首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Control over the nuclear localization of nuclear factor kappaB/Rel proteins is accomplished in large part through association with members of the inhibitor of kappaB (IkappaB) protein family. For example, the well studied IkappaBalpha protein actively shuttles between the nucleus and the cytoplasm and both inhibits nuclear import and mediates nuclear export of NF-kappaB/Rel proteins. In contrast, the IkappaBbeta protein can inhibit nuclear import of NF-kappaB/Rel proteins but does not remove NF-kappaB/Rel proteins from the nucleus. To further understand how the IkappaB proteins control the nuclear-cytoplasmic distribution of NF-kappaB/Rel proteins, we have characterized the nuclear import and nuclear export functions of IkappaBepsilon. Our results indicate that the IkappaBepsilon protein, like the IkappaBalpha protein, actively shuttles between the nucleus and the cytoplasm. Similar to IkappaBalpha, nuclear import of IkappaBepsilon is mediated by its ankyrin repeat domain and is not blocked by the dominant-negative RanQ69L protein. However, the nuclear import function of the IkappaBepsilon ankyrin repeat domain is markedly less efficient than that of IkappaBalpha, with the result that nuclear shuttling of IkappaBepsilon between the nucleus and the cytoplasm is significantly slower than IkappaBalpha. Nuclear export of IkappaBepsilon is mediated by a short leucine-rich nuclear export sequence (NES)-like sequence ((343)VLLPFDDLKI(352)), located between amino acids 343 and 352. This NES-like sequence is required for RanGTP-dependent binding of IkappaBepsilon to CRM1. Nuclear accumulation of IkappaB(epsilon) is increased by either leptomycin B treatment or alanine substitutions within the IkappaBepsilon-derived NES. A functional NES is required for both efficient cytoplasmic retention and post-induction control of c-Rel by IkappaBepsilon, consistent with the notion that IkappaBepsilon-mediated nuclear export contributes to control over the nucleocytoplasmic distribution of NF-kappaB/Rel proteins.  相似文献   

9.
10.
11.
A member of the Paramyxoviridae family of RNA viruses, respiratory syncytial virus (RSV), is a leading cause of epidemic respiratory tract infection in children. In children, RSV primarily replicates in the airway mucosa, a process that alters epithelial cell chemokine expression, thereby inducing airway inflammation. We investigated the role of the mitogen-activated protein kinase kinase kinase 14/NF-kappaB-inducing kinase (NIK) in the activation of NF-kappaB-dependent genes in alveolus-like A549 cells. RSV infection induces a time dependent increase of NIK mRNA and protein expression that peaks 12 to 24 h after viral exposure. Immunoprecipitation kinase assays indicate that NIK kinase activity is activated even more rapidly (within 6 h of RSV adsorption) associated with an endogenous approximately 50-kDa NF-kappaB2 substrate. Because NIK associates with IKKalpha to mediate processing of the 100-kDa NF-kappaB2 precursor into its 52-kDa DNA binding isoform ("p52"), the effects of RSV on NIK complex formation with IKKalpha and NF-kappaB2 were determined by coimmunoprecipitation assay. We find that NIK, IKKalpha, and both 100 kDa- and 52-kDa NF-kappaB2 isoforms strongly complex 15 h after exposure to RSV at times subsequent to NIK kinase activation. Western immunoblot and microaffinity DNA pull-down assays showed a parallel increase in nuclear translocation and DNA binding of the NF-kappaB2-Rel B complex. Interestingly, we make the novel observations that NIK also transiently translocates into the nucleus complexed with 52-kDa NF-kappaB2. Small interfering RNA-mediated NIK "knock-down" blocked RSV-inducible 52-kDa NF-kappaB2 processing and interfered with the early activation of a subset of NF-kappaB-dependent genes, indicating the importance of this activation pathway in the genomic NF-kappaB response to RSV. Together, these data indicate that RSV infection rapidly activates the noncanonical NF-kappaB activation pathway prior to the more potent canonical pathway activation. This appears to be through a novel mechanism involving induction of NIK kinase activity, expression, and nuclear translocation of a ternary complex with IKKalpha and processed NF-kappaB2.  相似文献   

12.
Influenza A viruses continue to represent a severe threat worldwide, causing large epidemics and pandemics responsible for thousands of deaths every year. Excessive inflammation due to overabundant production of proinflammatory cytokines by airway epithelial cells is considered an important factor in disease pathogenesis. Here we report that influenza A virus induced IkappaB kinase (IKK) activity in human airway epithelial A549 cells, resulting in persistent activation of nuclear factor-kappaB (NF-kappaB), a critical regulator of the inflammatory response. Although lung epithelial cells are highly sensitive to stimulation of the IKK/NF-kappaB pathway by influenza virus infection, NF-kappaB was not activated in several non-pulmonary cells permissive to the virus, indicating a cell-specific response. Moreover, NF-kappaB was not essential for virus replication but triggered the expression of proinflammatory cytokines in infected lung cells and was directly responsible for production of high levels of interleukin-8, a chemokine associated with influenza-induced inflammation and airway pathology. We also report that 9-deoxy-delta9,delta12-13,14-dihydro-prostaglandin D2, a cyclopentenone prostanoid with therapeutic efficacy against influenza in preclinical studies, was a powerful inhibitor of influenza virus-induced IKK activity and interleukin-8 production by human pulmonary cells. The results identify IKK as an important factor in triggering influenza virus-induced inflammatory reactions in pulmonary epithelium, suggesting novel therapeutic approaches in the treatment of influenza.  相似文献   

