首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have determined the functions of the enzymes encoded by the lnpB, lnpC, and lnpD genes, located downstream of the lacto-N-biose phosphorylase gene (lnpA), in Bifidobacterium longum JCM1217. The lnpB gene encodes a novel kinase, N-acetylhexosamine 1-kinase, which produces N-acetylhexosamine 1-phosphate; the lnpC gene encodes UDP-glucose hexose 1-phosphate uridylyltransferase, which is also active on N-acetylhexosamine 1-phosphate; and the lnpD gene encodes a UDP-glucose 4-epimerase, which is active on both UDP-galactose and UDP-N-acetylgalactosamine. These results suggest that the gene operon lnpABCD encodes a previously undescribed lacto-N-biose I/galacto-N-biose metabolic pathway that is involved in the intestinal colonization of bifidobacteria and that utilizes lacto-N-biose I from human milk oligosaccharides or galacto-N-biose from mucin sugars.  相似文献   

2.
A beta-1,3-galactosyl-N-acetylhexosamine phosphorylase (GalGlyNAcP) homolog gene was cloned from Vibrio vulnificus CMCP6. In synthetic reactions, the recombinant enzyme acted only with GlcNAc and GalNAc as acceptors in the presence of alpha-d-galactose-1-phosphate as a donor to form lacto-N-biose I (LNB) (Galbeta1 --> 3GlcNAc) and galacto-N-biose (GNB) (Galbeta1 --> 3GalNAc), respectively. GlcNAc was a much better acceptor than GalNAc. The enzyme also phosphorolysed LNB faster than it phosphorolysed GNB, and the k(cat)/K(m) for LNB was approximately 60 times higher than the k(cat)/K(m) for GNB. This result indicated that the enzyme was remarkably different from GalGlyNAcP from Bifidobacterium longum, which has similar activities with LNB and GNB, and GalGlyNAcP from Clostridium perfringens, which is a GNB-specific enzyme. The enzyme is the first LNB-specific enzyme that has been found and was designated lacto-N-biose I phosphorylase. The discovery of an LNB-specific GalGlyNAcP resulted in recategorization of bifidobacterial GalGlyNAcPs as galacto-N-biose/lacto-N-biose I phosphorylases.  相似文献   

3.
A one-pot enzymatic reaction to produce lacto-N-biose I (LNB), which is supposed to represent the bifidus factor in human milk oligosaccharides, was demonstrated. Approximately 500 mM of LNB was generated in 10-liter of reaction mixture initially containing 660 mM of sucrose and 600 mM of GlcNAc by the concurrent actions of four enzymes, sucrose phosphorylase, UDP-glucose-hexose-1-phospate uridylyltransferase, UDP-glucose 4-epimerase, and lacto-N-biose phosphorylase, in the presence of UDP-Glc and phosphate, indicating a reaction yield of 83%. LNB was isolated from the mixture by crystallization after yeast treatment. Finally, 1.4 kg of LNB of 99.6% purity was recovered after recrystallization.  相似文献   

4.
2-Acetamido-2-deoxy-D-galactose (GalNAc) is a common monosaccharide found in biologically functional sugar chains, but its availability is often limited due to the lack of abundant natural sources. In order to produce GalNAc from abundantly available sugars, 2-acetamido-2-deoxy-D-glucose (GlcNAc) was converted to GalNAc by a one-pot reaction using three enzymes involved in the galacto-N-biose/lacto-N-biose I pathway of bifidobacteria. Starting the reaction with 600 mM GlcNAc, 170 mM GalNAc was produced at equilibrium in the presence of catalytic amounts of ATP and UDP-Glc under optimized conditions. GalNAc was separated from GlcNAc using water-eluting cation-exchange chromatography with a commonly available cation-exchange resin.  相似文献   

