首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies from the laboratory of the authors have shown that the tetracyclic quinolizidine alkaloids are synthesized in leaf chloroplasts of Lupinus polyphyllus. Additionally, alkaloid formation reveals a light dependent diurnal rhythm in vivo. The present study shows that the principal biosynthetic enzymes, lysine decarboxylase and 17-oxosparteine synthase, assayed in acetone powder extracts and isolated chloroplasts of L. polyphyllus, were activated by reduced E. coli thioredoxin. Since both enzymes display optimal activity at pH 8 and were rather inactive at pH 7, both thioredoxin and the light mediated shift in the hydrogen ion concentration of the chloroplast stroma from pH 7 to pH 8 may be involved in the light controlled alkaloid formation.Abbreviations DTE dithioerythritol  相似文献   

2.
De Luca V  Cutler AJ 《Plant physiology》1987,85(4):1099-1102
The subcellular localization of enzymes involved in indole alkaloid biosynthesis in leaves of Catharanthus roseus has been investigated. Tryptophan decarboxylase and strictosidine synthase which together produce strictosidine, the first indole alkaloid of this pathway, are both cytoplasmic enzymes. S-Adenosyl-l-methionine: 16-methoxy-2,3-dihydro-3-hydroxytabersonine-N-methyltransferase which catalyses the third to last step in vindoline biosynthesis could be localized in the chloroplasts of Catharanthus leaves and is specifically associated with thylakoids. Acetyl-coenzyme-A-deacetylvindoline-O-acetyltransferase which catalyses the last step in vindoline biosynthesis could also be localized in the cytoplasm. The participation of the chloroplast in this pathway suggests that indole alkaloid intermediates enter and exit this compartment during the biosynthesis of vindoline.  相似文献   

3.
The genes (adc and odc) for two enzymes, arginine decarboxylase and ornithine decarboxylase involved in polyamine biosynthesis, were introduced into anther-derived calli of Datura innoxia through Agrobacterium tumefaciens. The transformed calli exhibited increased regeneration frequency as compared to control. Transgenic lines showed higher polyamine levels, mainly in the putrescine titre, and such lines also yielded a high level of the alkaloid, hyoscyamine. The results suggest that polyamines can modulate in vitro morphogenesis and polyamine biosynthetic pathway can be exploited for enhancement of polyamine-derived alkaloids of pharmaceutical importance.  相似文献   

4.
《Phytochemistry》1986,25(10):2315-2319
Levels of lysine decarboxylase, thought to exercise control over the biosynthesis of alkaloids derived from the amino acid, have been determined in alkaloid-producing and non-producing cell and organ cultures of Heimia salicifolia. The level of this enzyme has also been measured in cultures grown in the presence and absence of light. In chlorophyllous cell cultures enzyme activity correlates positively with chlorophyll; in shoot cultures the activity also parallels alkaloid production.  相似文献   

5.
Since the diamine putrescine can be metabolized into the pyrrolidine ring of tobacco alkaloids as well as into the higher polyamines, we have investigated the quantitative relationship between putrescine and these metabolites in tobacco callus cultured in vitro. We measured levels of free and conjugated putrescine and spermidine, and pyrrolidine alkaloids, as well as activities of the putrescine-biosynthetic enzymes arginine and ornithine decarboxylase. In callus grown on high (11.5 micromolar) α-naphthalene acetic acid, suboptimal for alkaloid biosynthesis, putrescine and spermidine conjugates were the main putrescine derivatives, while in callus grown on low (1.5 micromolar) α-naphthalene acetic acid, optimal for alkaloid formation, nornicotine and nicotine were the main putrescine derivatives. During callus development, a significant negative correlation was found between levels of perchloric acid-soluble putrescine conjugates and pyrrolidine alkaloids. The results suggest that bound putrescine can act as a pool for pyrrolidine alkaloid formation in systems where alkaloid biosynthesis is active. In addition, changes in arginine decarboxylase activity corresponding to increased alkaloid levels suggest a role for this enzyme in the overall biosynthesis of pyrrolidine alkaloids.  相似文献   

