首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Heading date determines the seasonal and regional adaptation of rice(Oryza sativa L.) varieties and is mainly controlled by photoperiod sensitivity(PS). The core heading date genes Hd1, Ghd7, DTH8, and PRR37 act synergistically in regulating the PS. In this study, we systematically analyze the heading date,PS, and agronomic traits of eight homozygous lines with various combinations of Hd1, Ghd7, and DTH8 alleles in the prr37 background under long-day(LD) and short-day(SD) conditions, respectivel...  相似文献   

3.

Key message

A Brd2 allele suppresses heading date by altering the expression of heading date regulators such as OsMADS50 , and also negatively regulates chlorophyll biosynthesis.

Abstract

Heading date and plant height are important determinants of yield in rice (Oryza sativa L.). In this study, we characterized a late heading, dwarf mutant known as lhdd10 selected following ethyl methane sulfonate (EMS)-treatment of ssp. indica cultivar 93-11. lhdd10 showed late heading, dwarfness and slightly darker-green leaves than wild-type 93-11 under long-day and short-day conditions. We isolated lhdd10 by map-based cloning; it encoded a putative FAD-linked oxidoreductase protein (a brassinosteroid biosynthetic gene) that localized to the nucleus. LHDD10 was constitutively expressed in various tissues, but more so in shoot apices and panicles. Our data showed that lhdd10 influences heading date by controlling the expression of heading date regulators, such as OsMADS50 in both LD and SD conditions. lhdd10 also negatively regulated expression of chlorophyll biosynthetic genes to reduce the chlorophyll content. Our data indicated that BRs play important roles in regulating heading date and chlorophyll biosynthesis. This work provides material that will allow study of how BRs regulate heading date in rice.
  相似文献   

4.
5.
Detection of quantitative trait loci (QTLs) is dependent on the materials used in the analysis, as different combinations of parental materials may lead to different outcomes in QTLs for the same trait. On the other hand, an extreme phenotype associated with a given trait implies the potential involvement of a particular allele in various allelic interactions. A genetic factor associated with such an extreme phenotype may frequently be identified from various genetic populations consisting of different parental combinations. In this study, we attempted to uncover the genetic factor associated with extremely early heading date in rice, using various F2 populations. Heading date in rice has been characterized by at least 19 QTLs, from which 12 genes have been identified. A58, a rice strain with an extremely early heading date, is adapted to Hokkaido, the northernmost limit of rice cultivation. Six F2 populations derived from crosses of A58 with six other strains displayed a range of heading dates. Genotyping using 19 QTL markers indicated that the A58 allele of the Ghd7 locus was present in most F2 individuals exhibiting extremely early heading dates. This analysis also demonstrated that when the wild-type Ehd1 allele was present, the Ghd7 allele from A58 accelerated floral induction. The results of this study demonstrate that assorted F2 populations are valuable materials for comprehensive genotyping to explore major genetic factors for extreme phenotypes, and that this methodology is broadly applicable to other unknown traits.  相似文献   

6.

Key message

A minor QTL for heading date located on the long arm of rice chromosome 1 was delimitated to a 95.0-kb region using near isogenic lines with sequential segregating regions.

Abstract

Heading date and grain yield are two key factors determining the commercial potential of a rice variety. In this study, rice populations with sequential segregating regions were developed and used for mapping a minor QTL for heading date, qHd1. A total of 18 populations in six advanced generations through BC2F6 to BC2F11 were derived from a single BC2F3 plant of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The QTL was delimitated to a 95.0-kb region flanked by RM12102 and RM12108 in the terminal region of the long arm of chromosome 1. Results also showed that qHd1 was not involved in the photoperiodic response, having an additive effect ranging from 2.4 d to 2.9 d observed in near isogenic lines grown in the paddy field and under the controlled conditions of either short day or long day. The QTL had pleiotropic effects on yield traits, with the ZS97 allele delaying heading and increasing the number of spikelets per panicle, the number of grains per panicle and grain yield per plant. The candidate region contains ten annotated genes including two genes with functional information related to the control of heading date. These results lay a foundation for the cloning of qHd1. In addition, this kind of minor QTLs could be of great significance in rice breeding for allowing minor adjustment of heading date and yield traits.  相似文献   

