首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Our previous studies have shown that oxygen inhalation significantly reduces tumor hypoxia in the moderately well-differentiated HI subline of the Dunning prostate R3327 rat carcinoma. To test our hypothesis that modifying hypoxia could improve the radiosensitivity of these tumors, we performed experimental radiotherapy to compare the tumor response to ionizing radiation alone or in combination with oxygen inhalation. Tumor pO(2) measurements were performed on size-selected tumors several hours before radiotherapy using (19)F nuclear magnetic resonance echo planar imaging relaxometry (FREDOM) of the reporter molecule hexafluorobenzene. In common with our previous findings, the larger tumors (>3.5 cm(3)) exhibited greater hypoxia than the smaller tumors (<2 cm(3); P < 0.001), and oxygen inhalation reduced the hypoxic fraction (<10 Torr): In the larger tumors, hypoxic fraction dropped significantly from a mean baseline value of 80% to 17% (P < 0.001). The effect of oxygen administered 30 min before and during irradiation on tumor response to a single 30-Gy dose of photons was evaluated by growth delay. For the smaller tumors, no difference in growth delay was found when treatment was given with or without oxygen breathing. By contrast, breathing oxygen before and during irradiation significantly enhanced the growth delay in the larger tumors (additional 51 days). The differential behavior may be attributed to the low baseline hypoxic fraction (<10 Torr) in small tumors (20%) as a target for oxygen inhalation. There was a strong correlation between the estimated initial pO(2) value and the radiation-induced tumor growth delay (R > 0.8). Our histological studies showed a good match between the perfused vessels marked by Hoechst 33342 dye and the total vessels immunostained by anti-CD31 and indicated extensive perfusion in this tumor line. In summary, the present results suggest that the ability to detect modulation of tumor pO(2), in particular, the residual hypoxic fraction, with respect to an intervention, could have prognostic value for predicting the efficacy of radiotherapy.  相似文献   

2.
Pimonidazole binding was compared with oxygen electrode measurements and with measurements of the radiobiologically hypoxic fraction in C3H mammary tumors in which oxygenation was manipulated by means of subjecting tumor-bearing CDF1 mice to air breathing, carbogen breathing, oxygen breathing, hydralazine injection or tumor clamping. Hypoxia measured by pimonidazole binding could be correlated with both pO2 (r2 = 0.81) and radiobiologically hypoxic fraction (r2 = 0.85) in this system. The scope and limitation of pimonidazole as an immunohistochemical marker for tumor hypoxia is discussed.  相似文献   

3.
The effect of perfluorochemicals in combination with carbogen breathing on the response of SCK tumors of mice to fractionated irradiation was investigated. The SCK tumors of A/J mice were irradiated twice a day at 3 Gy per fraction (6 Gy per day), with a total dose of 18 Gy over 3 days. When the host animals were treated with an intravenous (iv) injection of 12 ml/kg of Fluosol-DA 20% before the first daily tumor irradiation and carbogen breathing during every X irradiation with Fluosol-DA 20% injection without carbogen breathing. The hypoxic cell fraction, as determined by an in vivo-in vitro cloning assay, decreased significantly, and the intratumor pO2, as determined with microelectrodes, was markedly increased by Fluosol-DA 20% injection and carbogen breathing. It was concluded that oxygenation of hypoxic cells in SCK tumors during the course of fractionated irradiation was improved by the iv injection of Fluosol-DA 20% and carbogen breathing.  相似文献   

4.
The usefulness of radiolabeled nitroimidazoles for measuring hypoxia will be clarified by defining the relationship between tracer uptake and radiobiologically hypoxic fraction. We determined the radiobiologically hypoxic fraction from radiation response data in 36B10 rat gliomas using the paired cell survival curve technique and compared the values to the radiobiologically hypoxic fraction inferred from mathematical modeling of time-activity data acquired by PET imaging of [(18)F]FMISO uptake. Rats breathed either air or 10% oxygen during imaging, and timed blood samples were taken. The uptake of [(3)H]FMISO by 36B10 cells in vitro provided cellular binding characteristics of this radiopharmaceutical as a function of oxygen concentration. The radiobiologically hypoxic fraction determined for tumors in air-breathing rats using the paired survival curve technique was 6.1% (95% CL = 4.3- 8.6%), which agreed well with that determined by modeling FMISO time-activity data (7. 4%; 95% CL = 2.5-17.3%). These results are consistent with the agreement between the two techniques for measuring radiobiologically hypoxic fraction in Chinese hamster V79 cell spheroids. In contrast, the FMISO-derived radiobiologically hypoxic fraction in rats breathing 10% oxygen was 13.1% (95% CL 7.9-8.3%), much lower than the radiobiologically hypoxic fraction of 43% determined from the radiation response data. This discrepancy may be due to the failure of FMISO to identify hypoxic cells residing at or above an oxygen level of 2-3 mmHg that will still confer substantial protection against radiation. The presence of transiently hypoxic cells in rats breathing reduced oxygen may also be under-reported by nitroimidazole binding, which is strongly dependent on time and concentration.  相似文献   

