首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim We studied how the abundance of the highly invasive fruit‐bearing tree Miconia calvescens DC. influences seed dispersal networks and the foraging patterns of three avian frugivores. Location Tahiti and Moorea, French Polynesia. Methods Our study was conducted at six sites which vary in the abundance of M. calvescens. We used dietary data from three frugivores (two introduced, one endemic) to determine whether patterns of fruit consumption are related to invasive tree abundance. We constructed seed dispersal networks for each island to evaluate how patterns of interaction between frugivores and plants shift at highly invaded sites. Results Two frugivores increased consumption of M. calvescens fruit at highly invaded sites and decreased consumption of other dietary items. The endemic fruit dove, Ptilinopus purpuratus, consumed more native fruit than either of the two introduced frugivores (the red‐vented bulbul, Pycnonotus cafer, and the silvereye, Zosterops lateralis), and introduced frugivores showed a low potential to act as dispersers of native plants. Network patterns on the highly invaded island of Tahiti were dominated by introduced plants and birds, which were responsible for the majority of plant–frugivore interactions. Main conclusions Shifts in the diet of introduced birds, coupled with reduced populations of endemic frugivores, caused differences in properties of the seed dispersal network on the island of Tahiti compared to the less invaded island of Moorea. These results demonstrate that the presence of invasive fruit‐bearing plants and introduced frugivores can alter seed dispersal networks, and that the patterns of alteration depend both on the frugivore community and on the relative abundance of available fruit.  相似文献   

2.
Carlo TA  Collazo JA  Groom MJ 《Oecologia》2003,134(1):119-131
Avian fruit consumption may ensure plant reproductive success when frugivores show consistent preference patterns and effectively remove and disperse seeds. In this study we examined avian fruit preferences and their seed-removal services at five study sites in north-central Puerto Rico. At each site, we documented the diet of seven common fruit-eating avian species from February to September 1998. Using foraging observations and area-based estimates of fruit abundance, we examined preference patterns of birds. We found that 7 out of 68 fleshy-fruited plant species were responsible for most of the fruit diet of birds. Seventeen plant species were preferred and four of them were repeatedly preferred across several study sites and times by at least one avian species. Preferred plant species comprised a small percentage of fleshy fruits at each site (<15% in four out of five study sites), but showed extended phenology patterns. The quantity of seeds removed by frugivore species was not strictly related to preferences. Some frugivores showing no preference could effectively remove more seeds from plants at some locations than species exhibiting constancy in their patterns of preference. Only two frugivores, Euphonia musica and Vireo altiloquous, removed most of the seeds of plants for which they exhibited repeated preference across the landscape. Preference patterns, particularly those exhibiting consistency in space and time for plant species having prolonged fruiting periods, may have important mechanistic consequences for the persistence, succession, and regeneration of tropical plant communities.  相似文献   

3.
《Animal behaviour》1988,36(4):961-969
Fruit preferences of cedar waxwings, Bombycilla cedrorum, in the laboratory were compared with preferences in the field to identify fruit characteristics that influence choice by avian dispersers. Waxwings ate 12 of 13 species of fruits offered individually in laboratory tests, but in the field ate only eight of the same 13 species. When given a choice of 10 fruit species offered simultaneously, waxwings showed a strong preference for fruits that were small or red. Preferences for fruit species in the laboratory were not correlated with morphological or nutritional characteristics of the fruits. When offered food that differed only in colour, waxwings initially preferred red over blue, yellow and green. In later tests, preference for red fruit was less marked. In tests for size preference, waxwings preferred small pieces of fruit (6 mm) over medium pieces (9 mm), and medium pieces over those that were large (12 mm). Sizes of fruits preferred in the field and in the laboratory tests were approximately 6·0–7·5 mm. Thus, waxwings can discern differences in food items and they have definite preferences. The lack of complete agreement between preferences for fruits in the field and in the laboratory suggests that factors important in the field but controlled in the laboratory (e.g. abundance, location) override preferences for certain fruits. However, some fruit characteristics, particularly size, were consistently influential in the laboratory and in the field.  相似文献   

