes in irradiance and added nitrate that differed between months. In May, Controls and Enrichments responded in the same way. F v:F m stayed constant (0.5), chlorophyll a increased slightly, and NR activity increased markedly in all samples. In contrast, in June, treatments responded quite differently. F v:F m was near the theoretical maximum (0.7–0.8) initially and remained constant in Enrichments, but fell sharply in Controls. Declines in controls were also seen for chlorophyll a, and NR activity. Thus, the addition of 20 μM nitrate had a significant effect even though ambient levels of nitrate (>1 μM) should not have been limiting. Small (<20 μm) flagellates predominated in the May samples, but in June large and chain-forming centric diatoms constituted a significant proportion of the phytoplankton community. We conclude that the response of a phytoplankton community to environmental changes can depend on factors that are poorly represented by bulk measurements of chlorophyll, nutrients and particulate elements.  相似文献   

13.
Photochemical efficiencies of photosystem I (PSI) and photosystem II (PSII) were studied in dry thalli of the lichen Hypogymnia physodes and during their re-hydration. In dry thalli, PSII reaction centers are photochemically inactive, as evidenced by the absence of variable chlorophyll (Chl) fluorescence, whereas the primary electron donor of PSI, P700, exhibits irreversible oxidation under continuous light. Upon application of multiple- and, particularly, single-turnover pulses in dry lichen, P700 oxidation partially reversed, which indicated recombination between P700+ and the reduced acceptor FX of PSI. Re-wetting of air-dried H. physodes initiated the gradual restoration of reversible light-induced redox reactions in both PSII and PSI, but the recovery was faster in PSI. Two slow components of P700+ reduction occurred after irradiation of partially and completely hydrated thalli with strong white light. In contrast, no slow component was found in the kinetics of re-oxidation of QA, the reduced primary acceptor of PSII, after exposure of such thalli to white light. This finding indicated the inability of PSII in H. physodes to provide the reduction of the plastoquinone pool to significant levels. It is concluded that slow alternative electron transport routes may contribute to the energetics of photosynthesis to a larger extent in H. physodes than in higher plants.Abbreviations A0 and A1 Primary acceptor chlorophyll and secondary electron acceptor phylloquinone - Chl a Chlorophyll a - Fm Maximal level of chlorophyll fluorescence when all PSII centers are closed - Fo Minimal level of fluorescence when all PSII centers are open after dark adaptation - FR Far-red - Fv Variable fluorescence (=FmFo) - FX, FA, and FB Iron–sulfur centers - MT pulse Multiple-turnover pulse - PS Photosystem - P700 Reaction center chlorophyll of PSI - QA Primary quinone acceptor of PSII - QB Secondary quinone acceptor of PSII - ST pulse Single-turnover pulse  相似文献   

14.
15.
The chlorophyll content is an important experimental parameter in agronomy and plant biology research. In this report, we explore the feasibility of determining total concentration of extracts containing chlorophyll a and chlorophyll b by chlorophyll fluorescence. We found that an excitation at 457?nm results in the same integrated fluorescence emission for a molecule of chlorophyll a and a molecule of chlorophyll b. The fluorescence yield induced by 457?nm is therefore proportional to total molar chlorophyll concentration. Based on this observation, we designed an instrument to determine total chlorophyll concentrations. A single light emitting diode (LED) is used to excite chlorophyll extracts. After passing through a long-pass filter, the fluorescence emission is assessed by a photodiode. We demonstrate that this instrument facilitates the determination of total chlorophyll concentrations. We further extended the functionality of the instrument by including LEDs emitting at 435 and 470?nm wavelengths, thereby preferentially exciting chlorophyll a and chlorophyll b. This instrument can be used to determine chlorophyll a and chlorophyll b concentrations in a variety of organisms containing different ratios of chlorophylls. Monte-Carlo simulations are in agreement with experimental data such that a precise determination of chlorophyll concentrations in carotenoid-containing biological samples containing a concentration of less than 5?nmol/mL total chlorophyll can be achieved.  相似文献   

16.
Superoxide dismutase (SOD) activity and parameters of chlorophyll fluorescence, the ratio of maximal to variable fluorescence (Fv/Fm), maximal fluorescence (Fm), and minimal fluorescence (F0) were determined on Picea abies growing at different altitudes. The decreases of Fv/Fm and Fm, in comparison to samples from the lower stands (control), were found on trees from the highest stands. The decrease of fluorescence parameters was reversible, at least partly, after keeping branches for some days in the laboratory. Fv/Fm measured in spring when trees were partially covered with snow revealed greater degree of photoinactivation in branches collected from above the snow in comparison to those from below the snow. In samples collected from above snow also slower recovery from stress was observed. Two main SOD isoforms were determined in needles of P. abies, and classified as CuZnSODs. The activity of both SOD isoforms was increasing with the altitude, thus indicating the highest level of oxidative stress at the timberline zone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.

Background and Aims

Cadmium (Cd) causes Fe-deficiency-like symptoms in plants, and strongly inhibits photosynthesis. To clarify the importance of Cd-induced Fe deficiency in Cd effects on photosynthesis, the recovery processes were studied by supplying excess Fe after the Cd symptoms had developed.