5.
M Urano  J Kahn 《Radiation research》1983,96(3):549-559
The effect of hyperthermia on the size of hypoxic and chronically hypoxic cell fractions in murine tumors was studied. The chronically hypoxic cell fraction was defined as a fraction of tumor cells which were not oxygenated under hyperbaric oxygen. Animals were C3Hf/Sed mice derived from our defined flora mouse colony. Tumors were FSa-II and MCa which were early generation isotransplants of a spontaneous fibrosarcoma and a mammary carcinoma, respectively. TCD50 (50% tumor control dose) or the radiation dose which yields a local tumor control in half the treated animals and TG (tumor growth) time or the time required for half the treated tumors to reach 1000 mm3 from the first treatment day were experimental end points. Hyperthermia was given by immersing animal feet into a water bath maintained at 43.5 +/- 0.1 degrees C. Animal tumors were irradiated with a 137Cs unit under hypoxic conditions, in air or under O2 30 psi. The hypoxic cell fraction increased immediately after hyperthermia in both MCa and FSa-II tumors. The chronically hypoxic cell fraction was, on the other hand, decreased following hyperthermia. The decrease was more substantial in the MCa than in FSa-II.  相似文献   

6.
Polarographic determination of tumor oxygenation by Eppendorf histography is currently under investigation as a possible predictor of radiotherapy outcome. Alternatively, the alkaline comet assay has been proposed as a radiobiological approach for the detection of hypoxia in clinical tumor samples. Direct comparisons of these methods are scarce. One earlier study with different murine tumors could not establish a correlation, whereas a weak correlation was reported for a variety of human tumors. Considering the different end points and spatial resolution of the two methods, a direct comparison for a single tumor entity appeared desirable. Anaplastic R3327-AT Dunning prostate tumors were grown on Copenhagen rats to volumes of 1-6 cm(3). Eppendorf histography (100-200 readings in 5 parallel tracks) for 8 different tumors revealed various degrees of oxygenation, with median pO(2) values ranging from 1.1 to 23 mmHg. Within 5 min after an acute exposure to 8 Gy (60)Co gamma rays, tumors were excised from killed animals and rapidly cooled to limit repair, and a single cell suspension was prepared for use with the comet assay. The resulting comet moment distributions did not exhibit two subpopulations (one hypoxic and the other aerobic), and a hypoxic fraction could not be calculated. Instead, the average comet moment distribution was taken as a parameter of overall strand break induction. Corresponding experiments with tumor cells grown in vitro allowed us to derive the relationship between the oxygen enhancement ratio (OER) for the average comet moment and oxygen partial pressure (Howard-Flanders and Alper formula). The validity of this relationship was inferred for cells exposed in situ, and the convolution of a pO(2) distribution with the formula of Howard-Flanders and Alper yielded an array of expected OER values for each tumor. The average expected OER correlated well with the average comet moment (r = 0.89, P < 0.01), and the in situ comet moment distributions could be predicted from the Eppendorf data when 50% repair was taken into account, assuming a 5-min damage half-life. The findings confirm the potential of interstitial polarography to reflect radiobiologically relevant intracellular oxygenation, but also underscore the confounding influence of differences in repair that may occur when cells are prepared from irradiated tissues for use with the comet assay.  相似文献   