7.
8.
Both heading date and plant height are important traits related to grain yield in rice. In this study, a recombinant inbred lines (RILs) population was used to map quantitative trait loci (QTLs) for both traits under 3 long-day (LD) environments and 1 short-day (SD) environment. A total of eight QTLs for heading date and three QTLs for plant height were detected by composite interval mapping under LD conditions. Additional one QTL for heading date and three QTLs for plant height were identified by Two-QTL model under LD conditions. Among them, major QTLs qHd7.1, qHd7.2 and qHd8 for heading date, and qPh1 and qPh7.1 for plant height were commonly detected. qHd7.1 and qHd7.2 were mapped to small regions of less than 1 cM. Genome position comparison of previously cloned genes with QTLs detected in this study revealed that qHd5 and qPh3.1 were two novel QTLs. The alleles of these QTLs increasing trait values were dispersed in both parents, which well explained the transgressive segregation observed in this population. In addition, the interaction between qHd7.1 and qHd8 was detected under all LD conditions. Multiple-QTL model analysis revealed that all QTLs and their interactions explained over 80% of heading date variation and 50% of plant height variation. Two heading date QTLs were detected under SD condition. Of them, qHd10 were commonly identified under LD condition. The difference in QTL detection between LD and SD conditions indicated most heading date QTLs are sensitive to photoperiod. These findings will benefit breeding design for heading date and plant height in rice.  相似文献   

9.
10.
11.
FLOWERING LOCUS T (FT), a florigen in Arabidopsis, plays critical roles in floral transition. Among 13 FT-like members in rice, OsFTL2 (Hd3a) and OsFTL3 (RFT1), two rice homologues of FT, have been well characterized to act as florigens to induce flowering under short-day (SD) and long-day (LD) conditions, respectively, but the functions of other rice FT-like members remain largely unclear. Here, we show that OsFTL12 plays an antagonistic function against Hd3a and RFT1 to modulate the heading date and plant architecture in rice. Unlike Hd3a and RFT1, OsFTL12 is not regulated by daylength and highly expressed in both SD and LD conditions, and delays the heading date under either SD or LD conditions. We further demonstrate that OsFTL12 interacts with GF14b and OsFD1, two key components of the florigen activation complex (FAC), to form the florigen repression complex (FRC) by competing with Hd3a for binding GF14b. Notably, OsFTL12-FRC can bind to the promoters of the floral identity genes OsMADS14 and OsMADS15 and suppress their expression. The osmads14 osmads15 double mutants could not develop panicles and showed erect leaves. Taken together, our results reveal that different FT-like members can fine-tune heading date and plant architecture by regulating the balance of FAC and FRC in rice.  相似文献   

12.
II-32A, an elite male-sterile line of rice (Oryza sativa L.), has been widely used for the production of hybrid rice seed In China. Heading date In most combinations using II-32A shows transgressive Inheritance or similarity to the latter parent, but the genotype of II-32A with respect to major genes for heading time Is unknown. This limits the further exploitation of this sterile line In breeding and hybrid seed production. Using a number of major gene heading date Isogenlc lines and heading date QTL near-lsogenic lines, we genetically analyzed II-32B under both long- and short-day conditions. We show that II-32B carries two photoperlod-sensltlve genes, E1 and E3, a recessive late-heading gene, ef-l, and a photoperlod-sensltlve allele, Se-1^u. In addition we Identified In II- 32B a recessive Inhibitor for E1 or Se-1^n and other modified photoperlod-sensltlve genes. The heading-date constitution of II-32A was determined to be E1e2E3Se-1^uef-li-Se-1.  相似文献   