5.
Symbiotic nitrogen-fixing bacteria Rhizobium leguminosarum by. viciae VF39 secrete an acidic heteropolysaccharide, the biosynthesis of which involves the stage of polyprenyl diphosphate octasaccharide formation, with its carbohydrate fragment corresponding to the repeating polymer unit. The amino acid analysis of the product of the pssA gene, we have earlier identified, showed its homology to bacterial polyisoprenyl phosphate hexose 1-phosphate transferases catalyzing the formation of phosphodiester bonds between polyprenyl phosphates and hexose 1-phosphates, whose donors are nucleotide sugars. The immunoblotting demonstrated that Rhizobium cells synthesize a protein with a molecular mass of 25 kDa, which implies the translation of the open reading frame occurring from the second initiating codon followed by the protein processing. It was shown that PssA is an integral membrane-bound protein involved in glucose 1-phosphate transfer from UDP-glucose to polyprenyl phosphate to form polyprenyl diphosphate glucose. These results suggest that the pssA gene encodes UDP-glucose:polyprenyl phosphate-glucosyl phosphotransferase.  相似文献   

6.
We report the functional characterization of the galF gene of strain VW187 ( Escherichia coli O7:K1), which encodes a polypeptide displaying structural features common to bacterial UDP-glucose pyrophosphorylases, including the E. coli GalU protein. These enzymes catalyse a reversible reaction converting UTP and glucose-1-phosphate into UDP-glucose and PPi. We show that, although the GalF protein is expressed in vivo , GalF-expressing plasmids cannot complement the phenotype of a galU mutant and extracts from this mutant which only produces GalF are enzymatically inactive. In contrast, the presence of GalU and GalF proteins in the same cell-free extract caused a significant reduction in the rate of pyrophosphorolysis (conversion of UDP-glucose into glucose-1-phosphate) but no significant effect on the kinetics of synthesis of UDP-glucose. The presence of GalF also increased the thermal stability of the enzyme in vitro. The effect of GalF in the biochemical properties of the UDP-glucose pyrophosphorylase required the co-synthesis of GalF and GalU, suggesting that they could interact as components of the oligomeric enzyme. The physical interaction of GalU and GalF was demonstrated in vivo by the co-expression of both proteins as fusion products using a yeast two-hybrid system. Furthermore, using a pair of galF  +/ galU + and galF/galU  + isogenic strains, we demonstrated that the presence of GalF is associated with an increased concentration of intracellular UDP-glucose as well as with an enhancement of the thermal stability of the UDP-glucose pyrophosphorylase in vivo . We propose that GalF is a non-catalytic subunit of the UDP-glucose pyrophosphorylase modulating the enzyme activity to increase the formation of UDP-glucose, and this function is important for bacterial adaptation to conditions of stress.  相似文献   

7.
Symbiotic nitrogen-fixing bacteria Rhizobium leguminosarum bv. viciae VF39 secrete an acidic heteropolysaccharide, the biosynthesis of which involves the stage of polyprenyl diphosphate octasaccharide formation with its carbohydrate fragment corresponding to the repeating polymer unit. The amino acid analysis of the product of the pssA gene, we have earlier identified, showed its homology to bacterial polyisoprenyl phosphate hexose 1-phosphate transferases catalyzing the formation of phosphodiester bonds between polyprenyl phosphates and hexose 1-phosphates, whose donors are nucleotide sugars. The immunoblotting demonstrated that Rhizobium cells synthesize a protein with a molecular mass of 25 kDa, which implies the translation of the open reading frame occurring from the second initiating codon followed by the protein processing. It was shown that PssA is an integral membrane-bound protein involved in glucose 1-phosphate transfer from UDP-glucose to polyprenyl phosphate to form polyprenyl diphosphate glucose. These results suggest that the pssA gene encodes UDP-glucose:polyprenyl phosphate-glucosyl phosphotransferase.  相似文献   

8.
A new selection system based on galactose as selective agent and a UDP-glucose:galactose-1-phosphate uridyltransferase gene as selective gene is presented. A broad range of plant species, including agronomically important crops such as maize and rice, is sensitive to low dosages of galactose. The toxicity of galactose is believed to be due to accumulation of galactose-1-phosphate, generated by endogenous galactokinase after uptake. Here, it is demonstrated that this toxicity can be sufficiently alleviated by the Agrobacterium tumefaciens-mediated introduction of the E. coli UDP-glucose:galactose-1-phosphate uridyltransferase (galT) gene, driven by a 35S-promoter, to allow transgenic shoots of potato and oil seed rape to regenerate on galactose containing selection media, resulting in high transformation frequencies (up to 35% for potato). Analysis of genomic DNA and UDP-glucose:galactose-1-phosphate uridyltransferase activity in randomly selected potato transformants confirmed the presence and active expression of the galT gene. The agricultural performance of transgenic potatoes was evaluated by monitoring the phenotype and tuber yield for two generations and these characters were found to be indistinguishable from non-transgenic controls. Thus, the galactose selection system provides a new alternative being distinct from conventional antibiotic and herbicide selection systems as well as so-called positive selection systems where the selective agent has a beneficial effect.  相似文献   