7.
Size-dependent changes in therapeutically relevant and interrelated metabolic parameters of a murine fibrosarcoma (FSaII) were investigated in vivo using conscious (unanesthetized) animals and tumor sizes less than or equal to 2% of body weight. Tumor pH and bioenergetics were evaluated by 31P nuclear magnetic resonance spectroscopy (31P-MRS), and tumor tissue oxygen tension (pO2) distribution was examined using O2-sensitive needle electrodes. During growth FSaII tumors showed a progressive loss of phosphocreatine (PCr) and nucleoside triphosphate (NTP) with increasing inorganic phosphate (Pi) and phosphomonoester (PME) signals. Ratios for PCr/Pi, PME/Pi, NTP/Pi, and phosphodiester/inorganic phosphate (PDE/Pi) as well as pH determined by 31P-NMR (pHNMR) and the mean tissue pO2 progressively declined as the tumors increased in size. The only relevant ratio increasing with tumor growth was PME/NTP. When the mean tissue pO2 value was plotted against pHNMR, NTP/Pi, PCr/Pi, PME/Pi, and PDE/Pi for tumor groups of similar mean volumes, a highly significant positive correlation was observed. There was a negative correlation between mean tumor tissue pO2 values and PME/NTP. From these results we concluded that 31P-MRS can detect changes in tumor bioenergetics brought about by changes in tumor oxygenation. Furthermore, the close correlation between oxygenation and energy status suggests that the microcirculation in FSaII tumors yields an O2-limited energy metabolism. Finally, a correlation between the proportion of pO2 readings between 0 and 2.5 mmHg and the radiobiologically hypoxic cell fraction in FSaII tumors was observed. The latter finding might be of particular importance for radiation therapy.  相似文献   

8.
The presence of oxygen-deficient tumor cells is a critical issue in cancer therapy. To identify tumor hypoxia, tissue partial oxygen pressure (pO2) can be measured directly. The OxyLite system allows determination of pO2 in tumors and permits continuous measurements of pO2 at a fixed point. In this study, this system was used to continuously measure pO2 in R3327-AT tumors in animals anesthetized with isoflurane. In addition, continuous pO2 measurement was performed in the muscle in non-tumor-bearing animals. In animals breathing isoflurane balanced by air, tumor pO2 at fixed positions decreased rapidly within 1-2 min of probe positioning but remained stable thereafter. In animals breathing isoflurane balanced by pure oxygen, tumor pO2 was higher and remained high. We also measured pO2 values at multiple positions in R3327-AT tumors of various sizes, with anesthetized animals breathing either air or pure oxygen. Our data showed that the frequency of pO2 measurements below 2.5 or 5.0 mmHg was significantly higher in animals breathing air than in animals breathing pure oxygen. Measurements in different-sized tumors showed that the mean pO2 value decreased as tumor volume increased, with the largest change occurring between tumor volumes of 100 and 200 mm3. Our data demonstrate that the OxyLite system, when used with isoflurane anesthesia, is a valuable tool in the study of tumor hypoxia.  相似文献   

9.
Hypoxia imparts radioresistance to tumors, and various approaches have been developed to enhance oxygenation, thereby improving radiosensitivity. This study explores the influence of kinetic and physical factors on substrate metabolism in a tumor model, based on a Krogh cylinder. In tissue, aerobic metabolism is assumed to depend on glucose and oxygen, represented by the product of Michaelis-Menten expressions. For the base case, an inlet pO(2) of 40 mmHg, a hypoxic limit of 5 mmHg, and a tissue/capillary radius ratio of 10 are used. For purely aerobic metabolism, a hypoxic fraction of 0.16 and volume-average pO(2) of 8 mmHg are calculated. Reducing the maximum oxygen rate constant by 9%, decreasing the tissue cylinder radius by 5%, or increasing the capillary radius by 8% abolishes the hypoxic fraction. When a glycolytic term is added, concentration profiles are similar to the base case. Using a distribution of tissue/capillary radius ratios increases the hypoxic fraction and reduces sensitivity to the oxygen consumption rate, compared to the case with a single tissue/capillary radius ratio. This model demonstrates that hypoxia is quite sensitive to metabolic rate and geometric factors. It also predicts quantitatively the effects of inhibited oxygen metabolism and enhanced mass transfer on tumor oxygenation.  相似文献   

