首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Cost surface (CS) models have emerged as a useful tool to examine the interactions between landscapes patterns and wildlife at large-scale extents. This approach is particularly relevant to guide conservation planning for species that show vulnerability to road networks in human-dominated landscapes. In this study, we measured the functional connectivity of the landscape in southern Portugal and examined how it may be related to stone marten road mortality risk. We addressed three questions: (1) How different levels of landscape connectivity influence stone marten occurrence in montado patches? (2) Is there any relation between montado patches connectivity and stone marten road mortality risk? (3) If so, which road-related features might be responsible for the species’ high road mortality? We developed a series of connectivity models using CS scenarios with different resistance values given to each vegetation cover type to reflect different resistance to species movement. Our models showed that the likelihood of occurrence of stone marten decreased with distance to source areas, meaning continuous montado. Open areas and riparian areas within open area matrices entailed increased costs. We found higher stone marten mortality on roads in well-connected areas. Road sinuosity was an important factor influencing the mortality in those areas. This result challenges the way that connectivity and its relation to mortality has been generally regarded. Clearly, landscape connectivity and road-related mortality are not independent.  相似文献   

2.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

3.
Land-use change is a major driver of the global biodiversity crisis, mainly via the fragmentation and loss of natural habitat. Although land-use changes will accelerate to meet humankind's growing demand for agricultural products, conservation planning rarely considers future land uses and how they may affect the connectivity of ecological networks. Here, we integrate land-use models with landscape fragmentation and connectivity analyses, to assess the effects of past and future land-use changes on the connectivity of protected area networks for a highly dynamic region in southeast Spain. Our results show a continued geographical polarisation of land use, with agricultural intensification and urban development in the coastal areas, and the abandonment of traditional land use in the mountains (e.g., 1100 km2 of natural vegetation are projected to be lost in coastal areas whereas 32 km2 of natural vegetation would recover in interior areas from 1991 to 2015). As a result, coastal protected areas will experience increasing isolation. The connectivity analyses reveal that the two protected area networks in place in the study area, the European “Natura 2000” and the Andalusian “RENPA” networks, include many landscape connectors. However, we identify two areas that currently lack protection but contain several important patches for maintaining the region's habitat connectivity: the northwestern and the southwestern slopes of the Sierra Cabrera and Bédar protected area. Our results highlight the importance of considering future land-use trajectories in conservation planning to maintain connectivity at the regional scale, and to improve the resilience of conservation networks.  相似文献   

4.
张利  何玲  闫丰  陈亚恒 《应用生态学报》2021,32(3):1054-1060
生物多样性保护和生物栖息地网络建设是目前我国国土空间规划的重要内容,提升生物栖息地网络的景观功能连接度对生物多样性保护具有重要作用。目前,已有研究对生物栖息地网络规划进行了探索,但在实际规划层面仍缺乏可操作性强的技术方法支撑。本研究采用图论方法,聚焦国土空间规划中生物多样性保护和生态网络建设涉及的进行生物栖息地斑块重要性评价,以确定斑块优先保护次序;寻找最优新增斑块位置,以改善生物栖息地网络景观功能连接度;依据景观功能连接度的降低程度,判断建设项目的影响或评价规划新增建设项目的潜在影响3方面内容,在雄安新区两栖类生物黑斑侧褶蛙(Pelophylax nigromaculata)栖息地网络规划中进行应用研究。结果表明: 图论方法可以有效解决上述3方面的问题;本研究识别的5个最优新增黑斑侧褶蛙栖息地位置使栖息地网络整体景观功能连接度提升19%;通过评价G45高速公路对两栖类生物栖息地网络功能连接度的影响,找出了4个穿越通道设置以减弱G45高速公路的影响。  相似文献   

5.
景观生态网络研究进展   总被引:14,自引:19,他引:14  
作为生态学重要的概念与方法,生态网络是景观生态学研究的热点问题,也是耦合景观结构、生态过程和功能的重要途径。景观生态网络对于保护生物多样性、维持生态平衡、增加景观连接度具有重要意义。从景观生态网络的相关理论、研究进展、研究方法模型等进行分析,并对其应用前景进行展望,主要介绍了传统景观格局分析、网络分析、模型模拟等方法的适用性与特点,并分析了景观生态网络在城市景观格局优化、自然保护区规划、生物多样性保护、土地规划等领域的应用,最后提出了研究的主要问题。  相似文献   