9.
The synthesis of periplasmic beta(1-2)glucan is required for crown gall tumor formation by Agrobacterium tumefaciens and for effective nodulation of alfalfa by Rhizobium meliloti. The exoC (pscA) gene is required for this synthesis by both bacteria as well as for the synthesis of capsular polysaccharide and normal lipopolysaccharide. We tested the possibility that the pleiotropic ExoC phenotype is due to a defect in the synthesis of an intermediate common to several polysaccharide biosynthetic pathways. Cytoplasmic extracts from wild-type A. tumefaciens and from exoC mutants of A. tumefaciens containing a cloned wild-type exoC gene synthesized in vitro UDP-glucose from glucose, glucose 1-phosphate, and glucose 6-phosphate. Extracts from exoC mutants synthesized UDP-glucose from glucose 1-phosphate but not from glucose or glucose 6-phosphate. Membranes from exoC mutant cells synthesized beta(1-2)glucan in vitro when exogenous UDP-glucose was added and contained the 235-kilodalton protein, which has been shown to carry out this synthesis in wild-type cells. We conclude that the inability of exoC mutants to synthesize beta(1-2)glucan is due to a deficiency in the activity of the enzyme phosphoglucomutase (EC 2.7.5.1), which in wild-type bacteria converts glucose 6-phosphate to glucose 1-phosphate, an intermediate in the synthesis of UDP-glucose. This interpretation can account for all of the deficiencies in polysaccharide synthesis which have been observed in these mutants.  相似文献   

10.
Bifidobacteria have many beneficial effects for human health. The gastrointestinal tract, where natural colonization of bifidobacteria occurs, is an environment poor in nutrition and oxygen. Therefore, bifidobacteria have many unique glycosidases, transporters, and metabolic enzymes for sugar fermentation to utilize diverse carbohydrates that are not absorbed by host humans and animals. They have a unique, effective central fermentative pathway called bifid shunt. Recently, a novel metabolic pathway that utilizes both human milk oligosaccharides and host glycoconjugates was found. The galacto-N-biose/lacto-N-biose I metabolic pathway plays a key role in colonization in the infant gastrointestinal tract. These pathways involve many unique enzymes and proteins. This review focuses on their molecular mechanisms, as revealed by biochemical and crystallographic studies.  相似文献   

11.
Recently, a gene cluster involving a phosphorylase specific for lacto-N-biose I (LNB; Galbeta1-3GlcNAc) and galacto-N-biose (GNB; Galbeta1-3GalNAc) has been found in Bifidobacterium longum. We showed that the solute-binding protein of a putative ATP-binding cassette-type transporter encoded in the cluster crystallizes only in the presence of LNB or GNB, and therefore we named it GNB/LNB-binding protein (GL-BP). Isothermal titration calorimetry measurements revealed that GL-BP specifically binds LNB and GNB with K(d) values of 0.087 and 0.010 microm, respectively, and the binding process is enthalpy-driven. The crystal structures of GL-BP complexed with LNB, GNB, and lacto-N-tetraose (Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc) were determined. The interactions between GL-BP and the disaccharide ligands mainly occurred through water-mediated hydrogen bonds. In comparison with the LNB complex, one additional hydrogen bond was found in the GNB complex. These structural characteristics of ligand binding are in agreement with the thermodynamic properties. The overall structure of GL-BP was similar to that of maltose-binding protein; however, the mode of ligand binding and the thermodynamic properties of these proteins were significantly different.  相似文献   

