首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rational engineering of a protein to enable domain swapping requires an understanding of the sequence, structural and energetic factors that favor the domain‐swapped oligomer over the monomer. While it is known that the deletion of loops between β‐strands can promote domain swapping, the spliced sequence at the position of the loop deletion is thought to have a minimal role to play in such domain swapping. Here, two loop‐deletion mutants of the non‐domain‐swapping protein monellin, frame‐shifted by a single residue, were designed. Although the spliced sequence in the two mutants differed by only one residue at the site of the deletion, only one of them (YEIKG) promoted domain swapping. The mutant containing the spliced sequence YENKG was entirely monomeric. This new understanding that the domain swapping propensity after loop deletion may depend critically on the chemical composition of the shortened loop will facilitate the rational design of domain swapping.  相似文献   

2.
Huang Y  Cao H  Liu Z 《Proteins》2012,80(6):1610-1619
Since the proposal of three-dimensional (3D) domain swapping, many 3D domain-swapped structures have been reported. However, when compared with the vast protein structure space, it is still unclear whether 3D domain swapping is a general mechanism for protein assembly. Here, we investigated this possibility by constructing a dataset consisting of more than 500 domain-swapped structures. The domain-swapped structures were mapped into the protein structure space. We found that about 10% of protein folds and 5% of protein families contain domain-swapped structures. When comparing the domain-swapped structures in a family/superfamily, we found that proteins within a family/superfamily can swap in different ways. Interface analysis revealed that the hinge loops contributed more than half of the open interface in 70% of bona fide domain-swapped dimers, indicating that the hinge loops play an important role in stabilizing the domain-swapped conformations. Our study supports the suggestion that domain swapping is a general property of all proteins and will facilitate further understanding the mechanism of 3D domain swapping.  相似文献   

3.
The loops which connect or flank helices/sheets in protein structures are known to be functionally important. However, ironically they also belong to the part of protein whose structure is least accurately predicted. Here, a new method to isolate and analyze loop regions in protein structure is proposed using the spatial coordinates of the solved three‐dimensional structure. The extent of dispersion among points of successive amino acid residues in the Ramachandran map of protein region is utilized to calculate the Mean Separation between these points in the Ramachandran Plot (MSRP). Based on analysis of 2935 protein secondary structure regions obtained using DSSP software, spanning a range from 2 to 64 residues, taken from a set of 170 proteins, it is shown that helices (MSRP < 17) and strands (MSRP < 64) stand effectively demarcated from the loop regions (MSRP > 130). Analysis of 43 DNA binding and 98 ligand binding proteins revealed several loop regions with clear change in MSRP subsequent to binding. The population of such loops correlated with the magnitude of backbone displacement in the protein subsequent to binding. Can changes in MSRP quantify the temporal oscillations in dihedral angles among structured/unstructured regions in proteins? Molecular dynamics simulations (10 ns) revealed that deviations in MSRP among different snapshots in the trajectory were at least twofold higher for unstructured proteins in comparison with ordered proteins. The above results validate the use of MSRP parameter as a tool to identify and investigate functionally active loops and unstructured regions in protein structures. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
前期的相关研究发现mRNA二级结构中存在对蛋白质折叠速率的重要影响因素.而mRNA二级结构中普遍存在着各种复杂的环结构,这些环结构是否对蛋白质折叠速率也有重要的影响呢?不同的环结构对蛋白质折叠速率的影响是否相同呢?基于此想法,建立了一个包含mRNA内部环、发夹环、膨胀环和多分支环等环结构信息和相应蛋白质折叠速率的数据库.对于数据库中的每一个蛋白质,计算了mRNA二级结构中各种环结构碱基含量、配对碱基含量及单链碱基含量等参量,分析了各参量与相应蛋白质折叠速率的相关性.结果显示,各种环结构碱基含量与蛋白质折叠速率均呈极显著或显著正相关.说明mRNA环结构对蛋白质折叠速率有重要的影响.进一步,把蛋白质按照不同折叠类型或不同二级结构类型分组后,对每一组蛋白质重复上述的分析工作.结果表明,对不同类蛋白质,mRNA的各种环结构对其相应蛋白质折叠速率的影响存在着显著差异.上述研究将为进一步开展有关mRNA和蛋白质折叠速率的研究奠定理论基础.  相似文献   