6.
基于MSPA与最小路径方法的巴中西部新城生态网络构建   总被引:11,自引:0,他引:11  
许峰  尹海伟  孔繁花  徐建刚 《生态学报》2015,35(19):6425-6434
目前快速城市化导致了生境斑块的日益破碎化,景观之间的连通性不断降低。构建生态网络可以连接破碎的生境斑块,增加绿地景观的连通性,对生物多样性保护具有重要意义。以高度景观破碎化的四川省巴中西部新城为研究区,采用形态学空间格局分析(MSPA)方法,提取出对研究区生态网络构建具有重要生态意义的核心区和桥接区两类景观要素,并选用整体连通性(IIC)、可能连通性(PC)和斑块重要性(d I)等景观指数,分别对核心区和桥接区进行景观连接度评价,遴选出对维持景观连通性贡献最大的10个核心区生境斑块作为生态网络的源地,并根据斑块对维持景观连通的重要性程度将其他核心区和桥接区进行类型划分,以此作为景观阻力的赋值依据,融入消费面模型中,最后采用最小路径方法构建了研究区潜在的生态网络,并基于重力模型对重要生态廊道进行了识别与提取,在此基础上有针对性地提出了生态网络优化的对策。研究结果表明,MSPA方法能够科学的辨识出研究区内对生态保护具有重要意义的结构性要素,例如作为物种栖息地的核心区和物种迁移通道的桥接区,这些要素是生态网络的重要组成部分;景观连通性的计算,明确了研究区景观要素的保护重点,为最小路径方法中的景观阻力赋值提供了重要的参考信息;基于MSPA与最小路径方法的生态网络分析框架综合了现有景观结构性要素识别、连通性分析以及物种潜在迁移路径分析等方法,将景观中潜在的生态源地和结构性廊道的连通性作为构建生态网络的重要基础和主要依据,从而使得生态网络的构建更科学。研究结果可为高度破碎化地区生态网络的构建提供重要的参考与依据,对其他地区生态网络的构建也具有一定的借鉴意义。  相似文献   

7.
The effectiveness of ecological restoration actions toward biodiversity conservation depends on both local and landscape constraints. Extensive information on local constraints is already available, but few studies consider the landscape context when planning restoration actions. We propose a multiscale framework based on the landscape attributes of habitat amount and connectivity to infer landscape resilience and to set priority areas for restoration. Landscapes with intermediate habitat amount and where connectivity remains sufficiently high to favor recolonization were considered to be intermediately resilient, with high possibilities of restoration effectiveness and thus were designated as priority areas for restoration actions. The proposed method consists of three steps: (1) quantifying habitat amount and connectivity; (2) using landscape ecology theory to identify intermediate resilience landscapes based on habitat amount, percolation theory, and landscape connectivity; and (3) ranking landscapes according to their importance as corridors or bottlenecks for biological flows on a broader scale, based on a graph theory approach. We present a case study for the Brazilian Atlantic Forest (approximately 150 million hectares) in order to demonstrate the proposed method. For the Atlantic Forest, landscapes that present high restoration effectiveness represent only 10% of the region, but contain approximately 15 million hectares that could be targeted for restoration actions (an area similar to today's remaining forest extent). The proposed method represents a practical way to both plan restoration actions and optimize biodiversity conservation efforts by focusing on landscapes that would result in greater conservation benefits .  相似文献   

8.
Wildflower areas have become a staple tool within agro-environmental schemes (AES) to counteract pollinator declines. While their role in providing food resources to resident flower-visiting insects is unambiguous, the conservation effectiveness in a landscape context is less clear. Particularly, how multiple vs. single wildflower area utilization differs between simple and complex landscapes is understudied. We examined colonisation and community dynamics of wild bees and hoverflies in 33 newly established wildflower areas across a gradient of landscape complexity (amount of semi-natural habitat) and connectivity (presence of additional wildflower areas) for seven weeks during three consecutive years (one year during and two after establishment). We recorded more than 25% of the wild bee and hoverfly species of Hesse in an area of approx. 10 ha, substantiating the general benefit of wildflower areas to pollinators. While alpha-diversity increased with landscape complexity in isolated wildflower areas, the opposite pattern was observed for connected areas. The low alpha-diversity in complex landscapes indicated a dilution effect between connected sites. The inverse relationship between alpha and beta diversity among wildflower areas within landscapes suggests interspecific trade-offs between local resource conditions and landscape context. Accordingly, the establishment of multiple wildflower areas within AES is advisable to increase connectivity of suitable habitats in simple landscapes. Moreover, adjusting local conditions (plant diversity) to landscape context likely optimizes conservation effectiveness in modern agroecosystems.  相似文献   

