共查询到20条相似文献,搜索用时 0 毫秒
1.
Janne Balsamo Carlos Arregui TinChung Leung Jack Lilien 《The Journal of cell biology》1998,143(2):523-532
Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: α-and β- or γ- catenin. Phosphorylation of β-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from β-catenin, thus maintaining the cadherin–actin connection (Balsamo et al., 1996). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and β-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion. 相似文献
2.
Interleukin-1α (IL-1α) is a proinflammatory cytokine and a key player in host immune responses in higher eukaryotes. IL-1α has pleiotropic effects on a wide range of cell types, and it has been extensively studied for its ability to contribute to various autoimmune and inflammation-linked disorders, including rheumatoid arthritis, Alzheimer's disease, systemic sclerosis and cardiovascular disorders. Interestingly, a significant proportion of IL-1α is translocated to the cell nucleus, in which it interacts with histone acetyltransferase complexes. Despite the importance of IL-1α, little is known regarding its binding targets and functions in the nucleus. We took advantage of the histone acetyltransferase (HAT) complexes being evolutionarily conserved from yeast to humans and the yeast SAGA complex serving as an epitome of the eukaryotic HAT complexes. Using gene knock-out technique and co-immunoprecipitation of the IL-1α precursor with TAP-tagged subunits of the yeast HAT complexes, we mapped the IL-1α-binding site to the HAT/Core module of the SAGA complex. We also predicted the 3-D structure of the IL-1α N-terminal domain, and by employing structure similarity searches, we found a similar structure in the C-terminal regulatory region of the catalytic subunit of the AMP-activated/Snf1 protein kinases, which interact with HAT complexes both in mammals and yeast, respectively. This finding is further supported with the ability of the IL-1α precursor to partially rescue growth defects of snf1Δ yeast strains on media containing 3-Amino-1,2,4-triazole (3-AT), a competitive inhibitor of His3. Finally, the careful evaluation of our data together with other published data in the field allows us to hypothesize a new function for the ADA complex in SAGA complex assembly. 相似文献
3.
Katrin Fink Hans-J?rg Busch Natascha Bourgeois Meike Schwarz Dennis Wolf Andreas Zirlik Karlheinz Peter Christoph Bode Constantin von zur Muhlen 《PloS one》2013,8(2)
Objective
The endothelial protein C-receptor (EPCR) is an endothelial transmembrane protein that binds protein C and activated protein C (APC) with equal affinity, thereby facilitating APC formation. APC has anticoagulant, antiapoptotic and antiinflammatory properties. Soluble EPCR, released by the endothelium, may bind activated neutrophils, thereby modulating cell adhesion. EPCR is therefore considered as a possible link between the anticoagulant properties of protein C and the inflammatory response of neutrophils. In the present study, we aimed to provide proof of concept for a direct binding of EPCR to the β2 –integrin Mac-1 on monocytic cells under static and physiological flow conditions.Measurements and Main Results
Under static conditions, human monocytes bind soluble EPCR in a concentration dependent manner, as demonstrated by flow cytometry. Binding can be inhibited by specific antibodies (anti-EPCR and anti-Mac-1). Specific binding was confirmed by a static adhesion assay, where a transfected Mac-1 expressing CHO cell line (Mac-1+ cells) bound significantly more recombinant EPCR compared to Mac-1+ cells blocked by anti-Mac-1-antibody and native CHO cells. Under physiological flow conditions, monocyte binding to the endothelium could be significantly blocked by both, anti-EPCR and anti-Mac-1 antibodies in a dynamic adhesion assay at physiological flow conditions. Pre-treatment of endothelial cells with APC (drotrecogin alfa) diminished monocyte adhesion significantly in a comparable extent to anti-EPCR.Conclusions
In the present study, we demonstrate a direct binding of Mac-1 on monocytes to the endothelial protein C receptor under static and flow conditions. This binding suggests a link between the protein C anticoagulant pathway and inflammation at the endothelium side, such as in acute vascular inflammation or septicaemia. 相似文献4.
5.
6.
