首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow‐water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef‐dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine‐scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes.  相似文献   

2.
Sponges assemblages were sampled in four coastal study regions (Malindi, Kenya; Quirimba Archipelago, northern Mozambique; Inhaca Island, Southern Mozambique and Anakao, Madagascar) in the west Indian Ocean. Sponge species were counted in multiple 0.5 m2 quadrats at depths of between 0 and 20 m at a number of sites within localities within each region. Despite the relatively small areas sampled, sponge samples comprised a total of 130 species and 70 genera of the classes Demospongiae and Calcarea. Sponges are clearly a major taxon in these regions in terms of numbers of species, percentage cover or biomass, although their ecology in the west Indian Ocean is virtually unknown. Nearly half of the genera, e.g. Iotrochota, found were species with a so‐called Tethyan distribution. Most of the other genera were cosmopolitan, e.g. Clathria, but some were cold water (Coelosphaera), Indo‐Australian (Ianthella) or circum‐African (Crambe). Many of the species encountered in the present study occurred in at least two study regions, many in more and could occupy large areas of substratum. Some of these, e.g. Xestospongia exigua, are commonly found throughout the Indo‐west Pacific region where they also occupy much space. The endemicity of the shallow water sponge faunas in East Africa (20–25%) seem to be high within the Indo‐Pacific realm but are lower than northern Papua New Guinea. The tropical regions (Kenya and Northern Mozambique) were more speciose than subtropical regions (southern Mozambique and Madagascar) but not significantly more diverse (Shannon H′). Although latitude was not a major influence on sponge community patterns, hard substratum assemblages did form a cline from the tropics to Southern Mozambique, linked by Madagascar. Substratum nature (habitat) was most important in influencing the suite and number of species present. Sponge assemblages of soft substrata were much more dissimilar, both within and between habitats, than those on hard substrata. There was a predictable variability in species richness between hard substratum habitats: coral reefs being speciose and caves being less so. Our findings showed that both patterns and influences on species richness may be decoupled from those influencing diversity. In our data species richness, but not diversity, showed striking regional and bathymetric trends. In addition, sponge species richness mainly split at coral reef vs. non‐reef habitats, whilst diversity divided principally into assemblages on hard and soft substrata. We consider this dichotomy of findings between species richness and diversity values to be important, as these are two principal measures used for the interpretation of biodiversity.  相似文献   

3.
Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008–2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources.  相似文献   

4.
Beck  H. J.  Feary  D. A.  Nakamura  Y.  Booth  D. J. 《Coral reefs (Online)》2017,36(2):639-651

Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan (~33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity (K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish (Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.

  相似文献   

5.
Changes in invertebrate body size-distributions that follow loss of habitat-forming species can potentially affect a range of ecological processes, including predation and competition. In the marine environment, small crustaceans and other mobile invertebrates (‘epifauna') represent a basal component in reef food webs, with a pivotal secondary production role that is strongly influenced by their body size-distribution. Ongoing degradation of reef habitats that affect invertebrate size-distributions, particularly transformation of coral and kelp habitat to algal turf, may thus fundamentally affect secondary production. Here we explored variation in size spectra of shallow epifaunal assemblages (i.e. the slope and intercept of the linear relationship between log abundance and body size at the assemblage level) across 21 reef microhabitats distributed along an extensive eastern Australian climatic gradient from the tropical northern Great Barrier Reef to cool temperate Tasmania. When aggregated across microhabitats at the site scale, invertebrate body size spectra (0.125–8 mm range) were consistently log-linear (R2 ranging 0.87–0.98). Size spectra differed between, but not within, major groups of microhabitats, and exhibited little variability between tropical and temperate biomes. Nevertheless, size spectra showed significant tropical/temperate differences in slopes for epifauna sampled on macroalgal habitats, and in elevation for soft coral and sponge habitats. Our results reveal epifaunal size spectra to be a highly predictable macro-ecological feature. Given that variation in epifaunal size spectra among groups of microhabitats was greater than variation between tropical and temperate biomes, we postulate that ocean warming will not greatly alter epifaunal size spectra directly. However, transformation of tropical coral and temperate macroalgal habitats to algal turfs due to warming will alter reef food web dynamics through redistribution of the size of prey available to fishes.  相似文献   