5.
Structures of peptide fragments drawn from a protein can potentially occupy a vast conformational continuum. We co-ordinatize this conformational space with the help of geometric invariants and demonstrate that the peptide conformations of the currently available protein structures are heavily biased in favor of a finite number of conformational types or structural building blocks. This is achieved by representing a peptides' backbone structure with geometric invariants and then clustering peptides based on closeness of the geometric invariants. This results in 12,903 clusters, of which 2207 are made up of peptides drawn from functionally and/or structurally related proteins. These are termed "functional" clusters and provide clues about potential functional sites. The rest of the clusters, including the largest few, are made up of peptides drawn from unrelated proteins and are termed "structural" clusters. The largest clusters are of regular secondary structures such as helices and beta strands as well as of beta hairpins. Several categories of helices and strands are discovered based on geometric differences. In addition to the known classes of loops, we discover several new classes, which will be useful in protein structure modeling. Our algorithm does not require assignment of secondary structure and, therefore, overcomes the limitations in loop classification due to ambiguity in secondary structure assignment at loop boundaries.  相似文献   

6.
The crystal structure of Aspergillus fumigatus cyclophilin (Asp f 11) was solved by the multiwavelength anomalous dispersion method and was refined to a resolution of 1.85 A with R and R(free) values of 18.9% and 21.4%, respectively. Many cyclophilin structures have been solved to date, all showing the same monomeric conformation. In contrast, the structure of A. fumigatus cyclophilin reveals dimerization by 3D domain swapping and represents one of the first proteins with a swapped central domain. The domain-swapped element consists of two beta strands and a subsequent loop carrying a conserved tryptophan. The tryptophan binds into the active site, inactivating cis-trans isomerization. This might be a means of biological regulation. The two hinge loops leave the protein prone to misfolding. In this context, alternative forms of 3D domain swapping that can lead to N- or C-terminally swapped dimers, oligomers, and aggregates are discussed.  相似文献   

7.
The earliest events in protein folding involve the formation of simple loops. Observing the rates of loop closure under denaturing conditions can provide direct insight into the relative probability and sequence determinants for formation of loops of different sizes. The persistence of these initial contacts is equally important for efficient folding, so measurement of rates of loop breakage under denaturing conditions is also essential. We have used stopped-flow and continuous-flow methods to measure the rates of histidine-heme loop formation and breakage in the denatured state of iso-1-cytochrome c (in the presence of 3 M guanidine HCl). The data indicate that the mechanism for forming loops is a two-step process, the first step being the deprotonation of the histidine, and the second step being the binding of the histidine to the heme. This mechanism makes it possible to extract both the rate constants of formation, k(f), and breakage, k(b), of loops from the pH dependence of the observed rate constant, k(obs). To determine the dependence of k(f) and k(b) on loop size, we have carried out kinetic measurements for seven single surface histidine variants of iso-1-cytochrome c. A scaling factor (the dependence of k(f) on log[loop size]) of approximately -1.8 is observed for loop formation, similar to that observed in other systems. The magnitude of k(b) varies from 30 s(-1) to 300 s(-1), indicating that the stability of different loops varies considerably. The implications of the kinetics of loop formation and breakage in the denatured state for the mechanism of protein folding are discussed.  相似文献   

8.
Cytochrome c (cyt c) family proteins, such as horse cyt c, Pseudomonas aeruginosa cytochrome c 551 (PA cyt c 551), and Hydrogenobacter thermophilus cytochrome c 552 (HT cyt c 552), have been used as model proteins to study the relationship between the protein structure and folding process. We have shown in the past that horse cyt c forms oligomers by domain swapping its C-terminal helix, perturbing the Met–heme coordination significantly compared to the monomer. HT cyt c 552 forms dimers by domain swapping the region containing the N-terminal α-helix and heme, where the heme axial His and Met ligands belong to different protomers. Herein, we show that PA cyt c 551 also forms domain-swapped dimers by swapping the region containing the N-terminal α-helix and heme. The secondary structures of the M61A mutant of PA cyt c 551 were perturbed slightly and its oligomer formation ability decreased compared to that of the wild-type protein, showing that the stability of the protein secondary structures is important for domain swapping. The hinge loop of domain swapping for cyt c family proteins corresponded to the unstable region specified by hydrogen exchange NMR measurements for the monomer, although the swapping region differed among proteins. These results show that the unstable loop region has a tendency to become a hinge loop in domain-swapped proteins.  相似文献   