9.
Disconnected habitat fragments are poor at supporting population and community persistence; restoration ecologists, therefore, advocate for the establishment of habitat networks across landscapes. Few empirical studies, however, have considered how networks of restored habitat patches affect metacommunity dynamics. Here, using a 10‐year study on restored hedgerows and unrestored field margins within an intensive agricultural landscape, we integrate occupancy modelling with network theory to examine the interaction between local and landscape characteristics, habitat selection and dispersal in shaping pollinator metacommunity dynamics. We show that surrounding hedgerows and remnant habitat patches interact with the local floral diversity, bee diet breadth and bee body size to influence site occupancy, via colonisation and persistence dynamics. Florally diverse sites and generalist, small‐bodied species are most important for maintaining metacommunity connectivity. By providing the first in‐depth assessment of how a network of restored habitat influences long‐term population dynamics, we confirm the conservation benefit of hedgerows for pollinator populations and demonstrate the importance of restoring and maintaining habitat networks within an inhospitable matrix.  相似文献   

10.
在保护优先区规划中,有必要考虑气候变化的潜在风险并关注物种在气候驱动下的扩散格局。基于未来生物气候数据、地形多样性数据以及土地利用数据,应用Omniscape算法,对21世纪中叶(2040-2061年)气候变化情景下京津冀地区陆生哺乳动物的扩散进行全域连通性建模并与当前情景对比分析,识别出生物多样性保护优先区。结果表明:区域尺度下,气候变化风险使得高连通性的区域逐渐从平原向山区转移,分布趋于集中;斑块尺度下,林缘连通性较高,而位于林地或草地边缘的耕地连通性低。在此基础上,共识别生物多样性保护优先区共51786 km2,其中涵养区(占56.4%)在当前和未来的连通状况均较为良好;优化区(占38.4%)应提升生境质量以满足未来连通性的更高需求;而修复区(占5.22%)面临的气候变化风险较高,亟需进行生态修复以免在未来出现连通性夹点。本研究通过评估京津冀地区两种情景下的全域连通格局,为生物多样性保护的气候适应性规划提供了科学依据。  相似文献   

11.
Climate change is a major threat to global biodiversity that will produce a range of new selection pressures. Understanding species responses to climate change requires an interdisciplinary perspective, combining ecological, molecular and environmental approaches. We propose an applied integrated framework to identify populations under threat from climate change based on their extent of exposure, inherent sensitivity due to adaptive and neutral genetic variation and range shift potential. We consider intraspecific vulnerability and population‐level responses, an important but often neglected conservation research priority. We demonstrate how this framework can be applied to vertebrates with limited dispersal abilities using empirical data for the bat Plecotus austriacus. We use ecological niche modelling and environmental dissimilarity analysis to locate areas at high risk of exposure to future changes. Combining outlier tests with genotype–environment association analysis, we identify potential climate‐adaptive SNPs in our genomic data set and differences in the frequency of adaptive and neutral variation between populations. We assess landscape connectivity and show that changing environmental suitability may limit the future movement of individuals, thus affecting both the ability of populations to shift their distribution to climatically suitable areas and the probability of evolutionary rescue through the spread of adaptive genetic variation among populations. Therefore, a better understanding of movement ecology and landscape connectivity is needed for predicting population persistence under climate change. Our study highlights the importance of incorporating genomic data to determine sensitivity, adaptive potential and range shift potential, instead of relying solely on exposure to guide species vulnerability assessments and conservation planning.  相似文献   

