首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitous form of the sodium–hydrogen exchanger, NHE1, is devoted to the regulation of intracellular pH and cell volume. In addition, NHE1 activity is stimulated by growth factors and increased NHE rates are found in both circulating and immortalized cells during diabetes or diabetic nephropathy. In this context, we searched for polymorphisms of the 5′-flanking regulatory region of NHE1 gene in subjects with type-I diabetes. We identified a C/T transition 696 bases upstream the translation initiation start site which disrupts a repeated palindromic GC sequence. The TT genotype was significantly more frequent in type-1 diabetics and may have functional importance. Genetic linkage between NHE1 and diabetes has been previously described in NOD mice strains with consequences on NHE rates. Hence, the polymorphism described hereby may act as a predisposition factor to type-I diabetes or to diabetic complications, and may be useful to investigate the genetic involvement of NHE1 in human pathophysiology.  相似文献   

2.
3.
4.
5.
Venezuelan equine encephalitis virus (VEEV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. The pathogenesis of this virus depends strongly on the sequences of the structural proteins and on the mutations in the RNA promoter encoded by the 5′ untranslated region (5′UTR) of the viral genome. In this study, we performed a detailed investigation of the structural and functional elements of the 5′-terminal promoter and analyzed the effect of multiple mutations introduced into the VEEV 5′UTR on virus and RNA replication. The results of this study demonstrate that RNA replication is determined by two synergistically functioning RNA elements. One of them is a very 5′-terminal AU dinucleotide, which is not involved in the stable RNA secondary structure, and the second is a short, G-C-rich RNA stem. An increase or decrease in the stem''s stability has deleterious effects on virus and RNA replication. In response to mutations in these RNA elements, VEEV replicative machinery was capable of developing new, compensatory sequences in the 5′UTR either containing 5′-terminal AUG or AU repeats or leading to the formation of new, heterologous stem-loops. Analysis of the numerous compensatory mutations suggested that at least two different mechanisms are involved in their generation. Some of the modifications introduced into the 5′ terminus of the viral genome led to an accumulation of the mutations in the VEEV nsPs, which suggested to us that there is a direct involvement of these proteins in promoter recognition. Furthermore, our data provide new evidence that the 3′ terminus of the negative-strand viral genome in the double-stranded RNA replicative intermediate is represented by a single-stranded RNA. Both the overall folding and the sequence determine its efficient function as a promoter for VEEV positive-strand RNA genome synthesis.Alphaviruses are a group of important human and animal pathogens. They are widely distributed both in the New and the Old Worlds and circulate between mosquito vectors and vertebrate hosts (45). In mosquitoes, they cause a persistent, life-long infection characterized by virus accumulation in salivary glands, which is required for infecting vertebrate hosts during a blood meal (50). In vertebrates, alphaviruses develop high-titer viremia, and their replication induces a variety of diseases with symptoms depending on both the host and the causative virus (11). Venezuelan equine encephalitis virus (VEEV), the New World alphavirus, is one of the most pathogenic members of the genus (16, 45). Representatives of the VEEV serocomplex circulate in Central, South, and North America and cause severe, and sometimes fatal, encephalitis in humans and horses (3, 11, 16, 24). Accordingly, VEEV represents a serious public health threat in the United States (39, 48, 51, 53), and during VEEV epizootics, equine mortality can reach 83%, and in humans, neurological diseases can be detected in up to 14% of all infected individuals, especially children (15). The overall mortality rate for humans is below 1%, but it is usually higher among children, the elderly, and, most likely, immunocompromised individuals (49). In spite of the continuous threat of VEEV epidemics, the biology of this virus, its pathogenesis, and the mechanism of replication are insufficiently understood. To date, no safe and efficient vaccine and therapeutic means have been developed for this pathogen.The VEEV genome is represented by a single-stranded, almost 11.5-kb-long RNA molecule of positive polarity. This RNA mimics the structure of cellular mRNAs by containing a cap at the 5′ ends and a poly(A) tail at the 3′ ends of the genome (18). The genomic RNA encodes two polyproteins: the 5′-terminal open reading frame (ORF) is translated into viral nonstructural proteins (nsP1 to nsP4), forming the replication enzyme complex (RC). The second ORF corresponds to the 3′-terminal one-third of the genome and encodes all of the viral structural proteins, C, E2, and E1. The latter proteins are