6.
Ruzicka R  Gleason DF 《Oecologia》2008,154(4):785-794
It has been proposed that predation pressure declines with increasing latitude and a positive correlation exists between predation intensity and the investment into chemical defenses. However, little direct evidence supports the idea that tropical species are better defended chemically than their temperate counterparts. Temperate reefs of the South Atlantic Bight (SAB) off Georgia, USA, provide a unique opportunity to study tropical sponges in a temperate environment. We documented sponge species richness and abundance, sponge predator density, and examined the ability of eight sponge species to chemically deter predation by fishes on two reefs in the SAB. We used rarefaction analysis and ANOVA to compare our results for sponge species richness and density, respectively, with similar published studies conducted on reefs of the sub-tropical Atlantic (i.e., Florida Keys). These analyses were combined with similar statistical comparisons for spongivorous fish species richness and density. Results showed that sponge species richness was lower, but sponge density was higher, on the temperate SAB reefs than on the subtropical reefs. Both spongivorous fish diversity and density were lower on the SAB reefs. The greater abundance of sponges and lower density of predators on SAB reefs suggest a lower frequency of predation on sponges on SAB reefs. Of the eight sponge species assayed from the SAB reefs, five possessed chemical extracts that were significantly less deterrent to fish predators than their tropical/subtropical conspecifics. When the results were combined across all sponge species, the chemical deterrence of fish predators was significantly lower for extracts obtained from the temperate sponge community as compared to the tropical/subtropical assemblage. These results support the more general hypothesis that a lower density and diversity of sponge predators occurs at high as compared to low latitudes in the western Atlantic and may contribute to decreased investment in chemical defenses.  相似文献   

7.
Few studies have considered how seagrass fish assemblages are influenced by surrounding habitats. This information is needed for a better understanding of the connectivity between tropical coastal ecosystems. To study the effects of surrounding habitats on the composition, diversity and densities of coral reef fish species on seagrass beds, underwater visual census surveys were carried out in two seagrass habitat types at various locations along the coast of Zanzibar (Tanzania) in the western Indian Ocean. Fish assemblages of seagrass beds in a marine embayment with large areas of mangroves (bay seagrasses) situated 9 km away from coral reefs were compared with those of seagrass beds situated on the continental shelf adjacent to coral reefs (reef seagrasses). No differences in total fish density, total species richness or total juvenile fish density and species richness were observed between the two seagrass habitat types. However, at species level, nine species showed significantly higher densities in bay seagrasses, while eight other species showed significantly higher densities in reef seagrasses. Another four species were exclusively observed in bay seagrasses. Since seagrass complexity could not be related to these differences, it is suggested that the arrangement of seagrass beds in the surrounding landscape (i.e. the arrangement on the continental shelf adjacent to the coral reef, or the arrangement in an embayment with mangroves situated away from reefs) has a possible effect on the occurrence of various reef-associated fish species on seagrass beds. Fish migration from or to the seagrass beds and recruitment and settlement patterns of larvae possibly explain these observations. Juvenile fish densities were similar in the two types of seagrass habitats indicating that seagrass beds adjacent to coral reefs also function as important juvenile habitats, even though they may be subject to higher levels of predation. On the contrary, the density and species richness of adult fish was significantly higher on reef seagrasses than on bay seagrasses, indicating that proximity to the coral reef increases density of adult fish on reef seagrasses, and/or that ontogenetic shifts to the reef may reduce adult density on bay seagrasses.  相似文献   

8.
Inshore marine seascapes support a diversity of interconnected habitats and are an important focus for biodiversity conservation. This study examines the importance of habitat attributes to fish assemblages across a mosaic of inshore habitats: coral reefs, rocky reefs, macroalgae beds and sand/rubble beds. Fishes and benthic habitats were surveyed at 34 sites around continental islands of the central Great Barrier Reef using baited remote underwater video stations (BRUVS). Species richness was influenced foremost by habitat type and also by structural complexity within habitat types. The most speciose assemblages occurred in coral and rocky reef habitats with high structural complexity, provided by the presence of coral bommies/overhangs, boulders and rock crevices. Nonetheless, macroalgae and sand/rubble beds also supported unique species, and therefore contributed to the overall richness of fish assemblages in the seascape. Most trophic groups had positive associations with complexity, which was the most important predictor for abundance of piscivorous fishes and mobile planktivores. There was significant differentiation of fish assemblages among habitats, with the notable exception of coral and rocky reefs. Species assemblages overlapped substantially between coral and rocky reefs, which had 60% common species, despite coral cover being lower on rocky reefs. This suggests that, for many species, rocky and coral substrates can provide equivalent habitat structure, emphasizing the importance of complexity in providing habitat refuges, and highlighting the contribution of rocky reefs to habitat provision within tropical seascapes. The results of this study support an emerging recognition of the collective value of habitat mosaics in inshore marine ecosystems.  相似文献   

