首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seeds of the wild type (WT) and of the phyA and phyB mutants of Arabidopsis thaliana were exposed to single red light (R)/far-red light (FR) pulses predicted to establish a series of calculated phytochrome photoequilibria (Pfr/P). WT and phyB seeds showed biphasic responses to Pfr/P. The first phase, i.e. the very-low-fluence response (VLFR), occurred below Pfr/P = 10-1%. The second phase, i.e. the low-fluence response, occurred above Pfr/P = 3%. The VLFR was similarly induced by either a FR pulse saturating photoconversion or a subsaturating R pulse predicted to establish the same Pfr/P. The VLFR was absent in phyA seeds, which showed a strong low-fluence response. In the field, even brief exposures to the very low fluences of canopy shade light (R/FR ratio < 0.05) promoted germination above dark controls in WT and phyB seeds but not in the phyA mutant. Seeds of the phyA mutant germinated normally under canopies providing higher R/FR ratios or under deep canopy shade light supplemented with R from light-emitting diodes. We propose that phytochrome A mediates VLFR of A. thaliana seeds.  相似文献   

2.
We identified an Arabidopsis (Arabidopsis thaliana) ethyl methanesulfonate mutant, modified vacuole phenotype1-1 (mvp1-1), in a fluorescent confocal microscopy screen for plants with mislocalization of a green fluorescent protein-δ tonoplast intrinsic protein fusion. The mvp1-1 mutant displayed static perinuclear aggregates of the reporter protein. mvp1 mutants also exhibited a number of vacuole-related phenotypes, as demonstrated by defects in growth, utilization of stored carbon, gravitropic response, salt sensitivity, and specific susceptibility to the fungal necrotroph Alternaria brassicicola. Similarly, crosses with other endomembrane marker fusions identified mislocalization to aggregate structures, indicating a general defect in protein trafficking. Map-based cloning showed that the mvp1-1 mutation altered a gene encoding a putative myrosinase-associated protein, and glutathione S-transferase pull-down assays demonstrated that MVP1 interacted specifically with the Arabidopsis myrosinase protein, THIOGLUCOSIDE GLUCOHYDROLASE2 (TGG2), but not TGG1. Moreover, the mvp1-1 mutant showed increased nitrile production during glucosinolate hydrolysis, suggesting that MVP1 may play a role in modulation of myrosinase activity. We propose that MVP1 is a myrosinase-associated protein that functions, in part, to correctly localize the myrosinase TGG2 and prevent inappropriate glucosinolate hydrolysis that could generate cytotoxic molecules.The plant endomembrane system is a complex network of subcellular compartments that includes the endoplasmic reticulum (ER), Golgi apparatus, vacuole, plasma membrane, secretory vesicles, and numerous intermediary compartments. Protein trafficking through the endomembrane system requires specific cargo recognition and delivery mechanisms that are mediated by a series of highly specific targeting signals (Surpin and Raikhel, 2004), whose proper recognition is critical for the function of numerous downstream processes, such as floral development (Sohn et al., 2007), gravitropism (Kato et al., 2002; Surpin et al., 2003; Yano et al., 2003), abiotic stress tolerance (Zhu et al., 2002), autophagy (Surpin et al., 2003; Bassham., 2007), pathogen defense (Robatzek, 2007), and turgor pressure and growth (De, 2000).The importance of protein trafficking for plant survival was demonstrated by the identification of the essential Arabidopsis (Arabidopsis thaliana) gene VACUOLELESS1 (VCL1; Rojo et al., 2001). VCL1 was identified as a homolog of Saccharomyces cerevisiae VPS16, which is critical for yeast vacuole biogenesis. Knockouts of yeast VPS16 lack discernible vacuoles but survive despite their severe phenotype. The absence of vacuoles in Arabidopsis vcl1-1 mutants results in embryo lethality (Rojo et al., 2001). The essential nature of trafficking in plants was also demonstrated by insertional mutagenesis of syntaxin genes, where lethality was observed after disruption of single genes in families with highly homologous members (Lukowitz et al., 1996; Sanderfoot et al., 2001). Thus, despite large families of endomembrane components with many homologous genes, many are not redundant in Arabidopsis.Although embryo-lethal mutations provide critical data, it is difficult to obtain additional information. Less severe mutations have proven successful for functional genetics studies of endomembrane trafficking proteins. For example, point mutations in the KATAMARI1/MURUS3 (KAM1/MUR3; Tamura et al., 2005) and KATAMARI2/GRAVITROPISM DEFECTIVE2 (KAM2/GRV2; Tamura et al., 2007; Silady et al., 2008) genes lead to disruption of endomembranes, resulting in the formation of perinuclear aggregates containing organelles. Nonlethal trafficking disruptions have also been generated using chemical genomics, where small molecules were used to perturb trafficking of a soluble cargo protein (Zouhar et al., 2004) and localization of endomembrane markers (Surpin et al., 2005; Robert et al., 2008). Such studies have provided valuable clues about these essential cellular processes.In order to obtain less severe, viable mutants with defects in endomembrane protein trafficking, we previously identified point mutants with defects in localization of a tonoplast reporter protein, GFP:δ-TIP (Avila et al., 2003). Two hundred one putative mutants were grouped into four categories based on the nature of their defects. One unique mutant, cell shape phenotype1, was recently characterized as a trehalose-6-phosphate synthase with roles in regulation of plant architecture, epidermal pavement cell shape, and trichome branching (Chary et al., 2008).Here, we describe an endomembrane trafficking mutant categorized by perinuclear aggregates of GFP:δ-TIP fluorescence (Avila et al., 2003). We refer to this mutant as modified vacuole phenotype1-1 (mvp1-1). At least five endomembrane fusion proteins are partially relocalized to these structures. Positional cloning identified MVP1 as a myrosinase-associated protein (MyAP) localized previously to the tonoplast by proteomics (Carter et al., 2004). mvp1-1 mutants showed reduced endomembrane system functionality, as demonstrated by defects in growth, utilization of stored carbon, gravitropic responsiveness, salt sensitivity, and increased susceptibility to a fungal necrotroph. MVP1 interacted specifically with THIOGLUCOSIDE GLUCOHYDROLASE2 (TGG2), a known myrosinase protein in Arabidopsis, and the mvp1-1 mutation had a significant effect on nitrile production during glucosinolate hydrolysis, suggesting a role in myrosinase function. Furthermore, MVP1 may function in quality control of glucosinolate hydrolysis by contributing to the proper tonoplast localization of TGG2.  相似文献   