12.
UDP-glucose pyrophosphorylase synthesizes UDP-glucose from UTP and glucose 1-phosphate and exists in almost all species. Most bacteria possess a GalU-type UDP-glucose pyrophosphorylase, whereas many cyanobacteria species do not. In certain cyanobacteria, UDP-glucose is used as a substrate for synthesis of exopolysaccharide cellulose in spite of the absence of GalU-type UDP-glucose pyrophosphorylase. Therefore, there should be an uncharacterized UDP-glucose pyrophosphorylase in cyanobacteria. Here, we show that all cyanobacteria possess a non-GalU-type bacterial UDP-glucose pyrophosphorylase, i.e., CugP, a novel family in the nucleotide triphosphate transferase superfamily. The expressed recombinant Synechocystis sp. strain PCC 6803 CugP had pyrophosphorylase activity that was highly specific for UTP and glucose 1-phosphate. The fact that the CugP gene cannot be deleted completely in Synechocystis sp. PCC 6803 suggests its central role as the substrate supplier for galactolipid synthesis. Galactolipids are major constituents of the photosynthetic thylakoid membrane and important for photosynthetic activity. Based on phylogenetic analysis, this CugP-type UDP-glucose pyrophosphorylase may have recently been horizontally transferred to certain noncyanobacteria.  相似文献   

13.
Breast-fed infants often have intestinal microbiota dominated by bifidobacteria in contrast to formula-fed infants. We found that several bifidobacterial strains produce a lacto-N-biosidase that liberates lacto-N-biose I (Galbeta1,3GlcNAc; type 1 chain) from lacto-N-tetraose (Galbeta1,3GlcNAcbeta1,3Galbeta1,4Glc), which is a major component of human milk oligosaccharides, and subsequently isolated the gene from Bifidobacterium bifidum JCM1254. The gene, designated lnbB, was predicted to encode a protein of 1,112 amino acid residues containing a signal peptide and a membrane anchor at the N and C termini, respectively, and to possess the domain of glycoside hydrolase family 20, carbohydrate binding module 32, and bacterial immunoglobulin-like domain 2, in that order, from the N terminus. The recombinant enzyme showed substrate preference for the unmodified beta-linked lacto-N-biose I structure. Lacto-N-biosidase activity was found in several bifidobacterial strains, but not in the other enteric bacteria, such as clostridia, bacteroides, and lactobacilli, under the tested conditions. These results, together with our recent finding of a novel metabolic pathway specific for lacto-N-biose I in bifidobacterial cells, suggest that some of the bifidobacterial strains are highly adapted for utilizing human milk oligosaccharides with a type 1 chain.  相似文献   

14.
Rat adipose tissue glycogen synthase has been kinetically characterized. The classical D form has an apparent Km for UDP-glucose of 0.7 mM and 0.4 mM in the absence and presence of glucose 6-phosphate, respectively. The apparent Ka for glucose 6-phosphate is 0.6 mM. The effect of glucose 6-phosphate on the D form is to enhance the Vmax 7-fold. The I form is also affected by glucose 6-phosphate (Ka, 0.025 mM) but the Vmax is increased only by 20%; apparent Km values for UDP-glucose are 0.4 mM and 0.045 mM in the absence and presence of glucose 6-phosphate, respectively. In addition, two new kinetically distinguishable forms have been observed. The first, designated glycogen synthase Q, arises from an Mg2+ATP-dependent deactivation of the I form. The apparent Km values of glycogen synthase Q for UDP-glucose are identical with those of the I form; however, the apparent Ka for glucose 6-phosphate (0.2 mM) is 8-fold higher than that for the I form and one-third that for the D form. Preparations from fasted or diabetic rats contain a form of glycogen synthase, designated glycogen synthase X, that has a much lower affinity for glucose 6-phosphate than the D form (apparent Ka, 3 mM); the apparent Km values for UDP-glucose are similar to those of the D form (0.7 mM and 0.3 mM in the absence and presence of glucose 6-phosphate, respectively). In preparations from fasted rats a stepwise Mg2+-dependent conversion was demonstrated of synthase X to D to Q to I; this sequential conversion was reversed on incubation with Mg2+ATP. In preparations from fed rats, synthase Q could be generated either by limited activation (from the D form) or, after conversion to the I form, by deactivation with Mg2+ATP. However, even prolonged incubation with Mg2+ATP failed to generate the D (or X) form.  相似文献   