9.
Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star (Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46–96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3–4 species (6–8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.  相似文献   

10.
The South China Sea (SCS) includes large areas of extensive coral reef development but its reefs are still poorly known. Yongle atoll is the biggest typical atoll in the Xisha Islands, central of SCS. Lingyang Reef is an isolated small atoll within the whole big Yongle atoll. A total of 144 and 119 coral species were recorded at big Yongle atoll and small Lingyang Reef, respectively. The real coral richness might be higher because species accumulation curve did not saturate. The coral diversity pattern was similar between big Yongle atoll and small Lingyang Reef. Coral communities fell into three clusters, consistent with their habitats on reef slope, reef flat and lagoon slope. The highest coral diversity was observed on reef slopes and the lowest coral diversity was found on lagoon slope. Genera richness was a better proxy for representing coral species diversity on both the big and small atoll but percent live coral cover was not a robust proxy on the small atoll, which only explained 24% of species diversity. This study demonstrated high coral diversity with consistent pattern along habitat types, as has been shown from many other reefs. While far from exhaustive, the study allows first glimpses on how much biodiversity is contained on SCS coral reefs, and hopes to give an impetus to their conservation. The study also suggests that simplified surveys at a small scale and the use of genera richness as an effective proxy for overall diversity can indeed provide important information to rapidly monitor and evaluate the coral diversity in remote locations.  相似文献   

11.
Sponge faunas from coral reefs and mangrove ecosystems in the Caribbean have mostly been studied from an ecological perspective, with researchers considering the effects of physical and biological factors on their species distribution. To discern evolutionary patterns, this study analyzed the systematic composition, taxonomic diversity, and ecological properties (reproductive strategies, size, shape, endosymbiosis) of mangrove and reef sponge assemblages from seven distant Caribbean localities. Species composition was compared by use of cluster analysis (Sørensen’s), and taxonomic diversity by use of the biodiversity index average taxonomic distinctness (AvTD). Mangrove and reef-associated sponge faunas were found to be statistically dissimilar, with the AvTD values suggesting stronger taxonomic bias toward specific groups in mangroves, irrespective of geographic distance. Most Demospongiae orders have 30–50% more species in coral reefs than in mangroves. The richest reef genera (Agelas, Aplysina, Callyspongia, Petrosia, and Xestospongia) rarely colonize contiguous mangrove formations. The distribution and diversity of suprageneric taxa suggest that coral reef sponge assemblages might represent an older fauna. This historical interpretation would place mangrove subtidal habitats as the youngest marine ecosystem, rather than a below-optimum ecosystem. Life history traits support a biological split discussed here from the perspective of distinct evolutionary histories and different environmental conditions.  相似文献   

12.
Sponges are a reasonably ubiquitous, abundant and highly morphologically plastic taxon. They are very unusual in showing considerable morphological plasticity, not only within higher taxa but within species and at macro and micro scales. In this study we determined the prevalence of sponge morphologies at four coastal study regions in the west Indian Ocean. We show that tropical and subtropical assemblages (in the present study) can be separated on the basis of morphological composition alone (by > 4% arborescent forms or presence of palmate forms in the former). Inter‐tidal sponge assemblages can also be separated from those in the subtidal to a high degree of certainty, also on prevalence of morphologies (absence of tubular or branching forms in the former). The species diversity of many sponge assemblages has been quantified in various environments but, typically, only by specialists. Rarely have equivalent measures been made of morphological diversity. Values of morphological diversity (Shannon H′) were similar, though more variable, to those measured in temperate waters. Substratum nature had a major influence on morphological diversity and evenness, in contrast to geography and bathymetry. As coral reefs were the most diverse and caves and boulders the least, we suggest that substratum heterogeneity and water‐flow complexity are probably the chief determinant of sponge assemblage morphological diversity.  相似文献   

13.
Although coral reefs are renowned biodiversity hotspots it is not known whether they also promote the evolution of exceptional ecomorphological diversity. We investigated this question by analysing a large functional morphological dataset of trophic characters within Labridae, a highly diverse group of fishes. Using an analysis that accounts for species relationships, the time available for diversification and model uncertainty we show that coral reef species have evolved functional morphological diversity twice as fast as non-reef species. In addition, coral reef species occupy 68.6% more trophic morphospace than non-reef species. Our results suggest that coral reef habitats promote the evolution of both trophic novelty and morphological diversity within fishes. Thus, the preservation of coral reefs is necessary, not only to safeguard current biological diversity but also to conserve the underlying mechanisms that can produce functional diversity in future.  相似文献   