3.
4.
5.

Background

Iron-sulfur clusters are ubiquitous structures which act as prosthetic groups for numerous proteins involved in several fundamental biological processes including respiration and photosynthesis. Although simple in structure both the assembly and insertion of clusters into apoproteins requires complex biochemical pathways involving a diverse set of proteins. In yeast, the J-type chaperone Jac1 plays a key role in the biogenesis of iron sulfur clusters in mitochondria.

Methodology/Principal Findings

In this study we demonstrate that AtHscB from Arabidopsis can rescue the Jac1 yeast knockout mutant suggesting a role for AtHscB in iron sulfur protein biogenesis in plants. In contrast to mitochondrial Jac1, AtHscB localizes to both mitochondria and the cytosol. AtHscB interacts with AtIscU1, an Isu-like scaffold protein involved in iron-sulfur cluster biogenesis, and through this interaction AtIscU1 is most probably retained in the cytosol. The chaperone AtHscA can functionally complement the yeast Ssq1knockout mutant and its ATPase activity is enhanced by AtHscB and AtIscU1. Interestingly, AtHscA is also localized in both mitochondria and the cytosol. Furthermore, AtHscB is highly expressed in anthers and trichomes and an AtHscB T-DNA insertion mutant shows reduced seed set, a waxless phenotype and inappropriate trichome development as well as dramatically reduced activities of the iron-sulfur enzymes aconitase and succinate dehydrogenase.

Conclusions

Our data suggest that AtHscB together with AtHscA and AtIscU1 plays an important role in the biogenesis of iron-sulfur proteins in both mitochondria and the cytosol.  相似文献   

6.
7.
The formation of abnormal amino acid residues is a major source of spontaneous age-related protein damage in cells. The protein l-isoaspartyl methyltransferase (PIMT) combats protein misfolding resulting from l-isoaspartyl formation by catalyzing the conversion of abnormal l-isoaspartyl residues to their normal l-aspartyl forms. In this way, the PIMT repair enzyme system contributes to longevity and survival in bacterial and animal kingdoms. Despite the discovery of PIMT activity in plants two decades ago, the role of this enzyme during plant stress adaptation and in seed longevity remains undefined. In this work, we have isolated Arabidopsis thaliana lines exhibiting altered expression of PIMT1, one of the two genes encoding the PIMT enzyme in Arabidopsis. PIMT1 overaccumulation reduced the accumulation of l-isoaspartyl residues in seed proteins and increased both seed longevity and germination vigor. Conversely, reduced PIMT1 accumulation was associated with an increase in the accumulation of l-isoaspartyl residues in the proteome of freshly harvested dry mature seeds, thus leading to heightened sensitivity to aging treatments and loss of seed vigor under stressful germination conditions. These data implicate PIMT1 as a major endogenous factor that limits abnormal l-isoaspartyl accumulation in seed proteins, thereby improving seed traits such as longevity and vigor. The PIMT repair pathway likely works in concert with other anti-aging pathways to actively eliminate deleterious protein products, thus enabling successful seedling establishment and strengthening plant proliferation in natural environments.  相似文献   