Brian R. Fluharty Emiliano Biasini Matteo Stravalaci Alessandra Sclip Luisa Diomede Claudia Balducci Pietro La Vitola Massimo Messa Laura Colombo Gianluigi Forloni Tiziana Borsello Marco Gobbi David A. Harris 《The Journal of biological chemistry》2013,288(11):7857-7866
A hallmark of Alzheimer disease (AD) is the accumulation of the amyloid-β (Aβ) peptide in the brain. Considerable evidence suggests that soluble Aβ oligomers are responsible for the synaptic dysfunction and cognitive deficit observed in AD. However, the mechanism by which these oligomers exert their neurotoxic effect remains unknown. Recently, it was reported that Aβ oligomers bind to the cellular prion protein with high affinity. Here, we show that N1, the main physiological cleavage fragment of the cellular prion protein, is necessary and sufficient for binding early oligomeric intermediates during Aβ polymerization into amyloid fibrils. The ability of N1 to bind Aβ oligomers is influenced by positively charged residues in two sites (positions 23–31 and 95–105) and is dependent on the length of the sequence between them. Importantly, we also show that N1 strongly suppresses Aβ oligomer toxicity in cultured murine hippocampal neurons, in a Caenorhabditis elegans-based assay, and in vivo in a mouse model of Aβ-induced memory dysfunction. These data suggest that N1, or small peptides derived from it, could be potent inhibitors of Aβ oligomer toxicity and represent an entirely new class of therapeutic agents for AD. 相似文献
7.
8.
9.
Robyn T. Rebbeck Yamuna Karunasekara Esther M. Gallant Philip G. Board Nicole A. Beard Marco G. Casarotto Angela F. Dulhunty 《Biophysical journal》2011,(4):922
Although it has been suggested that the C-terminal tail of the β1a subunit of the skeletal dihyropyridine receptor (DHPR) may contribute to voltage-activated Ca2+ release in skeletal muscle by interacting with the skeletal ryanodine receptor (RyR1), a direct functional interaction between the two proteins has not been demonstrated previously. Such an interaction is reported here. A peptide with the sequence of the C-terminal 35 residues of β1a bound to RyR1 in affinity chromatography. The full-length β1a subunit and the C-terminal peptide increased [3H]ryanodine binding and RyR1 channel activity with an AC50 of 450–600 pM under optimal conditions. The effect of the peptide was dependent on cytoplasmic Ca2+, ATP, and Mg2+ concentrations. There was no effect of the peptide when channel activity was very low as a result of Mg2+ inhibition or addition of 100 nM Ca2+ (without ATP). Maximum increases were seen with 1–10 μM Ca2+, in the absence of Mg2+ inhibition. A control peptide with the C-terminal 35 residues in a scrambled sequence did not bind to RyR1 or alter [3H]ryanodine binding or channel activity. This high-affinity in vitro functional interaction between the C-terminal 35 residues of the DHPR β1a subunit and RyR1 may support an in vivo function of β1a during voltage-activated Ca2+ release. 相似文献
10.
11.
12.
Kumiko Samejima Melpomeni Platani Marcin Wolny Hiromi Ogawa Giulia Vargiu Peter J. Knight Michelle Peckham William C. Earnshaw 《The Journal of biological chemistry》2015,290(35):21460-21472
The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible “dog leash,” allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation. 相似文献
13.
14.
Background
Cyr61 is a member of the CCN (Cyr61, connective tissue growth, NOV) family of extracellular-associated (matricellular) proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C (vWF), thrombospondin type 1 (TSP), and C-terminal growth factor cysteine knot (CT) domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed.Methods and Findings
In this report, surface plasmon resonance (SPR) experiments and solid-phase binding assays demonstrate that recombinant Cyr61 interacts with immobilized monomeric or multimeric vitronectin (VTNC) with KD in the nanomolar range. Notably, the binding site for Cyr61 was identified as the somatomedin B domain (SMTB 1–44) of VTNC, which mediates its interaction with PAI-1, uPAR, and integrin αvβ3. Accordingly, PAI-1 outcompetes Cyr61 for binding to immobilized SMTB 1–44, and Cyr61 attenuates uPAR-mediated U937 adhesion to VTNC. In contrast, isothermal titration calorimetry shows that Cyr61 does not display high-affinity binding for SMTB 1-44 in solution. Nevertheless, competitive ELISA revealed that multimeric VTNC, heat-modified monomeric VTNC, or SMTB 1–44 at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, β-endorphin, and other molecules.Conclusions
The finding that Cyr61 interacts with the SMTB 1–44 domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis. 相似文献15.