6.
In species of the Annonaceae family, particularly Annona diversifolia Safford, benzylisoquinoline alkaloids (BIA) are secondary metabolites that appear to contribute to the phytopathogen defense mechanisms of plants. Polyphenol oxidase (PPO, EC 1.14.18.1), amine oxidase (AO, EC 1.4.3.4), tyrosine decarboxylase (TYDC, EC 4.1.1.25), and norcoclaurine synthase (NCS, EC 4.2.1.78) catalyze the initial steps in BIA biosynthesis. This study reports the activity of these enzymes in different plant organs at four stages of the early development of A. diversifolia seedlings: seeds imbibed for 5 days, seeds after 3 days of germination, seedlings with leaf primordia, and seedlings with two true leaves. Evaluations were performed according to specific protocols for each of the enzymes. All four enzymes were active in the developing embryos during imbibition and germination, but no activity was detected in the endosperm. In seedlings with leaf primordia and seedlings with two true leaves (25 and 30 days after the start of imbibition, respectively), the activities of three enzymes (TYDC, PPO, and AO) were observed in all of the tissues, while NCS activity was only observed in the stems and roots. The activities of these enzymes in embryos provides evidence that alkaloid biosynthesis at early developmental stages is related to embryo growth and development. This study is the first report that has described some aspects of alkaloid biosynthesis in Annonaceae.  相似文献   

7.
Lysine decarboxylase converts l ‐lysine to cadaverine as a branching point for the biosynthesis of plant Lys‐derived alkaloids. Although cadaverine contributes towards the biosynthesis of Lys‐derived alkaloids, its catabolism, including metabolic intermediates and the enzymes involved, is not known. Here, we generated transgenic Arabidopsis lines by expressing an exogenous lysine/ornithine decarboxylase gene from Lupinus angustifolius (La‐L/ODC) and identified cadaverine‐derived metabolites as the products of the emerged biosynthetic pathway. Through untargeted metabolic profiling, we observed the upregulation of polyamine metabolism, phenylpropanoid biosynthesis and the biosynthesis of several Lys‐derived alkaloids in the transgenic lines. Moreover, we found several cadaverine‐derived metabolites specifically detected in the transgenic lines compared with the non‐transformed control. Among these, three specific metabolites were identified and confirmed as 5‐aminopentanal, 5‐aminopentanoate and δ‐valerolactam. Cadaverine catabolism in a representative transgenic line (DC29) was traced by feeding stable isotope‐labeled [α‐15N]‐ or [ε‐15N]‐l ‐lysine. Our results show similar 15N incorporation ratios from both isotopomers for the specific metabolite features identified, indicating that these metabolites were synthesized via the symmetric structure of cadaverine. We propose biosynthetic pathways for the metabolites on the basis of metabolite chemistry and enzymes known or identified through catalyzing specific biochemical reactions in this study. Our study shows that this pool of enzymes with promiscuous activities is the driving force for metabolite diversification in plants. Thus, this study not only provides valuable information for understanding the catabolic mechanism of cadaverine but also demonstrates that cadaverine accumulation is one of the factors to expand plant chemodiversity, which may lead to the emergence of Lys‐derived alkaloid biosynthesis.  相似文献   

