首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the Overdispersed Molecular Clock   总被引:8,自引:8,他引:8       下载免费PDF全文
Naoyuki Takahata 《Genetics》1987,116(1):169-179
Rates of molecular evolution at some loci are more irregular than described by simple Poisson processes. Three situations under which molecular evolution would not follow simple Poisson processes are reevaluated from the viewpoint of the neutrality hypothesis: concomitant or multiple substitutions in a gene, fluctuating substitution rates in time caused by coupled effects of deleterious mutations and bottlenecks, and changes in the degree of selective constraints against a gene (neutral space) caused by successive substitutions. The common underlying assumption that these causes are lineage nonspecific excludes the case where mutation rates themselves change systematically among lineages or taxonomic groups, and severely limits the extent of variation in the number of substitutions among lineages. Even under this stringent condition, however, the third hypothesis, the fluctuating neutral space model, can generate fairly large variation. This is described by a time-dependent renewal process, which does not exhibit any episodic nature of molecular evolution. It is argued that the observed elevated variances in the number of nucleotide or amino acid substitutions do not immediately call for positive Darwinian selection in molecular evolution.  相似文献   

2.
More on the Overdispersed Molecular Clock   总被引:3,自引:2,他引:1       下载免费PDF全文
J. H. GILLESPIE 《Genetics》1988,118(2):385-386
  相似文献   

3.
4.
Phylogenetics of Perissodactyla and Tests of the Molecular Clock   总被引:3,自引:0,他引:3  
Two mitochondrial genes, the protein-coding cytochrome c oxidase subunit II (COII) gene and a portion of the 12S rRNA gene, were used for phylogenetic investigation of the mammalian order Perissodactyla. The primary objective of the study was to utilize the extensive fossil record of perissodactyls for calibrating molecular clocks and comparing estimates of divergence times using both genes and two fossil calibration points. Secondary objectives included clarification of previously unresolved relationships within Tapiridae and comparison of the results of separate and combined analyses of two genes. Analyses included several perissodactyl lineages representing all three families (Tapiridae, Equidae, and Rhinocerotidae), most extant genera, all four species of tapirs, two to four species of rhinoceros, and two species of Equus. The application of a relatively recent fossil calibration point and a relatively ancient calibration point produced greatly different estimates of evolutionary rates and divergence times for both genes, even though a relative rates test did not find significant rate differences among taxa. A likelihood-ratio test, however, rejected a molecular clock for both genes. Neither calibration point produced estimates of divergence times consistent with paleontological evidence over a range of perissodactyl radiations. The combined analysis of both genes produces a well-resolved phylogeny with Perissodactyla that conforms to traditional views of interfamilial relationships and supports monophyly of neotropical tapirs. Combining the data sets increases support for most nodes but decreases the support for a neotropical tapir clade because the COII and 12S rRNA data sets are in conflict for tapir relationships. Received: 6 January 1999 / Accepted: 2 August 1999  相似文献   

5.
Molecular Intrigue Between Phototransduction and the Circadian Clock   总被引:1,自引:0,他引:1  
MILLAR  ANDREW J. 《Annals of botany》1998,81(5):581-587
  相似文献   

6.
Simple Methods for Testing the Molecular Evolutionary Clock Hypothesis   总被引:44,自引:3,他引:41       下载免费PDF全文
F. Tajima 《Genetics》1993,135(2):599-607
Simple statistical methods for testing the molecular evolutionary clock hypothesis are developed which can be applied to both nucleotide and amino acid sequences. These methods are based on the chi-square test and are applicable even when the pattern of substitution rates is unknown and/or the substitution rate varies among different sites. Furthermore, some of the methods can be applied even when the outgroup is unknown. Using computer simulations, these methods were compared with the likelihood ratio test and the relative rate test. The results indicate that the powers of the present methods are similar to those of the likelihood ratio test and the relative rate test, in spite of the fact that the latter two tests assume that the pattern of substitution rates follows a certain model and that the substitution rate is the same among different sites, while such assumptions are not necessary to apply the present methods. Therefore, the present methods might be useful.  相似文献   

7.
8.
9.
It has recently been argued that living metazoans diverged over 800 million years ago, based on evidence from 22 nuclear genes for such a deep divergence between vertebrates and arthropods (Gu 1998). Two ``internal' calibration points were used. However, only one fossil divergence date (the mammal–bird split) was directly used to calibrate the molecular clock. The second calibration point (the primate–rodent split) was based on molecular estimates that were ultimately also calibrated by the same mammal–bird split. However, the first tetrapods that can be assigned with confidence to either the mammal (synapsid) lineage or the bird (diapsid) lineage are approximately 288 million years old, while the first mammals that can be assigned with confidence to either the primate or the rodent lineages are 65 million years old, or 85 million years old if ferungulates are part of the primate lineage and zhelestids are accepted as ferungulate relatives. Recalibration of the protein data using these fossil dates indicates that metazoans diverged between 791 and 528 million years ago, a result broadly consistent with the palaeontological documentation of the ``Cambrian explosion.' The third, ``external' calibration point (the metazoan–fungal divergence) was similarly problematic, since it was based on a controversial molecular study (which in turn used fossil dates including the mammal–bird split); direct use of fossils for this calibration point gives the absurd dating of 455 million years for metazoan divergences. Similar calibration problems affect another recent study (Wang et al. 1999), which proposes divergences for metazoans of 1000 million years or more: recalibrations of their clock again yields much more recent dates, some consistent with a ``Cambrian explosion' scenario. Molecular clock studies have persuasively argued for the imperfection of the fossil record but have rarely acknowledged that their inferences are also directly based on this same record. Received: 26 January 1999 / Accepted: 14 April 1999  相似文献   