translated from the subgenomic RNA synthesized during virus replication (45).The replication of the alphavirus genome is a highly regulated, multistep process, which includes the synthesis of three different RNA species (45). The regulation of their synthesis is achieved by differential processing of viral nsPs (22, 23, 43). First, the initially synthesized nonstructural polyprotein is partially processed by the nsP2-associated protease into P123 and nsP4, and this complex is active in negative-strand RNA synthesis (22). The latter RNA is present in the double-stranded RNA (dsRNA) replicative intermediate and is associated with plasma membrane and endosome-like vesicular organelles (8). Further processing of the polyproteins into individual nsP1 to nsP4 makes the RC capable of the synthesis of the positive-strand genome and subgenomic RNA but not of negative-strand RNA (23, 41, 42). Thus, the completely processed nsPs utilize only the promoters located on the negative strand of the viral genome.The defined promoters in the alphavirus genomes include (i) a 3′-terminal 19-nucleotide (nt)-long, conserved sequence element (CSE) adjacent to the poly(A) tail (12, 13, 19); (ii) the subgenomic promoter in the negative-strand copy of the viral genome (25); and (iii) the promoter for the synthesis of the positive-strand viral genome (45). The latter promoter is located at the 3′ end of the negative strand of the viral genome and has a complex structure. The two identified elements include the sequence, encoded by the 5′ untranslated region (5′UTR) (a core promoter) (5, 9, 32), and a 51-nt CSE, found ∼150 nt downstream of the genome''s 5′ terminus in the nsP1-encoding sequence. Our previous results and those of other research groups demonstrated that the 51-nt CSE functions as a replication enhancer in a virus- and cell-dependent mode (4, 33). Clustered mutations in the VEEV 51-nt CSE or its complete deletion either had deleterious effects on RNA replication or completely abolished RNA synthesis (30). However, RNA replication was ultimately recovered due to an accumulation of compensatory, adaptive mutations in either VEEV nsP2 or nsP3 (30). Thus, the 51-nt CSE in the VEEV genome is not absolutely essential for virus replication, but its presence is highly beneficial for achieving the most efficient growth rates in cells of both vertebrate and invertebrate origins. Alphavirus core promoters demonstrate a very low level of sequence conservation and also function in cell- and virus-specific modes (9). Previous studies suggested that the sequence and/or secondary structure of the VEEV core promoter plays a critical role in virus pathogenesis, and the G3→A (A3) mutation, found in an attenuated strain of VEEV TC-83, is one of the determinants of its less pathogenic phenotype (17, 55). However, information about functional elements of the VEEV core promoter remains incomplete, and its structural and functional elements have not yet been dissected.In this study, we applied a combination of molecular approaches to further define the functional components of the VEEV 5′UTR-specific core promoter, which mediates positive-strand genome synthesis. Our results demonstrate the presence of three structural RNA elements, two of which synergistically determine promoter activity. The first element of the promoter is a very short, 5′-terminal sequence, which is not involved in a stable secondary structure. Point mutations in the very 5′-terminal nucleotides have a deleterious effect on genome RNA replication. The second element is the short RNA stem, located in close proximity to the 5′ end of the genome. Mutations changing either the stability or sequence of the stem strongly affect virus replication and cause its rapid evolution, leading to the appearance of heterologous repeating elements in the unpaired 5′ terminus or the generation of other sequences that might potentially fold into stem structures. Surprisingly, the third structural RNA element, the loop, appears to play no important role in RNA replication and can be replaced either by a shorter loop or by the loop having a heterologous sequence without a detectable effect on virus and RNA replication.  相似文献   

6.
We describe a 5′ untranslated region (5′UTR) that dramatically increases the expression level of an exogenous gene in Aspergillus oryzae. Using a series of 5′UTR::GUS (uidA) fusion constructs, we analyzed the translation efficiency of chimeric mRNAs with different 5′UTRs at different temperatures. We found that the 5′UTR of a heat-shock protein gene, Hsp12, greatly enhanced the translation efficiency of the chimeric GUS mRNA at normal temperature (30°C). Moreover, at high temperature (37°C), the translation efficiency of the mRNA containing the Hsp12 5′UTR was far superior to that of mRNAs containing nonheat-shock 5′UTRs, resulting in much more efficient expression of GUS protein (about 20-fold higher GUS activity compared to the control construct). This 5′UTR can be used in combination with various strong promoters to enhance the expression of foreign proteins in A. oryzae.  相似文献   