4.
Red is a common colour signal in both aposematic warning displays, and in fruit displays. One common feature is that red is conspicuous against the natural background of the prey and fruits. However, there is a potential conflict between fruits and aposematic prey in how a bird predator should react to red colours, where fruits aim to attract birds and aposematic insects aim to ward off, often the same bird individuals. Here we investigate possible differences in red/green colour preferences of frugivorous, wild-caught, young blackcaps (Sylvia atricapilla), when food is either a fruit or an insect. Birds in two groups were presented with a series of pairs of food items that had been artificially painted red and green, in the order of (I) fruits, crickets and maggots, or (II) crickets, fruits, and maggots. Birds first presented with crickets or fruits differed in first attacks directed at the two colours: They showed no colour preference between fruits, but showed a clear preference for green over red crickets. Also, birds in both experimental groups clearly preferred green to red maggots. These results provide evidence that wild, frugivorous birds are able to differentiate between prey types, and show different colour preferences depending on whether food is insect or fruit. We conclude that blackcaps show an attack bias against red insects, and that one important function of the signal in insects, is to inhibit attack after discovery. However, the lack of preference for red fruits suggests other functions to red fruit displays, such as facilitating discovery per se, rather than directly stimulating attack after discovery.  相似文献   

5.
It has recently been recognized that flowers pollinated by generalist opportunistic nectarivores tend to have different nectar properties to those pollinated by specialist nectarivores (including both hummingbirds and specialist passerines). While renewed interest in specialist avian nectarivore sugar preferences and digestive physiology has helped explain the concentrated sucrose-dominated nectar of plants they feed on, there has been little progress in understanding why generalist or occasional nectar-feeding birds tend to be associated with flowers that have dilute hexose-dominated nectar. We examined sugar preferences and assimilation efficiencies over a range of concentrations, and concentration preferences, in Dark-capped Bulbuls Pycnonotus tricolor, one of the more common occasional avian nectarivores in southern Africa. Dark-capped Bulbuls showed significant preference for hexose sugar solutions, irrespective of concentration, when given a choice between hexose and sucrose solutions in equicaloric pair-wise choice tests conducted at five different concentrations (5–25%). This contrasts with results from specialist nectarivore groups which generally show a significant concentration-dependant switch in preference from hexose at low concentrations to sucrose at high concentrations for equicaloric solutions. In addition, Dark-capped Bulbuls showed an unusual lack of preference for solutions of higher sugar concentration when simultaneously offered four solutions varying in concentration from 10 to 25%. Dark-capped bulbuls also showed a unique effect of concentration on sugar assimilation efficiency, assimilating relatively more energy on 5% diets than on 25% diets. Although able to assimilate sucrose effectively, assimilation rates of hexose sugars were marginally higher. These results shed new light on pollination systems involving occasional nectarivores and, in particular, help to explain the prevalence of low concentration hexose-dominated nectars in flowers pollinated by these birds.  相似文献   

6.
As diving seabirds use vision underwater, it is presumed they should preferentially select sites where their preferred food items are not only abundant but also clearly visible. To test this, we studied the optical properties of the seawater in the West Spitsbergen Shelf, in combination with zooplankton abundance in the feeding grounds of the planktivorous little auks from the nearby colonies in Hornsund. We estimated the relative attractiveness of the foraging sites using a novel parameter—visual prey availability (VPAv), which relates density and proportion of the preferred food item (Calanus glacialis) of the little auk, in total zooplankton, to the optical properties of the seawater. We found a significant positive correlation between the density of foraging little auks and VPAv values. Birds chose areas where C. glacialis was both abundant and clearly visible, because of the clarity of the water and low proportion of other zooplankton species. The birds avoided foraging over the warmer Atlantic-type waters, characterised by a high abundance of zooplankton taxa mostly ignored by birds and where VPAv values were low. VPAv values could potentially also be applied to other visual planktivores for which prey preference and visual acuity are known.  相似文献   

7.
Broad-scale reciprocity in an avian seed dispersal mutualism   总被引:1,自引:0,他引:1  
Aim Coevolved relationships between individual species of birds and plants rarely occur in seed dispersal mutualisms. This study evaluates whether reciprocal relationships may occur between assemblages of bird and plant species. Location Vancouver Island, British Columbia, Canada (48°50′‐N, 125°22′‐W). Methods The distribution and fruiting phenologies of seven shrub species were compared to seasonal changes in habitat selection and seed dispersal by six fruit‐eating bird species. Results Shrub species inhabiting forest understorey habitat had earlier fruiting phenologies than shrub species inhabiting forest edge habitat along lake and bog margins. Birds showed a parallel pattern in habitat selection, being more abundant in the forest understorey early in the fruiting season, and more abundant in the forest edge later in the season. Rates of seed deposition covaried with avian habitat selection, in such a way that birds directed seed dispersal into habitats preferred by shrubs. Conclusions These results depict a broad‐scale pattern in the abundance of birds and fruits indicative of reciprocal interactions. Seasonal changes in seed dispersal to each habitat appear to reinforce the relationship between shrub habitat affinities and fruiting phenologies. Phenological differences between habitats may also reinforce seasonal changes in avian habitat selection. Therefore, although reciprocal interactions between pairs of bird and plant species are rare, broad‐scale reciprocal relationships may occur between assemblages of bird and plant species.  相似文献   