12.
基于电路理论的南京城市绿色基础设施格局优化   总被引:7,自引:0,他引:7  
刘佳  尹海伟  孔繁花  李沐寒 《生态学报》2018,38(12):4363-4372
城市绿色基础设施的连通性与格局优化能显著提升城市的生物多样性和可持续发展能力,对维持城市生态系统的健康与稳定具有重要意义。基于电路理论构建了南京市主城区绿色基础设施景观格局,根据电流密度分析斑块、廊道重要性,并借助移动窗口搜索法识别障碍点,提出南京市景观格局优化策略。研究结果表明:(1)南京主城区景观破碎化程度较高,40%的生境斑块(约为28.18 km2)对连通性的贡献较低,南部重要廊道的数量最多,局部簇团成网,网络结构较为复杂,其次为中部,且河流廊道(秦淮河)是其主要廊道类型,北部廊道数量最少,斑块多呈孤岛分布;(2)研究区共有155处障碍点,其中84.5%面积小于5hm2,可见主城区景观连通性仍有较大的提升空间。研究丰富了城市绿色基础设施景观格局的构建方法,对南京主城区绿色基础设施的连通性与格局优化具有一定的实践指导意义与参考价值。  相似文献   

13.
Individual dispersal,landscape connectivity and ecological networks   总被引:1,自引:0,他引:1  
Connectivity is classically considered an emergent property of landscapes encapsulating individuals' flows across space. However, its operational use requires a precise understanding of why and how organisms disperse. Such movements, and hence landscape connectivity, will obviously vary according to both organism properties and landscape features. We review whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory. Firstly, dispersal is a multi‐causal process; its restriction to an ‘escape reaction’ to environmental unsuitability is an oversimplification, as dispersing individuals can leave excellent quality habitat patches or stay in poor‐quality habitats according to the relative costs and benefits of dispersal and philopatry. Secondly, species, populations and individuals do not always react similarly to those cues that trigger dispersal, which sometimes results in contrasting dispersal strategies. Finally, dispersal is a major component of fitness and is thus under strong selective pressures, which could generate rapid adaptations of dispersal strategies. Such evolutionary responses will entail spatiotemporal variation in landscape connectivity. We thus strongly recommend the use of genetic tools to: (i) assess gene flow intensity and direction among populations in a given landscape; and (ii) accurately estimate landscape features impacting gene flow, and hence landscape connectivity. Such approaches will provide the basic data for planning corridors or stepping stones aiming at (re)connecting local populations of a given species in a given landscape. This strategy is clearly species‐ and landscape‐specific. But we suggest that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems. This procedure relies on the use of umbrella species that are representative of other species living in the same ecosystem.  相似文献   

14.
Reintroductions—captive-born animals introduced into the species’ original distribution area—and translocations—free-living animals transferred to another location within the historical distribution area—are important conservation strategies for endangered species. Genetic analyses of 239 individuals from unmanaged, translocated and reintroduced populations of Leontopithecus rosalia were performed using 14 microsatellites. These samples were collected during two periods: (a) 1996–1997 (historic), when individuals were translocated and reintroduced into forest fragments in the lowland Atlantic Forest, and (b) 2007–09 (recent). We hypothesized that effective population size and genetic diversity would increase over time and that these management strategies would affect the resulting population genetic structure. We found trends indicating that the effective population size at the translocation site increased while that at the reintroduction sites diminished over time. The inbreeding coefficient of the translocated population diminished over time (from 0.38 to 0.03) and was much lower than that of the native (0.29) and reintroduced (0.13) recent populations. We observed a greater genetic admixture among the reintroduced sites on the historic sampling, as well as a strong genetic structure at the translocation site. In the recent sampling, the population structuring became more site-related suggesting low or inconsistent gene flow between sampling sites. This research highlights how conservation management decisions have an important influence on the genetic outcome of translocations and reintroductions. Future conservation planning should consider population genetic monitoring before and after management measures and maintain population connectivity thereafter to avoid the negative effects of a population size reduction.  相似文献   