8.
The roles of ornithine decarboxylase, lysine decarboxylase and tyrosine decarboxylase in biochemical interactions of two cultivars of winter triticale (Triticosecale), Tornado and Witon, and bird cherry-oat aphid (Rhopalosiphum padi L.) were determined. Results showed the resistant Witon had higher lysine decarboxylase activity than the susceptible Tornado. There was a significant negative correlation between the density of R. padi populations and lysine decarboxylase activity. Such correlations did not occur for the other decarboxylases. Aphid feeding induced a decrease of lysine decarboxylase activity within both cultivars after one week of infestation and increased its activity after two weeks in the moderately resistant Witon. Ornithine decarboxylase activity was induced in tissues of the susceptible Tornado and inhibited in Witon after two weeks of infestation. Aphid infestations did not change tyrosine decarboxylase activity in Witon, whereas in Tornado it decreased in activity after one day of aphid feeding and then increased after two weeks. It was concluded that of the three enzymes studied, lysine decarboxylase was the most important in the response of winter triticale to infestation by R. padi.  相似文献   

9.
Coelimycin P1 and argimycins P are two types of polyketide alkaloids produced by Streptomyces coelicolor and Streptomyces argillaceus, respectively. Their biosynthesis pathways share some early steps that render very similar aminated polyketide chains, diverging the pathways afterwards. By expressing the putative isomerase cpkE and/or the putative epoxidase/dehydrogenase cpkD from the coelimycin P1 gene cluster into S. argillaceus wild type and in argimycin mutant strains, five novel hybrid argimycins were generated. Chemical characterization of those compounds revealed that four of them show unprecedented scaffolds (quinolizidine and pyranopyridine) never found before in the argimycin family of compounds. One of these compounds (argimycin DM104) shows improved antibiotic activity. Noticeable, biosynthesis of these quinolizidine argimycins results from a hybrid pathway created by combining enzymes from two different pathways, which utilizes an aminated polyketide chain as precursor instead of lysine as it occurs for other quinolizidines.  相似文献   

10.
Polyamines (PAs) are involved in plant response to abiotic and biotic stresses, however, their role in biochemical insect-plant interactions is not clear. Therefore, we compared the involvement of polyamines and key enzymes of their biosynthesis in gall formation process. The present study had used galls on oak leaves caused by asexual generation (♀♀) of three Cynipidae species, namely Cynips quercusfolii L., Neuroterus numismalis (Fourc.) and N. quercusbaccarum L., as a model. The obtained results indicate that gall formation on oak leaves affected amine content, but intensity of the changes in their levels were strongly dependent on the insect species. Nevertheless the downward trend was dominant among those changes. Changes in the activity of lysine decarboxylase (LDC), tyrosine decarboxylase (TyDC) and ornithine decarboxylase (ODC) usually corresponded with the direction of changes in polyamine contents. Several cases of divergence between changes in amine levels and the rate of their biosynthesis may suggest the involvement of other regulation mechanisms such as: arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC) as well as amine oxidases involved in its catabolic pathways. Thus, the future studies on biochemical mechanism of regulation of PAs accumulation during galls formation should be focused on importance of these enzymes.  相似文献   

11.
Methanobacterium thermoautotrophicum, an archaebacterium, possesses the first and last enzymes of the diaminopimelic acid pathway for lysine biosynthesis, dihydrodipicolinate synthase, and diaminopimelate decarboxylase. It does not have saccharopine dehydrogenase, the last enzyme of the aminoadipate pathway for lysine biosynthesis. The dihydrodipicolinate synthase is inhibited but not repressed by lysine. We conclude that this microbe uses the diaminopimelate pathway for synthesis of lysine.Deceased.  相似文献   

12.
Fruits of Cyclolobium brasiliense Benth. (Leguminosae; Papilionoideae) were found to contain quinolizidine alkaloids. Several tetracyclic sparteine-type alkaloids, the bipiperidyl alkaloid ammodendrine and the α-pyridone alkaloid N-methylcytisine were identified. The presence of quinolizidine alkaloids in this monotypic genus supports a relationship with tribe Brongniartieae and genistoid tribes rather than its current placement in tribe Millettieae.  相似文献   