8.
Many food webs are affected by bottom‐up nutrient addition, as additional biomass or productivity at a given trophic level can support more consumers. In turn, when prey are abundant, predators may converge on the same diets rather than partitioning food resources. Here, we examine the diets and habitat use of predatory and omnivorous birds in response to biosolids amendment of northern grasslands used as grazing range for cattle in British Columbia, Canada. From an ecosystem management perspective, we test whether dietary convergence occurred and whether birds preferentially used the pastures with biosolids. Biosolids treatments increased Orthoptera densities and our work occurred during a vole (Microtus spp.) population peak, so both types of prey were abundant. American Kestrels (Falco sparverius) consumed both small mammals and Orthoptera. Short‐eared Owls (Asio flammeus) and Long‐eared owls (Asio otus) primarily ate voles (>97% of biomass consumed) as did Northern Harriers (Circus hudsonius, 88% vole biomass). Despite high dietary overlap, these species had minimal spatial overlap, and Short‐eared Owls strongly preferred pastures amended with biosolids. Common Ravens (Corvus corax), Black‐billed Magpies (Pica hudsonia), and American Crows (Corvus brachyrhynchos) consumed Orthoptera, Coleoptera, vegetation, and only a few small mammals; crows avoided pastures with biosolids. Thus, when both insect and mammalian prey were abundant, corvids maintained omnivorous diets, whereas owls and Harriers specialized on voles. Spatial patterns were more complex, as birds were likely responding to prey abundance, vegetation structure, and other birds in this consumer guild.  相似文献   

9.
C. T. DOWNS  M. R. PERRIN 《Ibis》1996,138(3):455-459
Three southern African nectarivorous passerine birds, Gurney's Sugarbird Promerops gur-neyi , the Malachite Sunbird Nectarinia famosa and the Black Sunbird Nectarinia amethystina , were tested to determine their hexose and sucrose preferences. All three species preferred sucrose when offered a choice of 0.25 M solutions of glucose, fructose and sucrose. However, when the concentrations were increased to 0.73 M, the three species showed no preference for any of the three sugars. The choice made at low concentrations (equivalent to the lower limit of the range of nectar concentrations of preferred nectar-producing plants) may reflect preference for the sugar with the highest energy reward. We also examined the proposition that birds offered a choice of different concentrations of one sugar would show ranked preferences and maximize their rate of energy return by selectivity. In contrast to expectations, Gurney's Sugarbird and the Malachite Sunbird showed no preference for the highest concentrations. We suggest that dietary choices in these species indicate the birds had either reached a limit where they had sufficient energy intake or were affected by post-ingestion constraints.  相似文献   

10.
Kara L. Lefevre  F. Helen Rodd 《Oikos》2009,118(9):1405-1415
Fruit consumption by birds is an important ecological interaction that contributes to seed dispersal in tropical rainforests. In this field experiment, we asked whether moderate human disturbance alters patterns of avian frugivory: we measured fruit removal by birds in the lower montane rainforest of Tobago, West Indies, using artificial infructescences made with natural fruits from two common woody plants of the forest understory (Psychotria spp., Rubiaceae). Displays were mounted simultaneously in three forest habitats chosen to represent a gradient of increasing habitat disturbance (primary, intermediate and disturbed), caused by subsistence land use adjacent to a protected forest reserve. We measured the numbers of fruits removed and the effect of fruit position on the likelihood of removal, along with the abundances of all fruits and fruit‐eating birds at the study sites. Fruit removal was highly variable and there was not a significant difference in removal rate among forest habitats; however, the trend was for higher rates of removal from displays in primary forest. Canopy cover, natural fruit availability, and frugivore abundance were not good predictors of fruit removal. Birds preferred more accessible fruits (those proximal to the perch) in all habitats, but in disturbed forest, there was a tendency for distal fruits to be chosen more frequently than in the other forest types. One possible explanation for this pattern is that birds in disturbed forests were larger than those in other habitats, and hence were better able to reach the distal fruits. Coupled with differences in bird community composition among the forest types, this suggests that different suites of birds were removing fruit in primary versus disturbed forest. As frugivore species have different effectiveness as seed dispersers, the among‐habitat differences in fruit removal patterns that we observed could have important implications for plant species experiencing disturbance; these possible implications include altered amounts of seed deposition and seedling recruitment in Tobago's tropical rainforest.  相似文献   