15.
The abundance of woodland birds in fragmented forest landscapes may depend on the properties of patch networks. Understanding the consequences of deforestation on woodland birds, therefore, necessarily requires determining which changes in landscape structure make a major contribution to the degradation and subdivision of patch networks. In this study, we addressed how accelerated deforestation in central Chile has modified the landscape structure and function for thorn-tailed rayaditos—a woodland specialist bird. Using a graphical approach based on the habitat use and movement patterns of rayaditos, we quantified the reduction of the internal connectivity of components (i.e., connected patch networks) in the last two decades and determined the main mechanisms responsible for this connectivity loss. Forest cover decreased 61.7 % between 1989 and 2009. The component size, the fraction of components with ≥1 occupied patches and the number of patches per component experienced a large decline during the study period. Over time, most forest cover (ca. 80 %) was contained in only two components. The connectivity of components decreased steeply by 90 %. Only the loss of large patches made a highly significant contribution to explaining changes in connectivity, while the removal of stepping stones was marginally significant. The conversion of forest both to shrubland and to peri-urban areas were the only land-use variables explaining connectivity change with effects that changed over time. Conservation measures to ensure persistence of rayaditos populations in central Chile should be focused on the retention of key elements for connectivity.  相似文献   

16.

Aim

The maintenance of broad-scale connectivity patterns is suggested as a sustainable strategy for biodiversity preservation. However, explicit approaches for quantifying the functional role of different areas in biogeographic connectivity have been elusive. Freshwaters are spatially structured ecosystems critically endangered because of human activities and global change, demanding connectivity-based approaches for their conservation. Mass effects—the increase in local diversity by immigration—and corridor effects—the connections with distant communities—are basic and relevant mechanisms connecting diversity with landscape configuration. Here, we identified freshwater hotspots areas for mass and corridor effects across Europe.

Location

Europe.

Methods

Using satellite images, we quantified the areas of ephemeral, temporal and permanent freshwaters. The landscape structure of the freshwater ecoregions was represented as a directed-graph, and the link weights were determined by the distance between cells and the water cover. Three centrality metrics were used to rank freshwater areas with respect to their potential role in dispersal-mediated mechanisms. Out-degree represents the potential of an area to operate as a diversity source to other regions. In-degree reflects the importance that incoming dispersal may have in local diversity. Betweenness refers to the importance of local areas for connecting other distant areas.

Results

We detected great concentrations of source hotspots on the northern regions associated to lentic ecosystems, main European rivers acting as ecological corridors for all freshwaters, and a mixed distribution of connectivity hotspots in southern and Mediterranean ecoregions, associated with lentic and/or lotic systems.

Main Conclusions

We showed an explicit connection between landscape structure and dispersal process at large geographic scales, highlighting hotspots of connectivity for the European waterscape. The spatial distribution of hotspots points to differences in landscape configurations potentially accounting for biogeographic diversity patterns and for mechanisms that have to be considered in conservation planning.  相似文献   

17.
为了将有限资源合理投放到关键区域, 实现物种保护成效的最大化, 找出质量最好的栖息地及它们之间的迁徙通道是制定保护规划的第一步。本研究以三江源的雪豹(Panthera uncia)栖息地为对象, 基于野外调查数据和高分辨率卫星遥感数据, 利用物种分布模型、保护规划模型和连通度分析工具, 找出了三江源地区雪豹的核心栖息地分布和潜在迁徙通道位置, 分析了目前保护中的潜在威胁, 并提出了针对三江源西、中、东三块区域的不同保护对策。结果表明: (1)三江源西部核心栖息地比较小而破碎, 但迁徙通道较多且没有明显窄点, 未来应关注青藏线的潜在阻碍作用, 同时应防范道路沿线的野生动物盗猎; (2)中部区域横跨玉树-杂多-囊谦的雪豹栖息地是三江源最大的核心雪豹栖息地, 在连通其他种群中也处于中心地位, 应通过种群监测确定其健康稳定, 对开发、偷猎等威胁防微杜渐, 保持其源种群的作用; (3)东部区域人口密度高, 受人类活动的影响最大, 需保证阿尼玛卿、年保玉则两块核心栖息地的质量, 并重点监测甘德县境内的省道处雪豹的迁徙通道是否畅通。三江源地区雪豹栖息地总体质量较好, 建议将维持核心源种群的稳定性, 保持种群间迁徙通道的畅通作为三江源的雪豹景观保护工作的整体目标。未来应充分利用天地一体化监测手段, 开展重要保护物种栖息地状况的评估和预警, 尤其是非保护地区域物种核心栖息地的开发建设活动。  相似文献   