8.
根际酸化是植物适应低磷胁迫的重要策略, 但植物是如何感知和转导低磷信号, 进而促进根际酸化的分子机制至今还不十分清楚。利用pH指示剂(溴甲酚紫)显色法从拟南芥(Arabidopsis thaliana) T-DNA插入突变体库中分离得到了1株低磷诱导根际酸化缺失突变体spl1。在含溴甲酚紫的低磷培养基上培养8小时, 野生型拟南芥根际培养基的颜色变为黄色, 而突变体spl1根际培养基的颜色没有明显变化, 表明spl1的低磷根际酸化反应能力降低。当低磷胁迫处理延长20天, spl1叶片的花青素积累明显高于野生型。同时也出现, 即使在磷营养正常条件下, spl1突变体也表现出根毛数量与长度增加的特征。进一步的研究表明, 在低磷条件下, spl1突变体根部的磷含量略高于野生型, 与磷转运相关基因的表达量明显高于野生型。分子遗传学分析结果表明, SPL1基因受低磷胁迫诱导, 主要在拟南芥的叶片和花等组织中表达, 其编码的蛋白广泛分布在细胞的各个部位。以上结果表明, SPL1参与介导低磷诱导的拟南芥根际酸化反应, 调节多种低磷胁迫反应及低磷条件下磷饥饿诱导基因的表达。  相似文献   

9.
Photosystem II (PSII) requires constant disassembly and reassembly to accommodate replacement of the D1 protein. Here, we characterize Arabidopsis thaliana MET1, a PSII assembly factor with PDZ and TPR domains. The maize (Zea mays) MET1 homolog is enriched in mesophyll chloroplasts compared with bundle sheath chloroplasts, and MET1 mRNA and protein levels increase during leaf development concomitant with the thylakoid machinery. MET1 is conserved in C3 and C4 plants and green algae but is not found in prokaryotes. Arabidopsis MET1 is a peripheral thylakoid protein enriched in stroma lamellae and is also present in grana. Split-ubiquitin assays and coimmunoprecipitations showed interaction of MET1 with stromal loops of PSII core components CP43 and CP47. From native gels, we inferred that MET1 associates with PSII subcomplexes formed during the PSII repair cycle. When grown under fluctuating light intensities, the Arabidopsis MET1 null mutant (met1) showed conditional reduced growth, near complete blockage in PSII supercomplex formation, and concomitant increase of unassembled CP43. Growth of met1 in high light resulted in loss of PSII supercomplexes and accelerated D1 degradation. We propose that MET1 functions as a CP43/CP47 chaperone on the stromal side of the membrane during PSII assembly and repair. This function is consistent with the observed differential MET1 accumulation across dimorphic maize chloroplasts.  相似文献   

10.
拟南芥钙依赖蛋白激酶参与植物激素信号转导   总被引:1,自引:0,他引:1  
在植物信号通路中,涉及到钙应答的蛋白激酶大多是钙依赖蛋白激酶。钙依赖蛋白激酶作为钙信号转导因子,参与了包括激素信号转导途径在内的很多传递过程。本工作在前人研究的基础上,对拟南芥AtCPK30基因的功能进行了深入的研究。RT-PCR分析结果表明:AtCPK30在植物根中的表达量很高,其在幼苗中的转录水平分别受ABA、IAA、2,4-D、GA_3和6-BA等激素的诱导调节。AtCPK30基因过表达的转基因株系幼苗的主根比野生型的长,同时发现转基因植株幼苗的根在缺钙的MS培养基上生长较野生型植株长,表明缺钙对转基因幼苗影响较小。用ABA、IAA、GA_3和BA处理时,转基因植株幼苗的根对激素更敏感。当野生型和转基因植株生长在含有生长素抑制剂NPA的MS培养基上时,NPA对转基因植株侧根的抑制比对野生型弱。GFP-CPK30融合蛋白的亚细胞定位研究结果表明:CPK30蛋白定位在细胞壁和细胞膜上。这些研究结果说明了AtCPK30作为钙信号转导因子,参与了多种激素调节植物根生长的过程。  相似文献   

11.
We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component.  相似文献   

12.
We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction. Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-Iike proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.  相似文献   