Thomas Vercruysse Els Pardon Els Vanstreels Jan Steyaert Dirk Daelemans 《The Journal of biological chemistry》2010,285(28):21768-21780
The human immunodeficiency virus, type 1 (HIV-1)-encoded Rev protein is essential for the expression of late viral mRNAs. Rev forms a large organized multimeric protein-protein complex on the Rev response element of these viral mRNA species and transports them from the nucleus to the cytoplasm, exploiting the CRM1-mediated cellular machinery. Here we report the selection of a nanobody, derived from a llama heavy-chain only antibody, that efficiently blocks the assembly of Rev multimers. The nanobody inhibits HIV-1 replication in cells and specifically suppresses the Rev-dependent expression of partially spliced and unspliced HIV-1 RNA. In HIV-susceptible cells, this nanobody thus has potential as an effective anti-HIV agent using genetic immunization strategies. Its binding site was mapped to Rev residues Lys-20 and Tyr-23 located in the N-terminal α-helical multimerization domain. In the presence of this nanobody, we observed an accumulation of dimeric Rev species, supporting a head-to-head/tail-to-tail molecular model for Rev assembly. The results indicate that the oligomeric assembly of Rev follows an ordered stepwise process and identify a new epitope within Rev that could guide strategies for the development of novel HIV inhibitors. 相似文献
16.
17.
18.
Chun-Shiang Lin Chia-Liang Lin Tsung-Ho Ying Hui-Ling Chiou Chia-Hung Hung Wei-Shan Liao Yi-Hsien Hsieh Shao-Hsuan Kao 《Journal of cellular physiology》2020,235(11):8446-8460
β-Mangostin is a natural mangostin with potent anticancer activity against various cancers. In this study, we further explored the anticancer activity of β-mangostin on cervical cancer cells. β-Mangostin did not affect cell viability and cell cycle distribution in HeLa and SiHa cells; however, it dose-dependently inhibited the migration and invasion of both the human cervical cancer cell lines. In addition, we observed that β-mangostin suppressed the expression of integrin αV and β3 and the downstream focal adhesion kinase/Src signaling. We also found that Snail was involved in the β-mangostin inhibited cell migration and invasion of HeLa cell. Then, our findings showed that β-mangostin reduced both nuclear translocation and messenger RNA expression of AP-1 and demonstrated that AP-1 could target to the Snail promoter and induce Snail expression. Kinase cascade analysis and reporter assay showed that JNK2 was involved in the inhibition of AP-1/Snail axis by β-mangostin in HeLa cells. These results indicate that β-mangostin can inhibit the mobility and invasiveness of cervical cancer cells, which may attribute to the suppression of both integrin/Src signaling and JNK2-mediated AP-1/Snail axis. This suggests that β-mangostin has potential antimetastatic potential against cervical cancer cells. 相似文献
19.
20.
《Cell communication & adhesion》2013,20(4):281-297
The α1β1 and α2β1 integrins, extracellular matrix receptors for collagens and/or laminins, have similarities in structure and ligand binding. Recent studies suggest that the two receptors mediate distinct post-ligand binding events and are not simply redundant receptors. To discern the mechanisms by which the two receptors differ, we focused on the roles of the cytoplasmic domains of the α subunits. We expressed either full-length α1 integrin subunit cDNA (XICI), full-length α2 integrin subunit cDNA (X2C2), chimeric cDNA composed of the extracellular and transmembrane domains of Q2 subunit and the cytoplasmic domain of α1 (X2C1), chimeric cDNA composed of the extracellular and transmembrane domains of α1 subunit and the, cytoplasmic domain of α2 (X1C2), α1 cDNA truncated after the GFFKR sequence (X1C0) or α2 cDNA truncated after the GFFKR sequence (X2C0) in K562 cells. Although the cytoplasmic domains of the ax and α2 subunits were not required for adhesion, the extent of adhesion at low substrate density was enhanced by the presence of either the α1 or α2 cytoplasmic tail. Spreading was also influenced by the presence of an α subunit cytoplasmic tail. Activation of the protein kinase C pathway with phorbol dibutyrate-stimulated motility that was dependent upon the presence of the α2 cytoplasmic tail. Both the phosphatidylinosotide-3-OH kinase and the mitogen-activated protein kinase pathways were required for phorbol-activated, α2-cytoplasmic tail-dependent migration. 相似文献