18.
Protected areas (PAs) are recognized as the flagship tool to offset biodiversity loss on Earth. Spatial conservation planning seeks optimal designs of PAs that meet multiple targets such as biodiversity representation and population persistence. Since connectivity between PAs is a fundamental requirement for population persistence, several methods have been developed to include connectivity into PA design algorithms. Among these, the eigenvalue decomposition of the connectivity matrix allows for identifying clusters of strongly connected sites and selecting the sites contributing the most to population persistence. So far, this method was only suited to optimize an entire network of PAs without considering existing PAs in the new design. However, a more cost‐effective and realistic approach is to optimize the design of an extended network to improve its connectivity and thus population persistence. Here, we develop a flexible algorithm based on eigenvalue decomposition of connectivity matrices to extend existing networks of PAs while optimizing connectivity and population growth rate. We also include a splitting algorithm to improve cluster identification. The new algorithm accounts for the change in connectivity due to the increased biological productivity often observed in existing PAs. We illustrate the potential of our algorithm by proposing an extension of the network of ~100 Mediterranean marine PAs to reach the targeted 10% surface area protection from the current 1.8%. We identify differences between the clean slate scenario, where all sites are available for protection, irrespective of their current protection status, and the scenario where existing PAs are forced to be included into the optimized solution. By integrating this algorithm to existing multi‐objective and multi‐specific algorithms of PA selection, the demographic effects of connectivity can be explicitly included into conservation planning.  相似文献   

19.
Functional ecosystems depend on biotic and abiotic connections among different environmental realms, including terrestrial, freshwater, and marine habitats. Accounting for such connections is increasingly recognized as critical for conservation of ecosystems, especially given growing understanding of the way in which anthropogenic landscape disturbances can degrade both freshwater and marine habitats. This need may be paramount in conservation planning for tropical island ecosystems, as habitats across realms are often in close proximity, and because endemic organisms utilize multiple habitats to complete life histories. In this study, we used Marxan analysis to develop conservation planning scenarios across the five largest islands of Hawaii, in one instance accounting for and in another excluding habitat connectivity between inland and coastal habitats. Native vegetation, perennial streams, and areas of biological significance along the coast were used as conservation targets in analysis. Cost, or the amount of effort required for conservation, was estimated using an index that integrated degree and intensity of anthropogenic landscape disturbances. Our results showed that when connectivity is accounted for among terrestrial, freshwater, and marine habitats, areas identified as having high conservation value are substantially different compared to results when connectivity across realms is not considered. We also showed that the trade-off of planning conservation across realms was minimal and that cross-realm planning had the unexpected benefit of selecting areas with less habitat degradation, suggesting less effort for conservation. Our cross-realm planning approach considers biophysical interactions and complexity within and across ecosystems, as well as anthropogenic factors that may influence habitats outside of their physical boundaries, and we recommend implementing similar approaches to achieve integrated conservation efforts.  相似文献   

20.
基于景观遗传学的滇金丝猴栖息地连接度分析   总被引:1,自引:0,他引:1  
薛亚东  李丽  李迪强  吴巩胜  周跃  吕玺喜 《生态学报》2011,31(20):5886-5893
结合景观遗传学,应用最小费用距离模型对物种栖息地进行连接度分析,能够为生物多样性保护和自然保护区管理提供更加真实准确及可实践操作的指导。选取滇金丝猴这一珍稀濒危物种,结合景观遗传学,应用最小费用距离模型对其栖息地进行了连接度和潜在扩散廊道分析。并且通过连接度的分析和制图绘制出了更为准确的种群间潜在扩散廊道,确定了受人工障碍影响的廊道及敏感区域。结果表明,研究区内的5个亚群中,仅S3亚群内的5个猴群保持着较好的连接度,总体来说,各亚群内的连接度相对于各亚群间连接度保持的较好。除S3亚群中猴群间的潜在扩散廊道较为理想外,其余种群间的潜在扩散廊道均受人工斑块的影响,多数廊道被人工障碍阻断,或面临即将被阻断的情况,对于滇金丝猴的扩散交流影响较大。敏感区域多集中在中南部的3个亚群间,这些敏感区域应作为景观恢复及保护区规划的重要优先区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号