13.
COMMD1 is a protein which is associated with multiple cellular pathways, including NFκB signaling, copper homeostasis and sodium transport. Recently we found that COMMD1 is also essential for normal mouse embryogenesis. Embryos deficient for Commd1 are retarded and die between 9.5 and 10.5 dpc. Increased HIF-1 activity and elevated HIF-1α protein expression were observed in 9.5 dpc Commd1-deficient embryos. In line with these in vivo data, in vitro studies showed that reduced COMMD1 expression caused increased HIF-1α protein stability and HIF-1 activity. Functional characterization of COMMD1 in NFκB signaling and ATP7B-dependent biliary copper excretion suggested that COMMD1 also has a role in regulating the protein degradation of RelA (p65) and ATP7B. The exact function of COMMD1 in these pathways remains elusive but these recent studies suggest that COMMD1 is associated with the ubiquitin-proteasomal system for regulating protein stability.  相似文献   

14.
15.
Calcium (Ca2+) is a key second messenger in eukaryotes and regulates diverse cellular processes, most notably via calmodulin (CaM). In Arabidopsis thaliana, IQD1 (IQ67 domain 1) is the founding member of the IQD family of putative CaM targets. The 33 predicted IQD proteins share a conserved domain of 67 amino acids that is characterized by a unique arrangement of multiple CaM recruitment motifs, including so-called IQ motifs. Whereas IQD1 has been implicated in the regulation of defense metabolism, the biochemical functions of IQD proteins remain to be elucidated. In this study we show that IQD1 binds to multiple Arabidopsis CaM and CaM-like (CML) proteins in vitro and in yeast two-hybrid interaction assays. CaM overlay assays revealed moderate affinity of IQD1 to CaM2 (Kd ∼ 0.6 μm). Deletion mapping of IQD1 demonstrated the importance of the IQ67 domain for CaM2 binding in vitro, which is corroborated by interaction of the shortest IQD member, IQD20, with Arabidopsis CaM/CMLs in yeast. A genetic screen of a cDNA library identified Arabidopsis kinesin light chain-related protein-1 (KLCR1) as an IQD1 interactor. The subcellular localization of GFP-tagged IQD1 proteins to microtubules and the cell nucleus in transiently and stably transformed plant tissues (tobacco leaves and Arabidopsis seedlings) suggests direct interaction of IQD1 and KLCR1 in planta that is supported by GFP∼IQD1-dependent recruitment of RFP∼KLCR1 and RFP∼CaM2 to microtubules. Collectively, the prospect arises that IQD1 and related proteins provide Ca2+/CaM-regulated scaffolds for facilitating cellular transport of specific cargo along microtubular tracks via kinesin motor proteins.  相似文献   

16.
17.
Yan  Zongyun  Jing  Meng  Zhang  Bangyue  Shi  Huiying  Jin  Xu  Yan  Xiaoyuan  Gao  Tiao  Han  Yuzhen 《Journal of Plant Growth Regulation》2023,42(3):1775-1788

Members of La-related protein (LARP) 1 family spread widely in various species, and they are involved in regulating many important biological processes in mammal, yeast, and fruit fly. However, functional research of LARP1s in plants is limited so far. In Arabidopsis, there are three members in LARP1 family, LARP1a, 1b, and 1c. Here, we found that the mutation of LARP1 genes delayed seed germination, implying that LARP1 proteins might be positive factors of seed germination in Arabidopsis. Moreover, the larp1 mutants showed more sensitive to abscisic acid (ABA) and paclobutrazol (PAC), as larp1 mutants displayed low rate of germination in medium contained ABA or PAC. Temporal and spatial expression analyses revealed that LARP1s were more abundant in seeds, especially in imbibed seeds. Subcellular localization analysis revealed that all LARP1 proteins could localize to the P-bodies, suggesting that LARP1s might play a role in RNA processes. Taken together, our results unravel new conserved functions of LARP1s in the regulation of Arabidopsis seed germination.

  相似文献   

18.
19.
Doklady Biochemistry and Biophysics - The effect of T-DNA insertion in the 3'-UTR region of Arabidopsis thaliana At3g58450 gene encoding the Germination-Related Universal Stress Protein (GRUSP)...  相似文献   

20.
The Saccharomyces cerevisiae DJP1 gene encodes a cytosolic protein homologous to Escherichia coli DnaJ. DnaJ homologues act in conjunction with molecular chaperones of the Hsp70 protein family in a variety of cellular processes. Cells with a DJP1 gene deletion are viable and exhibit a novel phenotype among cytosolic J-protein mutants in that they have a specific impairment of only one organelle, the peroxisome. The phenotype was also unique among peroxisome assembly mutants: peroxisomal matrix proteins were mislocalized to the cytoplasm to a varying extent, and peroxisomal structures failed to grow to full size and exhibited a broad range of buoyant densities. Import of marker proteins for the endoplasmic reticulum, nucleus, and mitochondria was normal. Furthermore, the metabolic adaptation to a change in carbon source, a complex multistep process, was unaffected in a DJP1 gene deletion mutant. We conclude that Djp1p is specifically required for peroxisomal protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号