11.
Annual migrations of birds profoundly influence terrestrial communities. However, few empirical studies examine why birds migrate, in part due to the difficulty of testing causal hypotheses in long-distance migration systems. Short-distance altitudinal migrations provide relatively tractable systems in which to test explanations for migration. Many past studies explain tropical altitudinal migration as a response to spatial and temporal variation in fruit availability. Yet this hypothesis fails to explain why some coexisting, closely-related frugivorous birds remain resident year-round. We take a mechanistic approach by proposing and evaluating two hypotheses (one based on competitive exclusion and the other based on differences in dietary specialization) to explain why some, but not all, tropical frugivores migrate. We tested predictions of these hypotheses by comparing diets, fruit preferences, and the relationships between diet and preference in closely-related pairs of migrant and resident species. Fecal samples and experimental choice trials revealed that sympatric migrants and residents differed in both their diets and fruit preferences. Migrants consumed a greater diversity of fruits and fewer arthropods than did their resident counterparts. Migrants also tended to have slightly stronger fruit preferences than residents. Most critically, diets of migrants more closely matched their preferences than did the diets of residents. These results suggest that migrants may be competitively superior foragers for fruit compared to residents (rather than vice versa), implying that current competitive interactions are unlikely to explain variation in migratory behavior among coexisting frugivores. We found some support for the dietary specialization hypothesis, propose refinements to the mechanism underlying this hypothesis, and discuss how dietary specialization might ultimately reflect past interspecific competition. We recommend that future studies quantify variation in nutritional content of tropical fruits, and determine whether frugivory is a consequence or a cause of migratory behaviour.  相似文献   

12.
I examined the effects of two farm management variables, shade‐tree species and crop structure, on the winter (dry season) arthropod and bird communities in a Jamaican shade coffee plantation. Birds and canopy arthropods were more abundant in areas of the plantation shaded by the tree Inga vera than by Pseudalbizia berteroana. The abundance of arthropods (potential pests) on the coffee crop, however, was unaffected by shade‐tree species. Canopy arthropods, particularly psyllids (Homoptera), were especially abundant on Inga in late winter, when it was producing new leaves and nectar‐rich flowers. Insectivorous and nectarivorous birds showed the strongest response to Inga; thus the concentration of birds in Inga may be a response to abundant food. Coffee‐tree arthropod abundance was much lower than in the shade trees and was affected little by farm management variables, although arthropods tended to be more abundant in dense (unpruned) than open (recently pruned) areas of the plantation. Perhaps in response, leaf‐gleaning insectivorous birds were more abundant in dense areas. These results underscore that although some shade coffee plantations may provide habitat for arthropod and bird communities, differences in farm management practices can significantly affect their abundances. Furthermore, this study provides evidence suggesting that bird communities in coffee respond to spatial variation in arthropod availability. I conclude that /. vera is a better shade tree than P. berteroana, but a choice in crop structures is less clear due to changing effects of prune management over time.  相似文献   

13.
Certain fruit colours and their contrast with the background coloration are suggested to attract frugivorous birds. To test the attractiveness of different colours, we performed three experiments in laboratory with controlled light conditions. In the first two experiments, we studied the fruit colour preferences of naive juvenile redwings. In the third experiment, we continued to investigate whether the contrast of the fruit colour with the background coloration affects the preference of both naive juveniles and experienced adult redwings. In the first experiment, juvenile birds preferred black, UV‐blue and red berries, to white ones. In pairwise trials, a new set of juveniles still preferred red berries to white ones. When testing the effect of contrasts on their choice, juveniles preferred UV‐blue berries to red ones on a UV‐blue background. However, no preference was found, when the background was either red or green. Adult redwings preferred UV‐blue berries to red ones on all backgrounds. According to these results, juveniles seem to have an innate avoidance of white berries. Furthermore, the foraging decisions of fruit‐eating birds are affected more by fruit colour than its contrast with background coloration, at least when contrasting displays are encountered from relatively short distances. Differences in preferences of adult and juvenile birds also indicate that learning seems to play a role in fruit choices.  相似文献   