9.
A systematic survey of seven parallel alpha/beta barrel protein domains, based on exhaustive structural comparisons, reveals that a sizable proportion of the alpha beta loops in these proteins--20 out of a total of 49--belong to either one of two loop types previously described by Thornton and co-workers. Six loops are of the alpha beta 1 type, with one residue between the alpha-helix and beta-strand, and 13 are of the alpha beta 3 type, with three residues between the helix and the strand. Protein fragments embedding the identified loops, and termed alpha beta connections since they contain parts of the flanking helix and strand, have been analyzed in detail revealing that each type of connection has a distinct set of conserved structural features. The orientation of the beta-strand relative to the helix and loop portions is different owing to a very localized difference in backbone conformation. In alpha beta 1 connections, the chain enters the beta-strand via a residue adopting an extended conformation, while in alpha beta 3 it does so via a residue in a near alpha-helical conformation. Other conserved structural features include distinct patterns of side chain orientation relative to the beta-sheet surface and of main chain H-bonds in the loop and the beta-strand moieties. Significant differences also occur in packing interactions of conserved hydrophobic residues situated in the last turn of the helix. Yet the alpha-helix surface of both types of connections adopts similar orientations relative to the barrel sheet surface. Our results suggest furthermore that conserved hydrophobic residues along the sequence of the connections, may be correlated more with specific patterns of interactions made with neighboring helices and sheet strands than with helix/strand packing within the connection itself. A number of intriguing observations are also made on the distribution of the identified alpha beta 1 and alpha beta 3 loops within the alpha/beta-barrel motifs. They often occur adjacent to each other; alpha beta 3 loops invariably involve even numbered beta-strands, while alpha beta 1 loops involve preferentially odd beta-strands; all the analyzed proteins contain at least one alpha beta 3 loop in the first half of the eightfold alpha/beta barrel. Possible origins of all these observations, and their relevance to the stability and folding of parallel alpha/beta barrel motifs are discussed.  相似文献   

10.
3D domain swapping: a mechanism for oligomer assembly.   总被引:6,自引:23,他引:6       下载免费PDF全文
3D domain swapping is a mechanism for forming oligomeric proteins from their monomers. In 3D domain swapping, one domain of a monomeric protein is replaced by the same domain from an identical protein chain. The result is an intertwined dimer or higher oligomer, with one domain of each subunit replaced by the identical domain from another subunit. The swapped "domain" can be as large as an entire tertiary globular domain, or as small as an alpha-helix or a strand of a beta-sheet. Examples of 3D domain swapping are reviewed that suggest domain swapping can serve as a mechanism for functional interconversion between monomers and oligomers, and that domain swapping may serve as a mechanism for evolution of some oligomeric proteins. Domain-swapped proteins present examples of a single protein chain folding into two distinct structures.  相似文献   

11.
An important step in understanding how a protein folds is to determine those regions of the sequence that are critical to both its stability and its folding pathway. We chose phosphoribosyl anthranilate isomerase from Escherichia coli, which is a monomeric representative of the (beta alpha)8 barrel family of proteins, to construct a variant that carries an internal tandem duplication of the fifth beta alpha module. This (beta alpha)9 variant was enzymically active and therefore must have a wild-type (beta alpha)8 core. It had a choice a priori to fold to three different folding frames, which are distinguished by carrying the duplicated segment as an insert into one out of three different loops. Steady-state kinetic constants, the fluorescence properties of a crucial tryptophan residue, and limited proteolysis showed that the stable (beta alpha)9 variant carries the insertion between beta-strand 5 and alpha-helix 5. This preference can be explained by the important role of loops between alpha helices and beta strands in stabilizing the structure of the enzyme.  相似文献   