14.
Coral reef fish assemblages are widely recognized for the coexistence of numerous species, which are likely governed by both coral diversity and substratum complexity. However, since coral reefs provide diverse habitats due to their physical structure and different spatial arrangements of coral, findings obtained from an isolated habitat cannot necessarily be applied to fish assemblages in other habitats (e.g. continuous habitats). The aim of this study, therefore, was to determine by a field experiment whether habitat connectivity (spatial arrangement of coral colonies) affects abundance and species richness of fishes in an Okinawan coral reef. The experiment consisted of transplanted branching coral colonies at a 4m×8m quadrat at both a rocky reef flat and sandy sea bottom. Generally, the abundance of fishes was greater at the sandy sea bottom, especially for three species of pomacentrids, one species of labrids, one species of chaetodontids and two species of apogonids. Species–area curves showed that the species richness of fishes was significantly greater in the quadrat at the sandy sea bottom at 3, 6 and 9 months after the start of the experiment. The rate of increase in abundance of fishes per area was significantly greater in the quadrat at the sandy sea bottom over the study period. The results of rarefaction analyses showed that the rate of increase in species richness per abundance was significantly higher in the quadrat at the sandy sea bottom in the juvenile settlement period, indicating that the magnitude of dominance by particular species was greater at the sandy sea bottom habitat. Our findings suggest that habitat connectivity affects the abundance and species richness of coral reef fishes, i.e. the isolated habitat was significantly more attractive for fishes than was the continuous habitat. Our findings also suggest that the main ecological factors responsible for organization of fish assemblage at a continuous habitat and at an isolated habitat are different.  相似文献   

15.
Sea-level rise will change environmental conditions on coral reef flats, which comprise extensive habitats in shallow tropical seas and support a wealth of ecosystem services. Rapid relative sea-level rise of 0.6 m over a relatively pristine coral reef in Solomon Islands, caused by a subduction earthquake in April 2007, generated a unique opportunity to examine in situ coral reef response to relative sea-level rise of the magnitude (but not the rate) anticipated by 2100. Extent of live coral was measured from satellite imagery in 2003, 2006, 2009 and 2012. Ecological data were obtained from microatolls and ecological surveys in May 2013. The reef was sampled at 12 locations where dense live hard coral remained absent, remained present or changed from absent to present following subsidence. Ecological data (substratum depth, live coral canopy depth, coral canopy height, substratum suitability, recruitment, diversity and Acropora presence) were measured at each location to identify factors associated with coral response to relative sea-level rise. Vertical and horizontal proliferation of coral occurred following subsidence. Lateral expansion of live coral, accomplished primarily by branching Acropora spp., resulted in lower diversity in regions which changed composition from pavement to dense live coral following subsidence. Of the ecological factors measured, biotic factors were more influential than abiotic factors; species identity was the most important factor in determining which regions of the reef responded to rapid sea-level rise. On relatively pristine reef flats under present climatic conditions, rapid relative sea-level rise generated an opportunity for hard coral to proliferate. However, the species assemblage of the existing reef was important in determining response to sea-level change, by providing previously bare substrate with a source of new coral colonies. Degraded reefs with altered species composition and slower coral growth rates may be less able to respond to climate change-induced sea-level changes.  相似文献   

16.
The condition of coral reefs in the Cuban Archipelago is poorly known. We aimed to analyse coral assemblages across 199 reef sites belonging to 12 localities. Crest and fore reefs were assessed using six metrics: species richness, density, coral cover, mortality, coral size and reef complexity. The condition of reefs varied across the archipelago from healthy to depleted reefs. The localities with best scores were Cienfuegos, Bahía de Cochinos and Cazones. These reefs have values of living coral cover (>20%) and complexity (>50?cm) similar to the best preserved Caribbean reefs. However, the majority of crest biotopes suffered important deterioration with old mortality of Acropora palmata populations and moderate coral cover (15%); although crest reefs still maintained their structural complexity. Despite moderate levels of coral cover in fore reefs (18%), their condition was alarming because 25% of the sites had cover below the recovery threshold of 10%, accumulated mortality and structural flattening. Compared with the 1980s, the species richness was roughly the same (42) for crest and fore reefs, although dominance has changed to widespread tolerant species. Coral reef assemblages varied at local and regional scales in similar magnitude, suggesting the combined effects of natural and anthropogenic drivers.  相似文献   

