首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study delineates the large-scale, organic responses of growth in the dorsal pallium to targeted genetic ablations of the principal PP (preplate) neurons of the neocortex. Ganciclovir treatment during prenatal development [from E11 (embryonic age 11) to E13] of mice selectively killed cells with shared S-phase vulnerability and targeted expression of a GPT [golli promoter transgene; GPT linked to HSV-TK (herpes simplex virus-thymidine kinase), τ-eGFP and lacZ reporters] localized in PP neurons and their intermediate progenitor neuroblasts. The volume, area and thickness of the pallium were measured in an E12–P4 (postnatal age 4) longitudinal study with comparisons between ablated (HSV-TK+/0) and control (HSV-TK0/0) littermates. The extent of ablations was also systematically varied, and the effect on physical growth was assessed in an E18 cross-sectional study. The morphological evidence obtained in the present study supports the conclusion that genetically targeted ablations delay the settlement of the principal PP neurons of the dorsal pallium. This leads to progressive and substantial reductions of growth, despite compensatory responses that rapidly replace the ablated cells. These growth defects originate from inductive cellular interactions in the proliferative matrix of the ventricular zone of the pallium, but are amplified by subsequent morphogenic and trophic cellular interactions. The defects persist during the course of prenatal and postnatal development to demonstrate a constrained dose–response relationship with the extent of specific killing of GPT neurons. The defects propagate simultaneously in both the horizontal and vertical cytoarchitectural dimensions of the developing pallium, an outcome that produces a localized shortfall of volume in the telencephalic vesicles.  相似文献   

2.
The six-layered neocortex permits complex information processing in all mammalian species. Because its homologous region (the pallium) in nonmammalian amniotes has a different architecture, the ability of neocortical progenitors to generate an orderly sequence of distinct cell types was thought to have arisen in the mammalian lineage. This study, however, shows that layer-specific neuron subtypes do exist in the chick pallium. Deep- and upper-layer neurons are not layered but are segregated in distinct mediolateral domains in vivo. Surprisingly, cultured chick neural progenitors produce multiple layer-specific neuronal subtypes in the same chronological sequence as seen in mammals. These results suggest that the temporal sequence of the neocortical neurogenetic program was already inherent in the last common ancestor of mammals and birds and that mammals use this conserved program to generate a uniformly layered neocortex, whereas birds impose spatial constraints on the sequence to pattern the pallium.  相似文献   

3.
In this report, we have examined the requirement for the retinoblastoma (Rb) gene family in neuronal determination with a focus on the developing neocortex. To determine whether pRb is required for neuronal determination in vivo, we crossed the Rb−/− mice with transgenic mice expressing β-galactosidase from the early, panneuronal Tα1 α-tubulin promoter (Tα1:nlacZ). In E12.5 Rb−/− embryos, the Tα1:nlacZ transgene was robustly expressed throughout the developing nervous system. However, by E14.5, there were perturbations in Tα1:nlacZ expression throughout the nervous system, including deficits in the forebrain and retina. To more precisely define the temporal requirement for pRb in neuronal determination, we functionally ablated the pRb family in wild-type cortical progenitor cells that undergo the transition to postmitotic neurons in vitro by expression of a mutant adenovirus E1A protein. These studies revealed that induction of Tα1:nlacZ did not require proteins of the pRb family. However, in their absence, determined, Tα1:nlacZ-positive cortical neurons underwent apoptosis, presumably as a consequence of “mixed signals” deriving from their inability to undergo terminal mitosis. In contrast, when the pRb family was ablated in postmitotic cortical neurons, there was no effect on neuronal survival, nor did it cause the postmitotic neurons to reenter the cell cycle. Together, these studies define a critical temporal window of requirement for the pRb family; these proteins are not required for induction of neuronal gene expression or for the maintenance of postmitotic neurons, but are essential for determined neurons to exit the cell cycle and survive.  相似文献   

4.
5.
6.
GABAergic interneuron migration and the evolution of the neocortex   总被引:1,自引:0,他引:1  
A neocortex is present in all mammals but is not present in other classes of vertebrates, and the neocortex is extremely elaborate in humans. Changes in excitatory projection neurons and their progenitors within the developing dorsal pallium in the most recent common ancestor of mammals are thought to have been involved in the evolution of the neocortex. Our recent findings suggest that changes in the migratory ability of inhibitory interneurons derived from outside the neocortex may also have been involved in the evolution of the neocortex. In this article we review the literature on the migratory profile of inhibitory interneurons in several different species and the literature on comparisons between the intrinsic migratory ability of interneurons derived from different species. Finally, we propose a hypothesis about the mammalian-specific evolution of the migratory ability of interneurons and its potential contribution to the establishment of a functional neocortex.  相似文献   