12.
Three-dimensional (3D) domain swapping creates a bond between two or more protein molecules as they exchange their identical domains. Since the term '3D domain swapping' was first used to describe the dimeric structure of diphtheria toxin, the database of domain-swapped proteins has greatly expanded. Analyses of the now about 40 structurally characterized cases of domain-swapped proteins reveal that most swapped domains are at either the N or C terminus and that the swapped domains are diverse in their primary and secondary structures. In addition to tabulating domain-swapped proteins, we describe in detail several examples of 3D domain swapping which show the swapping of more than one domain in a protein, the structural evidence for 3D domain swapping in amyloid proteins, and the flexibility of hinge loops. We also discuss the physiological relevance of 3D domain swapping and a possible mechanism for 3D domain swapping. The present state of knowledge leads us to suggest that 3D domain swapping can occur under appropriate conditions in any protein with an unconstrained terminus. As domains continue to swap, this review attempts not only a summary of the known domain-swapped proteins, but also a framework for understanding future findings of 3D domain swapping.  相似文献   

13.
Sham YY  Ma B  Tsai CJ  Nussinov R 《Proteins》2002,46(3):308-320
Temperature induced unfolding of Escherichia coli dihydrofolate reductase was carried out by using molecular dynamic simulations. The simulations show that the unfolding generally involves an initial end-to-end collapse of the adenine binding domain into partially extended loops, followed by a gradual breakdown of the remaining beta sheet core structure. The core, which consists of beta strands 5-7, was observed to be the most resistant to thermal unfolding. This region, which is made up of part of the N terminus domain and part of the large domain of the E. coli dihydrofolate reductase, may constitute the nucleation site for protein folding and may be important for the eventual formation of both domains. The unfolding of different domains at different stages of the unfolding process suggests that protein domains vary in stability and that the rate at which they unfold can affect the overall outcome of the unfolding pathway. This observation is compared with the recently proposed hierarchical folding model. Finally, the results of the simulation were found to be consistent with a previous experimental study (Frieden, Proc Natl Acad Sci USA 1990;87:4413-4416) which showed that the folding process of E. coli dihydrofolate reductase involves sequential formation of the substrate binding sites.  相似文献   

14.
Protein loops are essential structural elements that influence not only function but also protein stability and folding rates. It was recently reported that shortening a loop in the AcP protein may increase its native state conformational entropy. This effect on the entropy of the folded state can be much larger than the lower entropic penalty of ordering a shorter loop upon folding, and can therefore result in a more pronounced stabilization than predicted by polymer model for loop closure entropy. In this study, which aims at generalizing the effect of loop length shortening on native state dynamics, we use all‐atom molecular dynamics simulations to study how gradual shortening a very long or solvent‐exposed loop region in four different proteins can affect their stability. For two proteins, AcP and Ubc7, we show an increase in native state entropy in addition to the known effect of the loop length on the unfolded state entropy. However, for two permutants of SH3 domain, shortening a loop results only with the expected change in the entropy of the unfolded state, which nicely reproduces the observed experimental stabilization. Here, we show that an increase in the native state entropy following loop shortening is not unique to the AcP protein, yet nor is it a general rule that applies to all proteins following the truncation of any loop. This modification of the loop length on the folded state and on the unfolded state may result with a greater effect on protein stability. Proteins 2015; 83:2137–2146. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
St-Pierre JF  Mousseau N 《Proteins》2012,80(7):1883-1894
We present an adaptation of the ART-nouveau energy surface sampling method to the problem of loop structure prediction. This method, previously used to study protein folding pathways and peptide aggregation, is well suited to the problem of sampling the conformation space of large loops by targeting probable folding pathways instead of sampling exhaustively that space. The number of sampled conformations needed by ART nouveau to find the global energy minimum for a loop was found to scale linearly with the sequence length of the loop for loops between 8 and about 20 amino acids. Considering the linear scaling dependence of the computation cost on the loop sequence length for sampling new conformations, we estimate the total computational cost of sampling larger loops to scale quadratically compared to the exponential scaling of exhaustive search methods.  相似文献   