7.
8.
9.
10.
Three sequence blocks of 10–12 bp are conserved in sequence and order 5 to putative start codons of several higher-plant mitochondrial genes. At least 25 examples were found, primarily associated with coxII, atp6, and orf25, in monocotyledons and dicotyledons. The proximal block can be 9 bp from start codons, and the three blocks generally occur within 100 bp 5 of start codons. In three examples 5 termini of the blocks represent recombination breakpoints, resulting in conservation of the blocks in resultant configurations. The two proximal blocks can form a secondary structure motif. The occurrence of the blocks near start codons, and conserved sequence and order, is consistent with a possible role in translation initiation or regulation.  相似文献   

11.
12.
13.
The 5′ untranslated region of the chloroplast psbA mRNA, encoding the D1 protein, is processed in Chlamydomonas reinhardtii. Processing occurs just upstream of a consensus Shine-Dalgarno sequence and results in the removal of 54 nucleotides from the 5′ terminus, including a stem-loop element identified previously as an important structure for D1 expression. Examination of this processing event in C. reinhardtii strains containing mutations within the chloroplast or nuclear genomes that block psbA translation reveals a correlation between processing and ribosome association. Mutations within the 5′ untranslated region of the psbA mRNA that disrupt the Shine-Dalgarno sequence, acting as a ribosome binding site, preclude translation and prevent mRNA processing. Similarly, nuclear mutations that specifically affect synthesis of the D1 protein specifically affect processing of the psbA mRNA. In vitro, loss of the stem-loop element does not prohibit the binding of a message-specific protein complex required for translational activation of psbA upon illumination. These results are consistent with a hierarchical maturation pathway for chloroplast messages, mediated by nuclear-encoded factors, that integrates mRNA processing, message stability, ribosome association, and translation.  相似文献   

14.
Abstract

The deuterations of 2′-deoxyguanosine in the 4′ and 5′ positions have been described elsewhere (1). The starting material is the 5′-aldehyde formed by mild oxidation with N,N-dicyclohexyl carbodiimide in dimethyl sulphoxide of the fully protected nucleoside with free 5′-alcoholic function. The 5′4euteration was achieved by reduction with deuterated sodium borohydride. Incorporation of deuterium in the 4′-position was achieved v i a an enhanced keto-enol tautomerim by heating the aldehyde in 50/50 D20/pyridine, with subsequent reduction of the aldehyde with NaBH4. The 6-furanoid form was isolated from the I-lyxo by-product by reverse phase HPLC. Applied to pyrimidine 2′-deoxyribonucleosides, this method was shown to give deuterated 2′-deoxycytidine and thymidine in good yield.  相似文献   

15.
For the synthesis of 2′,3′ -didehydro-3′ -deoxy-4′ -C-ethynylthymidine (8: 4′ -Ed4T), a recently reported promising anti-HIV agent, a new approach was developed. Since treatment of 1-(2,5-dideoxy-β-l-glycero-pent-4-enofuranosyl)thymine with Pb(OBz)4 allowed the introduction of a 4′-benzoyloxy leaving group, nucleophilic substitution at the 4′ -position became feasible for the first time. Thus, reaction between the 4′-benzoyloxy derivative (11) and Me3SiC ≡ CAl(Et)Cl as a nucleophile led to the isolation of the desired 4′-“down”-ethynyl derivative (15) stereoselectively in 62% yield.  相似文献   

16.
A synthetic route to (1S,2S,3R,5S)-3-(6-amino-9H-purin-9-yl)-5-fluorocyclopentane-1,2-diol (that is, the 4′-fluoro derivative of 4′-deoxy-5′-noraristeromycin, 3) is described via a fluorinated cyclopentanol, which is in contrast to existing schemes where fluorination occurred once the purine ring was present. Compound 3 was assayed versus a number of viruses. A favorable response was observed towards measles (IC50 of 1.2 μg/mL in the neutral red assay and 14 μg/mL by the visual assay) but this was accompanied by cytotoxicity in the CV-1 host cells (21–36 μg/mL). Among the viruses unaffected by 3 were human cytomegalovirus and the poxviruses (vaccinia and cowpox), which are three viruses that were inhibited by the 4′,4′-difluoro analog of 3 (that is, 2).  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号