7.
8.
The disproportional enlargement of the neocortex through evolution has been instrumental in the success of vertebrates, in particular mammals. The neocortex is a multilayered sheet of neurons generated from a simple proliferative neuroepithelium through a myriad of mechanisms with substantial evolutionary conservation. This developing neuroepithelium is populated by progenitors that can generate additional progenitors as well as post-mitotic neurons. Subtle alterations in the production of progenitors vs. differentiated cells during development can result in dramatic differences in neocortical size. This review article will examine how cadherin adhesion proteins, in particular α-catenin and N-cadherin, function in regulating the neural progenitor microenvironment, cell proliferation, and differentiation in cortical development.  相似文献   

9.
We and others have shown that focal cerebral ischemia induces lateral migration of neuroblasts from the ipsilateral subventricular zone (SVZ) to the ischemic striatum. The signaling pathways underlying this phenomenon are not fully understood. The present study examined the role of osteopontin (OPN) in post-ischemic lateral migration of neuroblasts. Focal ischemia was induced by transient middle cerebral artery occlusion in adult spontaneous hypertensive rats. The expression of OPN in the ischemic brain was evaluated by immunohistochemistry, which showed that an up-regulation of OPN expression in the ipsilateral striatum at day 3, 7, 14 and 1 month of reperfusion with a peak at day 7. Double staining showed co-localization of OPN with ED1+ macrophages/microglia in the ischemic regions. Inhibition of OPN activity by infusing a neutralizing antibody against OPN into the ischemic striatum significantly decreased the area covered with doublecortin+ neuroblasts in the ipsilateral striatum. In vitro, OPN treatment did not affect the proliferation of neural progenitors, but induced an increased trans-well and radial migration of neural progenitors. The cultured neural progenitors expressed the OPN receptors CD44 and integrin β1. Blockade of the CD44 receptor had no effects on OPN mediated trans-well and radial migration of neural progenitors. However, blockade of integrin β1 receptor abolished the migration of neural progenitors in the absence or the presence of OPN. These results suggest that up-regulated expression of OPN produced by macrophages/microglia in the ischemic brain is an attractant and inducer for the lateral migration of neuroblasts from the SVZ to the injured region.  相似文献   

10.
11.
12.
13.
14.
15.
Mutations in the genes encoding endothelin receptor-B (Ednrb) and its ligand endothelin-3 (Edn3) affect the development of two neural crest-derived cell types, melanocytes and enteric neurons. EDNRB signaling is exclusively required between E10.5 and E12.5 during the migratory phase of melanoblast and enteric neuroblast development. To determine the fate of Ednrb-expressing cells during this critical period, we generated a strain of mice with the bacterial beta-galactosidase (lacZ) gene inserted downstream of the endogenous Ednrb promoter. The expression of the lacZ gene was detected in melanoblasts and precursors of the enteric neuron system (ENS), as well as other neural crest cells and nonneural crest-derived lineages. By comparing Ednrb(lacZ)/+ and Ednrb(lacZ)/Ednrb(lacZ) embryos, we determined that the Ednrb pathway is not required for the initial specification and dispersal of melanoblasts and ENS precursors from the neural crest progenitors. Rather, the EDNRB-mediated signaling is required for the terminal migration of melanoblasts and ENS precursors, and this pathway is not required for the survival of the migratory cells.  相似文献   

16.
Pluripotent embryonic stem cells (ESCs) are able to differentiate into all cell types in the organism including cortical neurons. To follow the dynamic generation of progenitors of the dorsal forebrain in vitro, we generated ESCs from D6-GFP mice in which GFP marks neocortical progenitors and neurons after embryonic day (E) 10.5. We used several cell culture protocols for differentiation of ESCs into progenitors and neurons of the dorsal forebrain. In cell culture, GFP-positive cells were induced under differentiation conditions in quickly formed embryoid bodies (qEBs) after 10–12 day incubation. Activation of Wnt signaling during ESC differentiation further stimulated generation of D6-GFP-positive cortical cells. In contrast, differentiation protocols using normal embryoid bodies (nEBs) yielded only a few D6-GFP-positive cells. Gene expression analysis revealed that multiple components of the canonical Wnt signaling pathway were expressed during the development of embryoid bodies. As shown by immunohistochemistry and quantitative qRT-PCR, D6-GFP-positive cells from qEBs expressed genes that are characteristic for the dorsal forebrain such as Pax6, Dach1, Tbr1, Tbr2, or Sox5. qEBs culture allowed the formation of a D6-GFP positive pseudo-polarized neuroepithelium with the characteristic presence of N-cadherin at the apical pole resembling the structure of the developing neocortex.  相似文献   