15.
There are several differences between monocotyledonous and dicotyledonous plants. The sensitivity towards added galactose which inhibits auxin-induced coleoptile elongation but not stem elongation is one of the conspicuous differences between the two types of plants. InAvena coleoptile segments, galactose, probably as galactose-1-phosphate, inhibits the formation of UDP-glucose from glucose-l-phosphate. The inhibition of UDP-glucose formation due to galactose is not found inPisum epicotyl segments. InAvena UTP: α-D-glucose-1-phosphate uridyltransferase (EC 2.7.7.9) which catalyzes the reaction from glucose-1-phosphate to UDP-glucose seems to be inhibited by galactose-1-phosphate.  相似文献   

16.
The concentration of cytoplasmic free pyrophosphate was calculated in freeze-clamped livers of rats from the measured concentration of reactants and K(eq.) of the UDP-glucose pyrophosphorylase reaction (UDP-alpha-d-glucose 1-phosphate uridylyltransferase, EC 2.7.7.9). The K(eq.) of the UDP-glucose pyrophosphorylase reaction was redetermined at 38 degrees C, pH7.0, I=0.25mol/l and free [Mg(2+)]=1mm, and was 4.55 in the direction of glucose 1-phosphate formation. The activity of UDP-glucose pyrophosphorylase in rat liver was between 46 and 58mumol of glucose 1-phosphate formed/min per g fresh wt. in the four dietary conditions studied. A fluorimetric assay with enzymic cycling was developed for the measurement of glucose 1-phosphate in HClO(4) extracts of rat liver. The calculated free cytoplasmic PP(i) concentration in nmol/g fresh wt. of liver was 2.3+/-0.3 in starved, 3.8+/-0.4 in fed, 4.9+/-0.6 in meal-fed and 5.2+/-0.4 in sucrose-re-fed animals. These values agree well with recently determined direct measurements of total PP(i) in rat liver and suggest that there is not a large amount of bound or metabolically inert PP(i) in rat liver. The cytoplasmic [ATP]/[AMP][PP(i)] ratio is 10(3) times the cytoplasmic [ATP]/[ADP][P(i)] ratio and varies differently with dietary state. The reaction PP(i)+H(2)O-->2P(i) catalysed by inorganic pyrophosphatase (EC 3.6.1.1) does not attain near-equilibrium in vivo. PP(i) should be considered as one of the group of small inorganic ions which is metabolically active and capable of exerting a controlling function in a number of important metabolic reactions.  相似文献   

17.
The ugpGgene, which codes for a UDP-glucose pyrophosphorylase (UGP) (or glucose-1-phosphate uridylyltransferase; EC 2.7.7.9) in Sphingomonas paucimobilis ATCC 31461, was cloned and sequenced. This industrial strain produces the exopolysaccharide gellan, a new commercial gelling agent, and the ugpG gene may convert glucose-1-phosphate into UDP-glucose in the gellan biosynthetic pathway. The ugpG gene is capable of restoring the capacity of an Escherichia coli galU mutant to grow on galactose by functional complementation of its deficiency for UDP-glucose pyrophosphorylase activity. As expected, the predicted gene product shows strong homology to UDP-glucose pyrophosphorylases from several bacterial species. The N-terminal region of UgpG exhibits the motif GXGTRXLPXTK, which is highly conserved among bacterial XDP-sugar pyrophosphorylases, and a lysine residue (K(192)) is located within a VEKP motif predicted to be essential for substrate binding or catalysis. UgpG was purified to homogeneity as a heterologous fusion protein from crude cell extracts prepared from IPTG-induced cells of E. coli, using affinity chromatography. Under denaturing conditions, the fusion protein S-UgpG-His(6) migrated with an estimated molecular mass of 36 kDa [corresponding to the predicted molecular mass of native UgpG (31.2 kDa) plus 5 kDa for the S and histidine tags). Kinetic analysis of UgpG in the reverse reaction (pyrophosphorolysis) showed a typical Michaelis-Menten substrate saturation pattern. The apparent K(m) and V(max) values estimated for UDP-glucose were 7.5 microM and 1275 micromol/min/g.  相似文献   