13.
To better understand the biosynthesis of Camptotheca acuminata alkaloids, the effect on camptothecin production of feeding with potential precursors of biosynthesis was studied (i.e., tryptamine and loganin combined, secologanin, and strictosidine). Two key enzymes in alkaloid biosynthesis 〚i.e., tryptophan decarboxylase (TDC; EC 4.1.1.28) and strictosidine synthase (STR; EC 4.3.3.2)〛 were also studied. The analyses were conducted using a C. acuminata CG1 cell line that does not produce alkaloids, which could be useful in better understanding the biosynthetic pathway and in identifying possible limiting factors. The activity of TDC was 5 pkat mg–1; the activity of STR was 1.1 pkat mg–1. Feeding with strictosidine revealed that this precursor is easily biotransformed by two enzymes (i.e., a hydroxylase and a dehydrogenase) in hydroxystrictosidine and didehydrostrictosidine, but camptothecin was never detected. The indole pathway and the low level of STR activity could be limiting factors in the production of camptothecin in the cell line used.  相似文献   

14.
Sophora is a diverse genus in the family Fabaceae, comprised of herbs, shrubs, and trees that occurs throughout the world, primarily in the northern hemisphere. Species of Sophora are known to contain quinolizidine alkaloids that are toxic and potentially teratogenic. Two perennial herbaceous species occur in North America, Sophora stenophylla and Sophora nuttalliana. The quinolizidine alkaloid composition of these two species was investigated throughout their geographical distribution using field collections and herbarium specimens. Both species contain quinolizidine alkaloids, and S. nuttalliana contains the teratogen anagyrine. Lastly, neither species contains the neurotoxin swainsonine as implied by the common name “white loco” for S. nuttalliana.  相似文献   

15.
Polyamines and plant alkaloids   总被引:7,自引:0,他引:7  
Naturally occurring alkaloids are nitrogenous compounds that constitute the pharmacogenically active basic principles of flowering plants. Alkaloids are classified into several biogenically related groups. Tobacco alkaloids are metabolised from polyamines and diamines putrescine and cadaverine. N-methyl transferase is the first enzyme in alkaloid biosynthetic pathway which drives the flow of nitrogen away from polyamine biosynthesis to alkaloid biosynthesis. Arginine decarboxylase has been suggested to be primarily responsible for providing putrescine for nicotine synthesis. Tryptophan is the precursor of indole alkaloids. However, the biosynthetic pathway of tropane and isoquinoline alkaloids are not clear. Genes for several key biosynthetic enzymes like arginine decarboxylase, ornithine decarboxylase, putrescine N-methyl transferase and spermidine synthase, hyoscyamine 6 beta hydroxylase,tryptophan decarboxylase etc have been cloned from different plant species. These genes are regulated by plant hormones, light, different kinds of stress and elicitors like jasmonates and their strong expression is primarily in the cultured roots. In view of this, the axenic hairy root cultures induced by Agrobacterium rhizogenes have been utilised to synthesise secondary metabolites. The current development in the knowledge of alkaloid biosynthesis, particularly molecular analysis, has been discussed in this review that may help to open up new avenues of investigation for the researchers.  相似文献   

16.
The investigation of the alkaloid extracts of the hemiparasitic plant Osyris alba, collected from three different localities in southern France, revealed the concomitant presence of both pyrrolizidine (PA) and quinolizidine (QA) alkaloids in the samples from two of these localities. The sample from the third locality contained only PAs. The eight QAs identified were sparteine, N-methylcytisine, cytisine, methyl-12-cytisine acetate, hydroxy-N-methylcytisine, N-acetylcytisine, lupanine, and anagyrine. Of the eleven detected PAs, eight were identified as chysin A, chysin B, 1-carboxypyrrolizidine-7-olide, senecionine, integerrimine, retrorsine, senecivernine and a new alkaloid janfestine (7R-hydroxychysin A or 1R-carbomethoxy-7R-hydroxypyrrolizidine). PAs were mainly present as their N-oxides This is, to our knowledge, the first report demonstrating the simultaneous presence of two classes of alkaloids, quinolizidine and pyrrolizidine alkaloids, in a single parasitic plant. As these alkaloids do not occur in the same host plant, the results indicate that Osyris must have tapped more than one host plant concomitantly. Since both quinolizidine and pyrrolizidine alkaloids serve as defence compounds against herbivores, affecting different molecular targets, the simultaneous acquisition of the two types of alkaloids by a single plant could provide a novel mode of defence of hemiparasites against herbivores.  相似文献   