17.
Indonesia is the world??s richest country regarding reef fish diversity. Nevertheless, the reef ichthyofauna of the Indonesian Archipelago remains poorly known, primarily due to a lack of sampling. Coral reefs in the Kepulauan Seribu Marine National Park close to the Indonesian capital Jakarta are under threat by many destructive activities that trigger a loss of habitat and species diversity. This communication: (1) describes the reef fish community structure from three distinct reef habitats in the Pari Island group dominated by Acropora branching corals (ACB), foliose corals (CF) and massive corals (CM), using a number of community properties such as numerical abundance, species richness, diversity, and multivariate similarity; (2) examines the temporal variation of the fish community from the three habitats; and (3) discusses possible implications for the monitoring of qualitative changes in coral reef systems on small islands. During this study, a total of 13 536 individual fishes were counted, representing 205 species belonging to 36 families. In terms of species richness, Pomacentridae was the dominant fish family in ACB and CF sites (40?% and 48.6?%, respectively), and Labridae (27.4?%) was the dominant family in the CM plots. The most species-rich habitat was ACB with 125 species (with Amblyglyphidodon curacao as the most characteristic species), followed by CM and CF with 117 (Thalassoma lunare) and 79 species (Pomacentrus alexanderae), respectively. Average Shannon-Wiener diversity (ln basis) ranged from 2.0?C2.9 (ACB), 2.4?C3.1 (CF), and 2.1?C3.0 (CM), with no significant difference between growth forms. Abundance, species richness and diversity showed significant seasonal variability, but the effects differed between habitats. Multivariate analysis of the reef fish community was able to detect significant differences between species composition and diversity of the reef fish community between sites with different coral growth forms at Pari Island, both when based on species abundances and when aggregated according to trophic categories. It thus constitutes a useful tool to detect qualitative differences of the species-rich Indonesian coral reef ecosystems.  相似文献   

18.
Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes (Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.  相似文献   

19.
Despite more than 60 yr of coral reef research using scuba diving, mesophotic coral ecosystems (MCEs) between 30 and 150 m depth remain largely unknown. This study represents the first underwater visual census of reef fish communities in the Greater Caribbean on MCEs at depths up to 80 m in Bermuda and 130 m in Curaçao. Sampling was performed using mixed-gas closed-circuit rebreathers. Quantitative data on reef fish communities were obtained for four habitats: coral reefs (45–80 m), rhodolith beds (45–80 m), ledges (85–130 m) and walls (85–130 m). A total of 38 species were recorded in Bermuda and 66 in Curaçao. Mesophotic reef fish communities varied significantly between the two localities. MCEs in Bermuda had lower richness and abundance, but higher biomass than those in Curaçao. Richness, abundance and biomass increased with depth in Bermuda, but decreased in Curaçao. A high turnover of species was found among depth strata and between Bermuda and other Caribbean upper MCEs (45–80 m), indicating that depth was an important driver of community structure at all localities. However, local and evolutionary factors (habitat and endemism) are likely the main factors shaping communities in isolated locations such as Bermuda. High fishing pressure is evident in both localities, as total biomass of apex predators was generally low, and thus may be driving a “refugia” scenario in Bermuda, as the abundance and biomass of macro-carnivores increased with depth and distance from the coast.  相似文献   

20.
Predator–prey interactions can play a significant role in shaping the structure of both terrestrial and marine communities. Sponges are major contributors to benthic community structure on temperate reefs and although several studies have investigated how abiotic processes control sponge distributions on these reefs, the role of predation is less clear. We investigated the relationship between sponge predators and the distribution of sponges on temperate reefs in the South Atlantic Bight (SAB), off Georgia, USA. We documented sponge species richness and abundance, spongivorous fish density, and examined the ability of 19 sponge species to chemically and structurally deter predation by fishes. We also conducted reciprocal transplant experiments to determine if predation by fishes contributes to the observed zonation of sponge species on these reefs. Our surveys revealed two distinct sponge assemblages: one characterized by amorphous and encrusting sponge morphotypes colonizing the vertical, rocky outcroppings (scarp sponge community), while the other consisted of pedunculate, digitate, and arborescent growth forms occurring on the sediment-laden reef top (plateau sponge community). Spongivorous fishes were more abundant on the scarp than the plateau and scarp sponges were found to be more effective than plateau sponges at chemically deterring generalist fishes. In contrast, plateau sponges were more reliant on structural defenses: a result consistent with the higher spicule content of their skeletons. Transplant experiments confirmed that predators prevent some plateau sponges from colonizing the scarp even though they possess structural defenses. Thus, predation appears to play a role in shaping sponge community structure on SAB reefs by restricting those species lacking adequate chemical defenses to habitats where there is a paucity of spongivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号