10.
Wen, B., Urano, M., Humm, J. L., Seshan, V. E., Li, G. C. and Ling, C. C. Comparison of Helzel and OxyLite Systems in the Measurements of Tumor Partial Oxygen Pressure (pO(2)). Radiat. Res. 168, 67-75 (2008). It has been demonstrated in both experimental and human malignancies that hypoxic tumor cells are linked with aggressive disease phenotype. One of the methods to identify these cells is by direct physical measurement of tumor pO(2). This study compared pO(2) values measured with two systems, the Helzel Hypoximeter (successor of the polarographic Eppendorf electrode) and the Oxford-Optronix OxyLite (fiber-optic probe), in R3327-AT and R3327-AT/tkeGFP tumors. Partial oxygen pressure was measured in individual tumors with either system or in the same tumor with both systems. The similarities and discrepancies in pO(2) measurements between the two systems were also investigated when tumor-bearing animals were breathing pure oxygen. Our data showed a considerable heterogeneity in pO(2) values in each tumor using both the Helzel and OxyLite systems. Similar results were obtained with both systems for the mean and median pO(2) values, and the distributions of pO(2) values within the interval 0 < pO(2) < 40 mmHg (the range important for defining tumor hypoxia) were found to be statistically equivalent. However, the frequencies of high pO(2) values (>40 mmHg) and zero values measured by the two systems were statistically significantly different.  相似文献   

11.
The variation in hypoxic fraction as a function of time after various priming doses of radiation has been investigated in a C3H mouse mammary carcinoma in situ. The hypoxic fraction was calculated from data for local tumor control. Untreated tumors were found to contain 4.8% radiobiologically hypoxic cells. Within minutes after a priming dose of 20 Gy given in air, the hypoxic fraction increased to a value not significantly different from 100%. After 4 h, reoxygenation was complete (hypoxic fraction 1.3%), and the hypoxic fraction stabilized at a level significantly below the untreated value. Following a priming dose of 40 Gy the reoxygenation pattern was different: The hypoxic fraction stayed above the pretreatment value for 4 h, and pronounced reoxygenation occurred after 12 h (hypoxic fraction 0.4%). At longer time intervals the hypoxic fraction again increased to--and slightly above--the oxygenation level of untreated tumors. The present findings show that reoxygenation in solid tumors is a function of radiation dose, and the data suggest that mechanisms other than a decrease in tumor cell O2 consumption are involved in tumor reoxygenation.  相似文献   

12.
Several studies have demonstrated that untreated tumors may show significant fluctuations in tissue oxygen tension (pO(2)). Radiation treatment may induce changes in the tumor microenvironment that alter the pO(2) fluctuation pattern. The purpose of the present study was to investigate whether pO(2) fluctuations may also occur in irradiated tumors. A-07 human melanoma xenografts were irradiated with single doses of 0, 5 or 10 Gy. Fluctuations in pO(2) were recorded with OxyLite probes prior to irradiation and 24 and 72 h after the radiation exposure. Radiation-induced changes in the tumor microenvironment (i.e. blood perfusion and extracellular volume fraction) were assessed by dynamic contrast-enhanced magnetic resonance imaging. Seventy-two hours after 10 Gy, tumor blood perfusion had decreased to approximately 40% of that prior to irradiation, whereas the extracellular volume fraction had increased by approximately 25%. Fluctuations in pO(2) were seen in most tumors, irrespective of radiation dose and time after irradiation. The mean pO(2), the number of fluctuations around the mean pO(2), the number of fluctuations around threshold pO(2) values of 1, 2, 3, 5, 7 and 10 mmHg, and the amplitude of the fluctuations were determined for each pO(2) trace. No significant differences were detected between irradiated and unirradiated tumors. The results showed that pO(2) fluctuations may occur in irradiated tumors and that the pO(2) fluctuation pattern in A-07 tumors exposed to 5 or 10 Gy is similar to that in untreated tumors. Consequently, these doses did not induce changes in the tumor microenvironment that were sufficient to cause detectable alterations in the pO(2) fluctuation pattern.  相似文献   

13.
S Masunaga  K Ono  M Abe 《Radiation research》1991,125(3):243-247
C3H/He mice bearing the SCC VII tumor were irradiated after being given 10 injections of 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating cells in the tumors, and the tumors were then excised and trypsinized. The tumor cell suspensions were incubated with cytochalasin-B (which blocks cytokinesis), and the micronucleus frequency in unlabeled cells was determined using immunofluorescence staining to BrdU. The micronucleus frequency was then used to calculate the surviving fraction of the unlabeled cells, using the regression line relating the micronucleus frequency to the surviving fraction determined separately for the total tumor cell population. Using this technique, a cell survival curve could be determined for the unlabeled cells, which were regarded as the quiescent cells. Assays performed both immediately after and 24 h after irradiation of normally-aerated tumors showed that unlabeled cells were more radioresistant and had a greater capacity for repair of potentially lethal damage than the tumor cell population as a whole. Moreover, when the assay was performed immediately after the irradiation of both normally-aerated and hypoxic tumors, it was found that unlabeled cells had a much higher hypoxic fraction than the tumor cell population as a whole. This appears to be a useful method for determining the responses of quiescent cells in solid tumors to various treatments.  相似文献   