17.
Adult hippocampal neurogenesis is altered in response to different physiological and pathological stimuli. GFAP+ve/nestin+ve radial glial like Type-1 progenitors are considered to be the resident stem cell population in adult hippocampus. During neurogenesis these Type-1 progenitors matures to GFAP−ve/nestin+ve Type-2 progenitors and then to Type-3 neuroblasts and finally differentiates into granule cell neurons. In our study, using pilocarpine-induced seizure model, we showed that seizure initiated activation of multiple progenitors in the entire hippocampal area such as DG, CA1 and CA3. Seizure induction resulted in activation of two subtypes of Type-1 progenitors, Type-1a (GFAP+ve/nestin+ve/BrdU+ve) and Type-1b (GFAP+ve/nestin+ve/BrdU−ve). We showed that majority of Type-1b progenitors were undergoing only a transition from a state of dormancy to activated form immediately after seizures rather than proliferating, whereas Type-1a showed maximum proliferation by 3 days post-seizure induction. Type-2 (GFAP−ve/nestin+ve/BrdU+ve) progenitors were few compared to Type-1. Type-3 (DCX+ve) progenitors showed increased expression of immature neurons only in DG region by 3 days after seizure induction indicating maturation of progenitors happens only in microenvironment of DG even though progenitors are activated in CA1 and CA3 regions of hippocampus. Also parallel increase in growth factors expression after seizure induction suggests that microenvironmental niche has a profound effect on stimulation of adult neural progenitors.  相似文献   

18.
19.
Male killing bacteria such as Spiroplasma are widespread pathogens of numerous arthropods including Drosophila melanogaster. These maternally transmitted bacteria can bias host sex ratios toward the female sex in order to ‘selfishly’ enhance bacterial transmission. However, little is known about the specific means by which these pathogens disrupt host development in order to kill males. Here we show that a male-killing Spiroplasma strain severely disrupts nervous tissue development in male but not female D. melanogaster embryos. The neuroblasts, or neuron progenitors, form properly and their daughter cells differentiate into neurons of the ventral nerve chord. However, the neurons fail to pack together properly and they produce highly abnormal axons. In contrast, non-neural tissue, such as mesoderm, and body segmentation appear normal during this time, although the entire male embryo becomes highly abnormal during later stages. Finally, we found that Spiroplasma is altogether absent from the neural tissue but localizes within the gut and the epithelium immediately surrounding the neural tissue, suggesting that the bacterium secretes a toxin that affects neural tissue development across tissue boundaries. Together these findings demonstrate the unique ability of this insect pathogen to preferentially affect development of a specific embryonic tissue to induce male killing.  相似文献   

20.
In the embryonic neocortex, neuronal precursors are generated in the ventricular zone (VZ) and accumulate in the cortical plate. Recently, the subventricular zone (SVZ) of the embryonic neocortex was recognized as an additional neurogenic site for both principal excitatory neurons and GABAergic inhibitory neurons. To gain insight into the neurogenesis of GABAergic neurons in the SVZ, we investigated the characteristics of intermediate progenitors of GABAergic neurons (IPGNs) in mouse neocortex by immunohistochemistry, immunocytochemistry, single-cell RT-PCR and single-cell array analysis. IPGNs were identified by their expression of some neuronal and cell cycle markers. Moreover, we investigated the origins of the neocortical IPGNs by Cre-loxP fate mapping in transgenic mice and the transduction of part of the telencephalic VZ by Cre-reporter plasmids, and found them in the medial and lateral ganglionic eminence. Therefore, they must migrate tangentially within the telencephalon to reach the neocortex. Cell-lineage analysis by simple-retrovirus transduction revealed that the neocortical IPGNs self-renew and give rise to a small number of neocortical GABAergic neurons and to a large number of granule and periglomerular cells in the olfactory bulb. IPGNs are maintained in the neocortex and may act as progenitors for adult neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号