14.
Murray  K. G.  Winnett-Murray  K.  Cromie  E. A.  Minor  M.  Meyers  E. 《Plant Ecology》1993,107(1):217-226
We investigated the role of seed packaging (division of total seed volume among individual seeds) and fruit color in determining feeding preferences of American Robins (Turdus migratorius). Experiments were conducted using artificial fruits with either 8 small plastic beads or a single large one with equivalent volume. Other fruit characters were held constant. As predicted, large seeds were voided rapidly by regurgitation, resulting in higher pulp consumption rates for large-seeded fruits than for small-seeded ones, whose seeds were passed through the gut. Most birds apparently used this difference in profitability as a choice criterion: four of seven preferred large-seeded fruits. That three individuals did not do so suggests that birds may differ in their ability to perceive minor differences in fruit profitability, or to use them as choice criteria. Pulp color was also important: blue fruits were preferred by all seven birds. This preference was surprising, since Robins commonly feed on red fruits in the field.  相似文献   

15.
Moran C  Catterall CP  Green RJ  Olsen MF 《Oecologia》2004,141(4):584-595
Seed dispersal plays a critical role in rainforest regeneration patterns, hence loss of avian seed dispersers in fragmented landscapes may disrupt forest regeneration dynamics. To predict whether or not a plant will be dispersed in fragmented forests, it is necessary to have information about frugivorous bird distribution and dietary composition. However, specific dietary information for frugivorous birds is often limited. In such cases, information on the seed-crushing behaviour, gape width and relative dietary dominance by fruit may be used to describe functional groups of bird species with respect to their potential to disperse similar seeds. We used this information to assess differences in the seed dispersal potential of frugivorous bird assemblages in a fragmented rainforest landscape of southeast Queensland, Australia. The relative abundance of frugivorous birds was surveyed in extensive, remnant and regrowth rainforest sites (16 replicates of each). Large-gaped birds with mixed diets and medium-gaped birds with fruit-dominated diets were usually less abundant in remnants and regrowth than in continuous forest. Small-gaped birds with mixed diets and birds with fruit as a minor dietary component were most abundant in regrowth. We recorded a similar number of seed-crushing birds and large-gaped birds with fruit-dominated diets across site types. Bird species that may have the greatest potential to disperse a large volume and wide variety of plants, including large-seeded plants, tended to be less abundant outside of extensive forests, although one species, the figbird Sphecotheres viridis, was much more abundant in these areas. The results suggest that the dispersal of certain plant taxa would be limited in this fragmented landscape, although the potential for the dispersal of large-seeded plants may remain, despite the loss of several large-gaped disperser species.  相似文献   

16.
Most animals consume a narrower range of food resources than is potentially available in the environment, but the underlying basis for these preferences is often poorly understood. Foraging theory predicts that prey selection should represent a trade-off between prey preferences based on nutritional value and prey availability. That is, species should consume preferred prey when available, but select less preferred prey when preferred prey is rare. We employed both field observation and laboratory experiments to examine the relationship between prey selection and preferences in the obligate coral-feeding filefish, Oxymonacanthus longirostris. To determine the drivers of prey selection, we experimentally established prey preferences in choice arenas and tested the consequences of prey preferences for key fitness-related parameters. Field studies showed that individuals fed almost exclusively on live corals from the genus Acropora. While diet was dominated by the most abundant species, Acropora nobilis, fish appeared to preferentially select rarer acroporids, such as A. millepora and A. hyacinthus. Prey choice experiments confirmed strong preferences for these corals, suggesting that field consumption is constrained by availability. In a longer-term feeding experiment, reproductive pairs fed on non-preferred corals exhibited dramatic reductions to body weight, and in hepatic and gonad condition, compared with those fed preferred corals. The majority of pairs fed preferred corals spawned frequently, while no spawning was observed for any pairs fed a non-preferred species of coral. These experiments suggest that fish distinguish between available corals based on their intrinsic value as prey, that reproductive success is dependent on the presence of particular coral species, and that differential loss of preferred corals could have serious consequences for the population success of these dietary specialists.  相似文献   