14.
Misonidazole has been shown to bind selectively to hypoxic cells in tissue culture and to cells which are presumed to be chronically hypoxic in EMT6 spheroids and tumors. Thus it has considerable potential as a marker of hypoxic cells in vivo. To further evaluate this potential EMT6/Ed spheroids were used to quantitate misonidazole binding under conditions which resulted in hypoxic fractions between 0 and 1. Hypoxic fractions were quantitated using radiation survival curves. A doubling of the oxygen in the gas phase to 40% was required to fully oxygenate all chronically hypoxic cells. The patterns of binding of 14C-labeled misonidazole determined by autoradiography were consistent with the regions of radiobiological hypoxia as predicted by oxygen diffusion theory. The overall uptake of 3H-labeled misonidazole by spheroids correlated well with the hypoxic fraction, although binding to aerobic cells and necrotic tissue contributed appreciably to the total label in the spheroids. It is concluded that misonidazole is an excellent marker of hypoxia in EMT6/Ed spheroids at the microscopic level, and the total amount bound per spheroid provides a potentially useful measure of the hypoxic fraction.  相似文献   

15.
Hypoxia affects the sensitivity of cells to radiation. Hence there is considerable interest in the development and assessment of techniques for measuring oxygen levels. In the work described here, we explore the use of tumor needle biopsies (fine needle aspirates) in an assay that is standard in the field of radiation biology: the paired survival assay. We found that needle biopsies are a feasible option for estimating cell survival when conducting this assay, and that the variability in cell survival between tumors was greater than that between different biopsies from the same tumor. Using this technique, we then compared measurements of tumor hypoxia using the paired survival assay and the growth delay assay in the same individual tumors. We found a significant correlation between these two techniques.  相似文献   

16.
There is now abundant evidence that oxygenation in rodent, canine and human tumors is improved during and for up to 1-2 days after heating at mild temperatures. An increase in tumor blood perfusion along with a decline in the oxygen consumption rate appears to account for the improvement of tumor oxygenation by mild hyperthermia. The magnitude of the increase in tumor pO(2), determined with oxygen-sensitive microelectrodes, caused by mild hyperthermia is less than that caused by carbogen breathing. However, mild hyperthermia is far more effective than carbogen breathing in increasing the radiation response of experimental tumors, probably because mild hyperthermia oxygenates both (diffusion-limited) chronically hypoxic and (perfusion-limited) acutely hypoxic cells, whereas carbogen breathing oxygenates only the chronically hypoxic cells. Mild hyperthermia is also more effective than nicotinamide, which is known to oxygenate acutely hypoxic cells, in enhancing the radiation response of experimental tumors. The combination of mild hyperthermia with carbogen or nicotinamide is highly effective in reducing the hypoxic cell fraction in tumors and increasing the radiation response of experimental tumors. A primary rationale for the use of hyperthermia in combination with radiotherapy has been that hyperthermia is equally cytotoxic toward fully oxygenated and hypoxic cells and that it directly sensitizes both fully oxygenated and hypoxic cells to radiation. Such cytotoxicity and such a radiosensitizing effect may be expected to be significant when the tumor temperature is elevated to at least 42-43 degrees C. Unfortunately, it is often impossible to uniformly raise the temperature of human tumors to this level using the hyperthermia devices currently available. However, it is relatively easy to raise the temperature of human tumors into the range of 39-42 degrees C, which is a temperature that can improve tumor oxygenation for up to 1-2 days. The potential usefulness of mild hyperthermia to enhance the response of human tumors to radiotherapy by improving tumor oxygenation merits continued investigation.  相似文献   