16.
Abstract

We show that loops of close contacts involving hydrophobic residues are important in protein folding. Contrary to Berezovsky and Trifonov (J. Biomol. Struct. Dyn. 20, 5–6, 2002) the loops important in protein folding usually are much larger in size than 23–31 residues, being instead comparable to the size of the protein for single domain proteins. Additionally what is important are not single loop contacts, but a highly interconnected network of such loop contacts, which provides extra stability to a protein fold and which leads to their conservation in evolution.  相似文献   

17.
The sorting nexins (SNXs) constitute a large group of PX domain-containing proteins that play critical roles in protein trafficking. We report here the solution structure of human sorting nexin 22 (SNX22). Although SNX22 has <30% sequence identity with any PX domain protein of known structure, it was found to contain the alpha/beta fold and compact structural core characteristic of PX domains. Analysis of the backbone dynamics of SNX22 by NMR relaxation measurements revealed that the two walls of the ligand binding cleft undergo internal motions: on the picosecond timescale for the beta1/beta2 loop and on the micro- to millisecond timescale for the loop between the polyproline motif and helix alpha2. Regions of the SNX22 structure that differ from those of other PX domains include the loop connecting strands beta1 and beta2 and the loop connecting helices alpha1 and alpha2, which appear to be more mobile than corresponding loops in other known structures. The interaction of dibutanoyl-phosphatidylinositol-3-phosphate (dibutanoyl-PtdIns(3)P) with SNX22 was investigated by an NMR titration experiment, which identified the binding site in a basic cleft and indicated that ligand binding leads only to a local structural rearrangement as has been found with other PX domains. Because motions in the loops are damped out when dibutanoyl-PtdIns(3)P binds, entropic effects could contribute to the lower affinity of SNX22 for this ligand compared to other PX domains.  相似文献   

18.
We propose a new way to characterize protein folding transition states by (1) insertion of one or more residues into an unstructured protein loop, (2) measurement of the effect on protein folding kinetics and thermodynamics, and (3) analysis of the results in terms of a rate-equilibrium free energy relationship, alpha(Loop). alpha(Loop) reports on the fraction of molecules that form the perturbed loop in the transition state. Interpretation of the changes in equilibrium free energy using standard polymer theory can help detect residual structure in the unfolded state. We illustrate our approach with data for the model proteins CI2 and the alpha spectrin SH3 domain.  相似文献   

19.
Bacteria employ the SecA motor protein to push unfolded proteins across the cytoplasmic membrane through the SecY protein‐conducting channel complex. The crystal structure of the SecA–SecY complex shows that the intramolecular regulator of ATPase1 (IRA1) SecA domain, made up of two helices and the loop between them, is partly inserted into the SecY conducting channel, with the loop between the helices as the main functional region. A computational analysis suggested that the entire IRA1 domain is structurally autonomous, and was the basis to synthesize peptide analogs of the SecA IRA1 loop region, to the aim of investigating its conformational preferences. Our study indicates that the loop region populates a predominantly flexible state, even in the presence of structuring agent. This provides indirect evidence that the SecA loop–SecY receptor docking involves loop‐mediated opening of the SecY channel. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Three-dimensional (3D) domain swapping is a mechanism to form protein oligomers. It has been proposed that several factors, including proline residues in the hinge region, may affect the occurrence of 3D domain swapping. Although introducing prolines into the hinge region has been found to promote domain swapping for some proteins, the opposite effect has also been observed in several studies. So far, how proline affects 3D domain swapping remains elusive. In this work, based on a large set of 3D domain-swapped structures, we performed a systematic analysis to explore the correlation between the presence of proline in the hinge region and the occurrence of 3D domain swapping. We further analyzed the conformations of proline and pre-proline residues to investigate the roles of proline in 3D domain swapping. We found that more than 40% of the domain-swapped structures contained proline residues in the hinge region. Unexpectedly, conformational transitions of proline residues were rarely observed upon domain swapping. Our analyses showed that hinge regions containing proline residues preferred more extended conformations, which may be beneficial for the occurrence of domain swapping by facilitating opening of the exchanged segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号