17.
Understanding which habitat elements are critical for species’ persistence in the human-dominated landscape is a fundamental challenge of conservation biology. In human-altered lands fruit can be less reliably available compared to intact forest, but it is unclear whether this affects generalist frugivores, the primary providers of the important ecosystem service of seed dispersal. Does the habitat element of fruit constancy influence the persistence of these species in human-altered lands? Radio-telemetry, foraging patterns and species incidence frequencies of a representative generalist frugivore, the Blue-throated Toucanet (Aulacorhynchus caeruleogularis) were used to examine the effect of fruit security, measured by a site’s annual constancy of fruit energy availability (FEA). Toucanets were detected 20–30% more often in shade-grown coffee plantations with high fruit security (<40% of months with <1000 fruit calories). Despite the large size of this generalist frugivore, home range size was <2 ha, when estimated by the a-LoCoH method, regardless of whether the initial capture site was forest, coffee plantation with high fruit security or coffee plantation with low fruit security. However, home range size was larger for birds captured in low fruit security coffee plantations. Furthermore, birds captured in low fruit security coffee plantations spent more time in forest patches and windbreaks, while birds captured in high fruit security coffee plantations spent more time in coffee shade trees. The results of this study emphasize the important role that a tree species’ contribution to annual FEA should be given in conservation applications within the tropical regions.  相似文献   

18.
19.
The tamarisk leaf beetle (Diorhabda carinulata), introduced from Eurasia in 2001 as a biological control agent for the invasive plant Tamarix ramosissima, has spread widely throughout the western USA. With D. carinulata now very abundant, scientists and restoration managers have questioned what influence this introduced arthropod might have upon the avian component of riparian ecosystems. From 2009 through 2012 we studied the consequences of biological invasions of the introduced tamarisk shrub and tamarisk leaf beetles on the diets of native birds along the Dolores River in southwestern Colorado, USA. We examined avian foraging behavior, sampled the arthropod community, documented bird diets and the use of invasive tamarisk shrubs and tamarisk leaf beetles by birds. We documented D. carinulata abundance, on what plants the beetles occurred, and to what degree they were consumed by birds as compared to other arthropods. We hypothesized that if D. carinulata is an important new avian food source, birds should consume beetles at least in proportion to their abundance. We also hypothesized that birds should forage more in tamarisk in the late summer when tamarisk leaf beetle larvae are more abundant than in early summer, and that birds should select beetle-damaged tamarisk shrubs. We found that D. carinulata composed 24.0 percent (±?19.9–27.4%) and 35.4% biomass of all collected arthropods. From the gut contents of 188 birds (25 passerine species), only four species (n?=?11 birds) contained tamarisk leaf beetle parts. Although D. carinulata comprised one-quarter of total insect abundance, frequency of occurrence in bird gut contents was only 2.1% by abundance and 3.4% biomass. Birds used tamarisk shrubs for foraging in proportion to their availability, but foraging frequency did not increase during the late summer when more tamarisk leaf beetles were present and birds avoided beetle-damaged tamarisk shrubs. Despite D. carinulata being the most abundant arthropod in the environment, these invasive beetles were not frequently consumed by birds and seem not to provide a significant contribution to avian diets.  相似文献   

20.
Species coexist using the same nutritional resource by partitioning it either in space or time, but few studies explore how species-specific nutritional requirements allow partitioning. Zaprionus indianus and Drosophila simulans co-exist in figs by invading the fruit at different stages; Z. indianus colonizes ripe figs, whereas D. simulans oviposits in decaying fruit. Larvae feed on yeast growing on the fruit, which serves as their primary protein source. Because yeast populations increase as fruit decays, we find that ripe fruit has lower protein content than rotting fruit. Therefore, we hypothesized that Z. indianus and D. simulans larvae differ in their dietary requirements for protein. We used nutritional geometry to assess the effects of protein and carbohydrate concentration in the larval diet on life history characters in both species. Survival, development time, and ovariole number respond differently to the composition of the larval diet, with Z. indianus generally performing better across a wider range of protein concentrations. Correspondingly, we found that Z. indianus females preferred to lay eggs on low protein foods, while D. simulans females chose higher protein foods for oviposition when competing with Z. indianus. We propose the different nutritional requirements and oviposition preference of these two species allows them to temporally partition their habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号