13.
14.
The efficiency of hybrid seed production can be improved by increasing the percentage of exserted stigma, which is closely related to the stigma length in rice. In the chromosome segment substitute line (CSSL) population derived from Nipponbare (recipient) and Kasalath (donor), a single CSSL (SSSL14) was found to show a longer stigma length than that of Nipponbare. The difference in stigma length between Nipponbare and SSSL14 was controlled by one locus (qSTL3). Using 7,917 individuals from the SSSL14/Nipponbare F2 population, the qSTL3 locus was delimited to a 19.8-kb region in the middle of the short arm of chromosome 3. Within the 19.8-kb chromosome region, three annotated genes (LOC_Os03g14850, LOC_Os03g14860 and LOC_Os03g14880) were found in the rice genome annotation database. According to gene sequence alignments in LOC_Os03g14850, a transition of G (Nipponbare) to A (Kasalath) was detected at the 474-bp site in CDS. The transition created a stop codon, leading to a deletion of 28 amino acids in the deduced peptide sequence in Kasalath. A T-DNA insertion mutant (05Z11CN28) of LOC_Os03g14850 showed a longer stigma length than that of wild type (Zhonghua 11), validating that LOC_Os03g14850 is the gene controlling stigma length. However, the Kasalath allele of LOC_Os03g14850 is unique because all of the alleles were the same as that of Nipponbare at the 474-bp site in the CDS of LOC_Os03g14850 among the investigated accessions with different stigma lengths. A gene-specific InDel marker LQ30 was developed for improving stigma length during rice hybrid breeding by marker-assisted selection.  相似文献   

15.
Five populations segregated in isogenic backgrounds and three sets of near isogenic lines (NILs) overlapping in a 362.3-kb region covering heading date gene Hd1 were developed from the indica rice cross Zhenshan97 (ZS97)/Milyang 46 (MY46). They were used to analyze the effects of Hd1 on heading date, plant height and yield traits. In a background of the parental mixtures, the photoperiod-sensitive allele derived from ZS97 functioned in promoting and delaying flowering in the natural short-day and long-day conditions, respectively. In the background of ZS97, no response to the photoperiod was observed, whereas the photoperiod-insensitive allele derived from MY46 functioned in delaying flowering, increasing plant height, and enhancing grain productivity. The additive effects estimated in two NIL sets were 6.14 and 6.14 d for heading date, 4.46 and 5.55 cm for plant height, 10.82 and 11.54 for the number of spikelets per panicle, 6.82 and 8.00 for the number of grains per panicle, and 2.16 and 2.23 g for grain yield per plant, which explained 94.1% and 96.3%, 70.5% and 84.8%, 52.4% and 55.2%, 28.9% and 39.2%, and 36.5% and 26.9% of the phenotypic variances, respectively. Since the photoperiod-insensitive allele of Hd1 confers a long vegetative phase, it is a good candidate for breeding rice varieties with high yielding potential for low latitudes.  相似文献   

16.
Heading date is an important agronomic trait affecting crop yield. The GRAS protein family is a plant‐specific super family extensively involved in plant growth and signal transduction. However, GRAS proteins are rarely reported have a role in regulating rice heading date. Here, we report a GRAS protein DHD1 (Delayed Heading Date1) delays heading and enhances yield in rice. Biochemical assays showed DHD1 physically interacts with OsHAP5C/D both in vitro and in vivo. DHD1 and OsHAP5C/D located in the nucleus and showed that rhythmic expression. Both DHD1 and OsHAP5C/D affect heading date by regulating expression of Ehd1. We propose that DHD1 interacts with OsHAP5C/D to delay heading date by inhibiting expression of Ehd1.  相似文献   

17.
The rice japonica cultivars Nipponbare and Koshihikari differ in heading date and response of heading to photoperiod (photoperiod sensitivity). Using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers, we conducted quantitative trait locus (QTL) analyses for heading date in a set of reciprocal backcross inbred lines (BILs) from crosses between Nipponbare and Koshihikari. Under natural-day conditions, transgressive segregation in days to heading (DTH) toward both early and late heading was observed in both BIL populations. QTL analyses revealed that two QTLs-on chromosomes 3 and 6-were involved in the difference in heading date between the parental cultivars. The Nipponbare allele at the QTLs on chromosomes 3 and 6 showed, respectively, increasing and decreasing effects on DTH in both BIL populations. The transgressive segregation observed in the BILs could be accounted for mainly by the complementary action of a set of alleles with opposing effects. Both QTLs were finely mapped as single Mendelian factors in secondary mapping populations (BC(2)F(2) plants/BC(2)F(3) lines). The QTL on chromosome 3 was mapped in the 1,140-kb interval between 94O03-4 (SSR) and OJ21G19-4 (SNP) and was designated Hd16. The QTL on chromosome 6 was mapped in the 328-kb interval between P548D347 (SSR) and 0007O20 (SSR) and was designated Hd17. Both Hd16 and Hd17 were involved in photoperiod sensitivity, as revealed by observation of the DTH of nearly isogenic lines of Nipponbare under short- and long-day conditions, suggesting that allelic differences in both Hd16 and Hd17 account for most of the difference in photoperiod sensitivity between the parental cultivars.  相似文献   