18.
The effect of exogenously applied galactose on the cell wall polysaccharide synthesis and UDP-sugar levels in oat ( Avena sativa L. cv. Victory I) coleoptile segments was studied to clarify the mechanism of inhibition of IAA-induced cell elongation by galactose, and the following results were obtained: (1) The inhibition of IAA-induced cell elongation by galactose became apparent after a 2 h-lag, while the lag was shortened to 1 h when galactose was added to the segments after more than 1 h of IAA application. (2) Galactose inhibited the [14C]-glucose incorporation into cellulosic and non-cellulosic fractions of the cell wall and the increase in net polysaccharide content in the fractions during long-term incubation. (3) The dominant sugar nucleotide in oat coleoptiles was UDP-glucose (2.1 nmol segment−1). Galactose application caused a remarkable decrease in the UDP-glucose level, accompanying a strong accumulation of galactose-1-phosphate and UDP-galactose. (4) Galactose-1-phosphate competitively inhibited the UTP: a- d -glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) activity of the crude enzyme preparation from oat coleoptiles. From these results we conclude that galactose inhibits the IAA-induced cell elongation by inhibiting the formation of UDP-glucose, which is a key intermediate of cell wall polysaccharide synthesis.  相似文献   

19.
Comparative time-course studies of glycogen synthesis from glucose 6-phosphate, glucose 1-phosphate and UDP-glucose show that glucose 1-phosphate forms glycogen at an initial rate faster than that obtained with glucose 6-phosphate and UDP-glucose. After 5min. the rates from glucose monophosphates are considerably slower. 2,4-Dinitrophenol decreases glycogen synthesis from both glucose monophosphates, whereas arsenate and EDTA increase glycogen synthesis from glucose 1-phosphate and inhibit the reaction from glucose 6-phosphate, galactose and galactose 1-phosphate. Mitochondria-free pigeon liver cytoplasmic fraction forms less glycogen from glucose monophosphates than does the whole homogenate. 2-Deoxyglucose 6-phosphate inhibits glycogen synthesis from glucose monophosphates. Glycogen formation from UDP-glucose is relatively unaffected by dinitrophenol, by arsenate, by EDTA, by 2-deoxyglucose 6-phosphate and by the removal of mitochondria from the whole homogenate.  相似文献   

20.
Cell wall polysaccharides are synthesized from sugar-nucleotides, e.g. uridine 5'-diphosphoglucose (UDP-Glc), but the metabolic pathways that produce sugar-nucleotides in plants remain controversial. To help distinguish between potentially 'competing' pathways, we have developed a novel dual-radiolabelling strategy that generates a remarkably wide range of 3H:14C ratios among the various proposed precursors. Arabidopsis cell cultures were fed traces of D-[1-(3)H]galactose and a 14C-labelled hexose (e.g. D-[U-14C]fructose) in the presence of an approximately 10(4)-fold excess of non-radioactive carbon source. Six interconvertible 'core intermediates', galactose 1-phosphate <--> UDP-galactose <--> UDP-glucose <--> glucose 1-phosphate <--> glucose 6-phosphate <--> fructose 6-phosphate, showed a large decrease in 3H:14C ratio along this pathway from left to right. The isotope ratio of a polysaccharide-bound sugar residue indicates from which of the six core intermediates its sugar-nucleotide donor substrate stemmed. Polymer-bound galacturonate, xylose, arabinose and apiose residues (all produced via UDP-glucuronate) stemmed from UDP-glucose, not glucose 6-phosphate; therefore, UDP-glucuronate arose predominantly by the action of UDP-glucose dehydrogenase rather than through the postulated competing pathway leading from glucose 6-phosphate via myo-inositol. The data also indicate that UDP-galacturonate was not formed by a hypothetical UDP-galactose dehydrogenase. Polymer-bound mannose and fucose residues stemmed from fructose 6-phosphate, not glucose 1-phosphate; therefore GDP-mannose (guanosine 5'-diphosphomannose) arose predominantly by a pathway involving phosphomannose isomerase (via mannose phosphates) rather than through a postulated competing pathway involving GDP-glucose epimerization. Curiously, the ribose residues of RNA did not stem directly from hexose 6-phosphates, but predominantly from UDP-glucose; an alternative to the textbook pentose-phosphate pathway therefore predominates in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号