Methods

Fe-citrate at 10 µm or 50 µm was given with or without 10 µm Cd(NO3)2 to hydroponically cultured poplars (Populus glauca ‘Kopeczkii’) with characteristic Cd symptoms. Ion, chlorophyll and pigment contents, amount of photosynthetic pigment–protein complexes, chlorophyll fluorescence and carbon assimilation were measured together with the mapping of healing processes by fluorescence imaging.

Key Results

In regenerated leaves, the iron content increased significantly, while the Cd content did not decrease. As a result, the structural (increase in the amount of photosynthetic pigments and pigment–protein complexes, decrease in the F690/F740 ratio) and functional (elevation of CO2 fixation activity and ΔF/Fm′) recovery of the photosynthetic machinery was detected. Cd-induced, light-stress-related changes in non-photochemical quenching, activity of the xanthophyll cycle, and the F440?/F520 ratio were also normalized. Imaging the changes in chlorophyll fluorescence, the recovery started from the parts adjacent to the veins and gradually extended to the interveinal parts. Kinetically, the rate of recovery depended greatly on the extent of the Fe supply, and chlorophyll a/b ratio and ΔF/Fm′ proved to be the most-rapidly reacting parameters.

Conclusions

Iron deficiency is a key factor in Cd-induced inhibition of photosynthesis.Key words: Cadmium, chlorophyll–protein, iron deficiency, poplar, Populus glauca Haines 1906 var. Kopeczkii, fluorescence imaging, chlorophyll fluorescence induction  相似文献   

18.
Coffea arabica L. is considered to be sensitive to low temperatures throughout its life cycle. In some Brazilian regions, seedling production occurs under shade conditions and during the winter, with average temperatures of around 10 °C. The formation and functioning of the photosynthetic apparatus are strongly controlled by temperature. This study aimed to assess the changes that occurred in pigment contents, lipid peroxidation and variables of chlorophyll a fluorescence during the greening process of coffee seedlings submitted to chilling. Results indicate that saturation of the photosynthetic activity of coffee seedlings occurred before saturation of the accumulation of chloroplastid pigments. Pigment accumulation during the greening process is far beyond the metabolic needs for the maintenance of photosynthetic activity, more specifically of photosystem II. Coffee seedlings attained a quantum yield equivalent to that of the control with approximately half the chlorophyll a and b contents and around 40% of the carotenoid. Low temperature decreases the metabolism of seedlings, consequently reducing free radical production and lipid peroxidation. The chilling temperature (10 °C) used inhibited the accumulation of chloroplast pigments, in turn altering the capacity of the photosynthetic tissue of etiolated coffee seedlings to capture and transfer photon energy to the photosystem II reaction centre. These alterations were better demonstrated by O-J-I-P chlorophyll a fluorescence transients, rather than Fv/Fm and Fv/F0 ratios.  相似文献   

19.
In six dominant species of the Amazonian ‘Bana’ vegetation, leaf blade characteristics, pigment composition, and chlorophyll (Chl) fluorescence parameters were measured in young and mature leaves under field conditions. Leaf δ13C was comparable in the six species, which suggested that both expanding and expanded leaves contained organic matter fixed under similar intercellular and ambient CO2 concentration (C i/C a). High leaf C/N and negative δ15N values found in this habitat were consistent with the extreme soil N-deficiency. Analysis of Chl and carotenoids showed that expanding leaves had an incomplete development of photosynthetic antenna when compared to adult leaves. Dynamic inactivation of photosystem 2 (PS2) at midday was observed at both leaf ages as Fv/Fm decreased compared to predawn values. Adult leaves reached overnight Fv/Fm ratios typical of healthy leaves. Overnight recovery of Fv/Fm in expanding leaves was incomplete. F0 remained unchanged from midday to predawn and Fv tended to increase from midday to predawn. The recovery from midday depression observed in adult leaves suggested an acclimatory down-regulation associated with photo-protection and non-damage of PS2.  相似文献   

20.
The seasonal variation of phytoplankton in an eutrophic tropical reservoir was evaluated through photosynthetic pigments analyzed by HPLC. The contributions of algal classes to total chlorophyll a (TChl-a) were estimated by two procedures. The first one used fixed marker pigment/chlorophyll a ratio available from culture studies of the major species of each class. In the second procedure, a matrix factorization program (CHEMTAX) was used to analyze the pigment data. The pigment data were compared with carbon biomass estimated from microscope analysis. A significant correlation between total chlorophyll a (measured by HPLC) and total biomass was obtained, indicating only a slight variation in the content of algal chlorophyll a when compared to its fluctuations in carbon biomass. The interpretation of pigment data with CHEMTAX resulted in a good agreement with biomass. Although displaying some differences, the general pattern of the phytoplankton community dynamics and the major shifts in composition, biomass and the cyanobacterial bloom were evidenced. In contrast, Chl-a biomass estimates from fixed Xan/Chl-a ratios presented poor agreement with microscope data and did not register the principal changes in phytoplankton. Our results also highlighted the needs of better understanding of the relationships between marker pigments, chlorophyll-a and algal biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号