13.
Jones JO  Arvin AM 《Journal of virology》2006,80(11):5113-5124
Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. Using human cellular DNA microarrays, we found that many nuclear factor kappa B (NF-kappaB)-responsive genes were down-regulated in VZV-infected fibroblasts, suggesting that VZV infection inhibited the NF-kappaB pathway. The activation of this pathway causes a cellular antiviral response, including the production of alpha/beta interferon, cytokines, and other proteins that restrict viral infection. In these experiments, we demonstrated that VZV interferes with NF-kappaB activation in cultured fibroblasts and in differentiated epidermal cells in skin xenografts of SCIDhu mice infected in vivo. VZV infection of fibroblasts caused a transient nuclear translocation of p50 and p65, the canonical NF-kappaB family members. In a process that was dependent upon the presence of infectious VZV, these proteins rapidly became sequestered in the cytoplasm of VZV-infected cells. Exclusion of NF-kappaB proteins from nuclei was associated with the continued presence of IkappaBalpha, which binds p50 and p65 and prevents their nuclear accumulation. IkappaBalpha levels did not diminish even though the protein became phosphorylated and ubiquitinated, as determined based on detection of the characteristic high-molecular-weight form of the protein, and the 26S proteasome remained functional in VZV-infected cells. VZV infection also inhibited the characteristic degradation of IkappaBalpha that is induced by exposure of fibroblasts to tumor necrosis factor alpha. As expected, herpes simplex virus 1 caused the persistent nuclear translocation of NF-kappaB proteins, which has been shown to facilitate its replication, whereas VZV infection progressed without persistent NF-kappaB nuclear localization. We suggest that VZV has evolved a mechanism to limit host cell antiviral defenses by sequestering NF-kappaB proteins in the cytoplasm, a strategy that appears to be unique among the herpesviruses.  相似文献   

14.
15.
16.
Hepatitis C virus (HCV) core protein, a viral nucleocapsid, has been shown to affect various intracellular events including the nuclear factor kappaB (NF-kappaB) signaling supposedly associated with inflammatory response, cell proliferation, and apoptosis. In order to elucidate the effect of HCV core protein on the NF-kappaB signaling in HeLa and HepG2 cells, a reporter assay was utilized. HCV core protein significantly activated NF-kappaB signaling in a dose-dependent manner not only in HeLa and HepG2 cells transiently transfected with core protein expression plasmid, but also in HeLa cells induced to express core protein under the control of doxycycline. HCV core protein increased the DNA binding affinity of NF-kappaB in the electrophoretic mobility shift assay. Acetyl salicylic acid, an IKKbeta-specific inhibitor, and dominant negative form of IKKbeta significantly blocked NF-kappaB activation by HCV core protein, suggesting HCV core protein activates the NF-kappaB pathway mainly through IKKbeta. Moreover, the dominant negative forms of TRAF2/6 significantly blocked activation of the pathway by HCV core protein, suggesting HCV core protein mimics proinflammatory cytokine activation of the NF-kappaB pathway through TRAF2/6. In fact, HCV core protein activated interleukin-1beta promoter mainly through NF-kappaB pathway. Therefore, this function of HCV core protein may play an important role in the inflammatory reaction induced by this hepatotropic virus.  相似文献   

17.
18.
19.
Garbitt RA  Bone KR  Parent LJ 《Journal of virology》2004,78(24):13534-13542
The Rous sarcoma virus Gag protein undergoes transient nuclear trafficking during virus assembly. Nuclear import is mediated by a nuclear targeting sequence within the MA domain. To gain insight into the role of nuclear transport in replication, we investigated whether addition of a "classical " nuclear localization signal (NLS) in Gag would affect virus assembly or infectivity. A bipartite NLS derived from nucleoplasmin was inserted into a region of the MA domain of Gag that is dispensable for budding and infectivity. Gag proteins bearing the nucleoplasmin NLS insertion displayed an assembly defect. Mutant virus particles (RC.V8.NLS) were not infectious, although they were indistinguishable from wild-type virions in Gag, Gag-Pol, Env, and genomic RNA incorporation and Gag protein processing. Unexpectedly, postinfection viral DNA synthesis was also normal, as similar amounts of two-long-terminal-repeat junction molecules were detected for RC.V8.NLS and wild type, suggesting that the replication block occurred after nuclear entry of proviral DNA. Phenotypically revertant viruses arose after continued passage in culture, and sequence analysis revealed that the nucleoplasmin NLS coding sequence was deleted from the gag gene. To determine whether the nuclear targeting activity of the nucleoplasmin sequence was responsible for the infectivity defect, two critical basic amino acids in the NLS were altered. This virus (RC.V8.KR/AA) had restored infectivity, and the MA.KR/AA protein showed reduced nuclear localization, comparable to the wild-type MA protein. These data demonstrate that addition of a second NLS, which might direct MA and/or Gag into the nucleus by an alternate import pathway, is not compatible with productive virus infection.  相似文献   

20.
A highly fluorescent mutant form of the green fluorescent protein (GFP) has been fused to the human nuclear factor kappaB (NF-kappaB) p50 and p105 (p50/IkappaB gamma), a precursor protein of NF-kappaB p50. GFP-p50 and GFP-p105 were expressed in monkey COS-7 cells and human HeLa cells. Translocation of these chimeric proteins was observed by confocal laser scanning microscopy. GFP-p50 (without IkappaB gamma) in the transfected cells resided in the nucleus. On the other hand, GFP-p105 (GFP-p50 with IkappaB gamma) localized only in the cytoplasm before stimulation and translocated to the nucleus with stimulant specificity similar to that of native NF-kappaB/IkappaB. In addition, the translocation of NF-kappaB to the nucleus had a distinct lag time (a quiescent time) in the target cells. The lag time lasted 10-20 min after stimulation with hydrogen peroxide or tumor necrosis factor alpha. It was suggested that this might be due to the existence of a limiting step where NF-kappaB is released from NF-kappaB/IkappaB by the proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号