17.
The release and stability of the enzymes S-adenosylhomocysteine nucleosidase, lysine decarboxylase, arginine decarboxylase, glutamic decarboxylase, formic hydrogenlyase, formic oxidase, and glucose oxidase from Escherichia coli during disruption of the organisms in a Servall-Ribi refrigerated cell fractionator were examined. With the possible exception of arginine decarboxylase, maximal activity was retained by all the enzymes reported here when the cell suspensions were processed at pressures necessary for rupture of all the organisms (15,000 to 25,000 psi). Considerable variation in the stability of different enzymes liberated by disruption at higher pressures (45,000 to 55,000 psi) was observed. It is reasonable to assume that mechanical forces rather than effects of temperature are responsible for inactivation of these enzymes.  相似文献   

18.
A general survey of the regulation in lysine biosynthesis in Escherichia coli K12 is presented. No polygenic operon exists for the genes that code for enzymes of the lysine biosynthetic pathway. Lysyl-tRNA is not directly involved as a co-repressor in the pathway. Different regulation mechanisms must exist for the different enzymes. In the case of the last enzyme, diaminopimelate decarboxylase, its synthesis is induced in vivo by the lysine-sensitive aspartokinase under its non-inhibited allosteric conformation.  相似文献   

19.
Lysine biosynthesis in Staphylococcus aureus has been studied by use of a series of lysine auxotrophs. The strains were isolated after chemical mutagenesis. The majority of these mutant strains were classified according to the enzymatic step found to be deficient. Specific enzyme assays as well as nutritional tests were used to group the organisms. The enzymes included were dihydrodipicolinate synthetase, dihydrodipicolinate reductase, diaminopimelate epimerase, and diaminopimelate decarboxylase. The accumulation of diaminopimelate in certain mutants and the demonstration of dihydrodipicolinate synthetase and reductase provide the first detailed evidence that S. aureus utilizes the diaminopimelate pathway for lysine biosynthesis. A cell-free system was used to study the regulation of these enzymes with the exception of diaminopimelate epimerase. Lysine repressed all of the enzymes tested. The repression appeared to be coordinate in nature. The data presented provide suggestive evidence that the lysine biosynthetic region in S. aureus constitutes an operon.  相似文献   

20.
《Gene》1996,179(1):73-81
Tetrahydrobenzylisoquinoline alkaloids comprise a diverse class of secondary metabolites with many pharmacologically active members. The biosynthesis at the enzyme level of at least two tetrahydrobenzylisoquinoline alkaloids, the benzophenanthridine alkaloid sanguinarine in the California poppy, Eschscholtzia californica, and the bisbenzylisoquinoline alkaloid berbamunine in barberry, Berberis stolonifera, has been elucidated in detail starting from the aromatic amino acid (aa) l-tyrosine. In an initial attempt to develop alternate systems for the production of medicinally important alkaloids, one enzyme from each pathway (BBE, a covalently flavinylated enzyme of benzophenanthridine alkaloid biosynthesis and CYP80, a phenol coupling cytochrome P-450-dependent oxidase of bisbenzylisoquinoline alkaloid biosynthesis) has been purified to homogeneity, a partial aa sequence determined, and the corresponding cDNAs isolated with aid of synthetic oligos based on the aa sequences. The recombinant enzymes were actively expressed in Spodoptera frugiperda Sf9 cells using a baculovirus vector, purified and then characterized. Insect cell culture has proven to be a powerful system for the overexpression of alkaloid biosynthetic genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号