17.
The effects of pentoxifylline (PTX), a drug commonly used for vascular disorders in humans, on the pO2 in SCK tumors of A/J mice and FSa-II tumors of C3Heb/FeJ mice as well as on the radioresponse of SCK tumors were investigated. When the host mice were injected intraperitoneally (ip) with 5 mg/kg PTX, the tumor pO2 increased slowly, peaked 20-50 min postinjection, and returned to its original level in 70-90 min. The magnitude of the increase in tumor pO2 varied markedly depending on the site and tumors. The magnitude of the changes in tumor pO2 after an ip injection of 25 or 50 mg/kg PTX was similar to that caused by 5 mg/kg PTX, but the pO2 tended to remain elevated longer with the higher dose of PTX. When the A/J mice bearing SCK tumors in the legs were injected ip with 50 mg/kg PTX and the tumors were X-irradiated 20 min later, the radiation-induced growth delay of the tumors was greater than that caused by X irradiation alone. The present study demonstrated that PTX is potentially useful for increasing the pO2 and the radioresponse of human tumors.  相似文献   

18.
The effect of hyperglycemia (elevated blood glucose level) on the response of a murine tumor to irradiation given alone or in combination with hyperthermia was studied. Tumors were early generation isotransplants of a spontaneous C3H/Sed mouse fibrosarcoma, FSa-II. Single-cell suspensions were transplanted into the foot, and irradiation was given when each tumor reached an average diameter of 7 mm. Following irradiation, the tumor growth time to reach 1000 mm3 was studied and the dose-response curve between the tumor growth time and radiation dose was fitted. Preadministration of glucose increased the size of the hypoxic and chronically hypoxic cell fractions without altering the slope of the dose-response curve where the chronically hypoxic cell fraction is determined as the fraction of cells which were not oxygenated under hyperbaric oxygen conditions. Hyperthermia given prior to irradiation enhanced the tumor response to irradiation, but simultaneously increased the size of the hypoxic and chronically hypoxic cell fractions. Similar results were observed following hyperthermia given after irradiation. When hyperthermia at 43.5 degrees C was given 24 h before irradiation, the size of the hypoxic cell fraction increased with increasing treatment time, while a substantial decrease in the chronically hypoxic cell fraction was observed. Administration of glucose 60 min before hyperthermia further increased the size of the hypoxic cell fraction. Possible mechanisms explaining why glucose administration increases the hypoxic cell fractions are discussed.  相似文献   

19.
The efficacy of radiation treatment depends upon local oxygen concentration. We postulated that the variability in responsiveness of tumor xenografts to a fixed dose of radioimmunotherapy might be related to the tumor pO2 at the time that radioimmunotherapy was administered. We evaluated the growth of xenografts of CALU-3 tumors, a non-small cell lung carcinoma, in response to an 8.9-MBq dose of 131I-RS-7-anti-EGP-1 and correlated tumor growth rate with initial tumor pO2 measured by EPR oximetry. The greatest growth delay in response to radioimmunotherapy had the highest initial pO2, and the fastest-growing tumors had the lowest initial pO2. We then determined the dynamic effect of radioimmunotherapy on tumor pO2 by serial measurements of pO2 for 35 days after radioimmunotherapy. This information could be important for ascertaining the likelihood that a tumor will respond to additional doses as part of a multiple dose scheme. Serial tumor pO2 measurements may help identify a window of opportunity when the surviving tumor regions will be responsive to a second round of radioimmunotherapy or a second therapeutic modality such as chemotherapy or an anti-vascular agent. After radioimmunotherapy, there was an increase in tumor pO2 followed by a decrease below initial levels in most mice. Thus defined times may exist when a tumor is more or less radiosensitive after radioimmunotherapy.  相似文献   

20.
Biological effectiveness of a mixed-beam regimen of fast neutrons and photons was studied in an animal tumor system. NFSa , a spontaneous fibrosarcoma in a C3H mouse, was transplanted in the right hind legs of syngeneic male mice and locally irradiated with a single dose or five daily doses. Tumor control experiments showed that five gamma-ray doses increased TCD50 values by 20 Gy and produced a shallower slope on the dose-response curve compared to that after a single fraction. Fractionated neutron doses also increased the TCD50 value by 9 Gy without changing the slope of the dose-response curve. A mixed-beam regimen of N-gamma-gamma-gamma-N resulted in an independent effect on the tumor. Second, tumor cell survival was examined by the lung colony assay. Nembutal anesthesia reduced the tumor oxic cell fraction, resulting in a single component dose-response curve after a single gamma ray. Five fractionated doses of gamma rays increased both D0 and extrapolation number while those of fast neutrons increased only extrapolation number. The D0 and extrapolation number of the mixed-beam regimen were again identical to those values assuming that the mixed-beam effect was independent. RBEs obtained from cell survival were fairly close to those from TCD50 assays except single-dose experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号