18.
Heading of cereals is determined by complex genetic and environmental factors in which genes responsible for vernalization and photoperiod sensitivity play a decisive role. Our aim was to use diagnostic molecular markers to determine the main allele types in VRN-A1, VRN-B1, VRN-D1, PPD-B1 and PPD-D1 in a worldwide wheat collection of 683 genotypes and to investigate the effect of these alleles on heading in the field. The dominant VRN-A1, VRN-B1 and VRN-D1 alleles were present at a low frequency. The PPD-D1a photoperiod-insensitive allele was carried by 57 % of the cultivars and was most frequent in Asian and European cultivars. The PPD-B1 photoperiod-insensitive allele was carried by 22 % of the genotypes from Asia, America and Europe. Nine versions of the PPD-B1-insensitive allele were identified based on gene copy number and intercopy structure. The allele compositions in PPD-D1, PPD-B1 and VRN-D1 significantly influenced heading and together explained 37.5 % of the phenotypic variance. The role of gene model increased to 39.1 % when PPD-B1 intercopy structure was taken into account instead of overall PPD-B1 type (sensitive vs. insensitive). As a single component, PPD-D1 had the most important role (28.0 % of the phenotypic variance), followed by PPD-B1 (12.3 % for PPD-B1_overall, and 15.1 % for PPD-B1_intercopy) and VRN-D1 (2.2 %). Significant gene interactions were identified between the marker alleles within PPD-B1 and between VRN-D1 and the two PPD1 genes. The earliest heading genotypes were those with the photoperiod-insensitive allele in PPD-D1 and PPD-B1, and with the spring allele for VRN-D1 and the winter alleles for VRN-A1 and VRN-B1. This combination could only be detected in genotypes from Southern Europe and Asia. Late-heading genotypes had the sensitivity alleles for both PPD1 genes, regardless of the allelic composition of the VRN1 genes. There was a 10-day difference in heading between the earliest and latest groups under field conditions.  相似文献   

19.
Heading date is the one of the most important traits in rice breeding, because it defines where rice can be cultivated and influences the expression of various agronomic traits. To examine the inhibition of heading by Heading date 2 (Hd2), previously detected on the distal end of chromosome 7’s long arm by quantitative trait locus (QTL) analysis, we developed backcross inbred lines (BILs) from Koshihikari, a leading Japanese cultivar, and Hayamasari, an extremely early heading cultivar. The BILs were cultivated under natural field conditions in Tsukuba Japan, and under long-day (14.5 h), extremely long-day (18 h), and short-day (10 h) conditions. Combinations of several QTLs near Hd1, Hd2, Ghd7, Hd5, and Hd16 were detected under these four conditions. Analysis of advanced backcross progenies revealed genetic interactions between Hd2 and Hd16 and between Hd2 and Ghd7. In the homozygous Koshihikari genetic background at Hd16, inhibition of heading by the Koshihikari allele at Hd2 was smaller than that with the Hayamasari Hd16 allele. Similarly, in the homozygous Koshihikari genetic background at Ghd7, the difference in heading date caused by different alleles at Hd2 was smaller than in plants homozygous for the Hayamasari Ghd7 allele. Based on these results, we conclude that Hd2 and its genetic interactions play an important role in controlling heading under long-day conditions. In addition, QTLs near Hd2, Hd16, and Ghd7, which are involved in inhibition of heading under long-day conditions, function in the same pathway that controls heading date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号