10.
生物钟现象是一种普遍存在于生物界细胞的内源节律性保持机制。生物钟机制的存在可以使生物体的代谢行为产生并维持以24 h为周期的昼夜节律,从而更好地适应于地球自转所产生的环境条件昼夜间节律性变化。蓝藻是目前生物钟分子机制研究中的模式生物,其依赖于k ai基因家族成员的核心生物钟调控模式已经被众多研究者详细阐明。蓝藻生物钟的核心振荡器是由蓝藻k aiA/B/C的编码产物来调控的,Kai蛋白的表达模式具有节律性。KaiC蛋白磷酸化状态的节律性循环及输入、输出途径相关组成蛋白的翻译后修饰状态节律性循环共同组成其反馈回路,负责维持生物钟节律性振荡的持续进行并与环境周期保持同步。传统的蓝藻生物钟分子机制模型认为,节律性表达基因翻译产物的转录/翻译负反馈抑制环是生物节律性维持和输出的关键。遗憾的是,在其它物种生物钟分子机制研究中未发现由kai基因家族成员同源基因组成的节律性标签,这表明以k aiA/B/C为核心振荡器的生物钟系统并不是一种跨物种保守的生物钟系统。近期,人们发现非转录/翻译依赖的振荡器(NTO)也具有成为生物节律性产生和维持的“源动力”的可能。过氧化物氧化还原酶(PRX)氧化还原状态节律性是第一种被报道的跨物种保守的NTO节律性标签,这也日渐成为蓝藻生物钟分子机制研究新的热点。  相似文献   

11.
12.
The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca2+]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca2+]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca2+]i-activated channel is one of the targets.  相似文献   

13.
生物钟的分子机制研究进展   总被引:1,自引:2,他引:1  
RecentDevelopmentsinMolecularMechanismsofBiologicalClockHouBingkai(DepartmentofBiology,ShandongUniversity,Jinan250100)YuHuimin(DepartmentofBiochemistry,ShandongEducationCollege,Jinan250013)生物的昼夜节奏表现,从单细胞生物到多细胞生物,从原校生物到真核生物都曾被描述过。由于这种现象在生物界广泛存在,关于它的特征、意义和机理的研究日益受到人们重视。其中最重要和最吸引人的方面是它的测时系统—一生物钟(biologicalclock),也称生物振荡器(oscillators)。近年来,人们从分子水平对生物钟的研究比较活…  相似文献   

14.
本文主要概述了目前拟南芥生物钟分子机制的研究进展。生物钟通过调控导引节律的相位来调节植物的生理活动。拟南芥生物钟由CCA1、LHY和TOC1 3个主要基因构成了一个稳定的负反馈环,来调节昼夜节律中各个基因如APRR/TOC1 5重奏的作用, 从而调控昼夜节律的相位。在开花的光周期调控中, 提出了外协和模型, 其中的关键基因是CO , 它与拟南芥的开花时间直接相关。  相似文献   

15.
拟南芥生物钟分子机制研究进展   总被引:2,自引:0,他引:2  
本文主要概述了目前拟南芥生物钟分子机制的研究进展.生物钟通过调控导引节律的相位来调节植物的生理活动.拟南芥生物钟由CCAJ、LHy和TOCJ 3个主要基因构成了一个稳定的负反馈环,来调节昼夜节律中各个基因如APRR/TOC15重奏的作用,从而调控昼夜节律的相位.在开花的光周期调控中,提出了外协和模型,其中的关键基因是CO,它与拟南芥的开花时间直接相关.  相似文献   

16.
17.
Various physiological and behavioral processes exhibit circadian rhythmicity. These rhythms are usually maintained by negative feedback loops of core clock genes, namely, CLOCK, BMAL, PER, and CRY. Recently, dysfunction in the circadian clock has been recognized as an important foundation for the pathophysiology of lifestyle-related diseases, such as obesity, cardiovascular disease, and some cancers. We have reported that angiopoietin-like protein 2 (ANGPTL2) contributes to the pathogenesis of these lifestyle-related diseases by inducing chronic inflammation. However, molecular mechanisms underlying regulation of ANGPTL2 expression are poorly understood. Here, we assess circadian rhythmicity of ANGPTL2 expression in various mouse tissues. We observed that ANGPTL2 rhythmicity was similar to that of the PER2 gene, which is regulated by the CLOCK/BMAL1 complex. Promoter activity of the human ANGPTL2 gene was significantly induced by CLOCK and BMAL1, an induction markedly attenuated by CRY co-expression. We also identified functional E-boxes in the ANGPTL2 promoter and observed occupancy of these sites by endogenous CLOCK in human osteosarcoma cells. Furthermore, Cry-deficient mice exhibited arrhythmic Angptl2 expression. Taken together, these data suggest that periodic expression of ANGPTL2 is regulated by a molecular clock.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号