首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Mesenchymal stromal cells may represent an ideal candidate to deliver anti-cancer drugs. In a previous study, we demonstrated that exposure of mouse bone marrow derived stromal cells to Doxorubicin led them to acquire anti-proliferative potential towards co-cultured haematopoietic stem cells (HSCs). We thus hypothesized whether freshly isolated human bone marrow Mesenchymal stem cells (hMSCs) and mature murine stromal cells (SR4987 line) primed in vitro with anti-cancer drugs and then localized near cancer cells, could inhibit proliferation.

Methods and Principal Findings

Paclitaxel (PTX) was used to prime culture of hMSCs and SR4987. Incorporation of PTX into hMSCs was studied by using FICT-labelled-PTX and analyzed by FACS and confocal microscopy. Release of PTX in culture medium by PTX primed hMSCs (hMSCsPTX) was investigated by HPLC. Culture of Endothelial cells (ECs) and aorta ring assay were used to test the anti-angiogenic activity of hMSCsPTX and PTX primed SR4987(SR4987PTX), while anti-tumor activity was tested in vitro on the proliferation of different tumor cell lines and in vivo by co-transplanting hMSCsPTX and SR4987PTX with cancer cells in mice. Nevertheless, despite a loss of cells due to chemo-induced apoptosis, both hMSCs and SR4987 were able to rapidly incorporate PTX and could slowly release PTX in the culture medium in a time dependent manner. PTX primed cells acquired a potent anti-tumor and anti-angiogenic activity in vitro that was dose dependent, and demonstrable by using their conditioned medium or by co-culture assay. Finally, hMSCsPTX and SR4987PTX co-injected with human cancer cells (DU145 and U87MG) and mouse melanoma cells (B16) in immunodeficient and in syngenic mice significantly delayed tumor takes and reduced tumor growth.

Conclusions

These data demonstrate, for the first time, that without any genetic manipulation, mesenchymal stromal cells can uptake and subsequently slowly release PTX. This may lead to potential new tools to increase efficacy of cancer therapy.  相似文献   

2.

Background

Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected.

Methodology/Principal Findings

We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC) class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID) mice could be attained provided that recipients'' natural killer (NK) cells were depleted prior to cell transplantation.

Conclusions/Significance

Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable.  相似文献   

3.

Background

The maintenance of lifelong blood cell production ultimately rests on rare hematopoietic stem cells (HSCs) that reside in the bone marrow microenvironment. HSCs are traditionally viewed as mitotically quiescent relative to their committed progeny. However, traditional techniques for assessing proliferation activity in vivo, such as measurement of BrdU uptake, are incompatible with preservation of cellular viability. Previous studies of HSC proliferation kinetics in vivo have therefore precluded direct functional evaluation of multi-potency and self-renewal, the hallmark properties of HSCs.

Methodology/Principal Findings

We developed a non-invasive labeling technique that allowed us to identify and isolate candidate HSCs and early hematopoietic progenitor cells based on their differential in vivo proliferation kinetics. Such cells were functionally evaluated for their abilities to multi-lineage reconstitute myeloablated hosts.

Conclusions

Although at least a few HSC divisions per se did not influence HSC function, enhanced kinetics of divisional activity in steady state preceded the phenotypic changes that accompanied loss of HSC self-renewal. Therefore, mitotic quiescence of HSCs, relative to their committed progeny, is key to maintain the unique functional and molecular properties of HSCs.  相似文献   

4.

Background

Pluri-potent bone marrow stromal cells (MSCs) provide an attractive opportunity to generate unlimited glucose-responsive insulin-producing cells for the treatment of diabetes. We explored the potential for human MSCs (hMSCs) to be differentiated into glucose-responsive cells through a non-viral genetic reprogramming approach.

Methods and Findings

Two hMSC lines were transfected with three genes: PDX-1, NeuroD1 and Ngn3 without subsequent selection, followed by differentiation induction in vitro and transplantation into diabetic mice. Human MSCs expressed mRNAs of the archetypal stem cell markers: Sox2, Oct4, Nanog and CD34, and the endocrine cell markers: PDX-1, NeuroD1, Ngn3, and Nkx6.1. Following gene transfection and differentiation induction, hMSCs expressed insulin in vitro, but were not glucose regulated. After transplantation, hMSCs differentiated further and ∼12.5% of the grafted cells expressed insulin. The graft bearing kidneys contained mRNA of insulin and other key genes required for the functions of beta cells. Mice transplanted with manipulated hMSCs showed reduced blood glucose levels (from 18.9+/−0.75 to 7.63+/−1.63 mM). 13 of the 16 mice became normoglycaemic (6.9+/−0.64 mM), despite the failure to detect the expression of SUR1, a K+-ATP channel component required for regulation of insulin secretion.

Conclusions

Our data confirm that hMSCs can be induced to express insulin sufficient to reduce blood glucose in a diabetic mouse model. Our triple gene approach has created cells that seem less glucose responsive in vitro but which become more efficient after transplantation. The maturation process requires further study, particularly the in vivo factors influencing the differentiation, in order to scale up for clinical purposes.  相似文献   

5.

Background

Implantation of human multipotent stromal cells from bone marrow (hMSCs) into the dentate gyrus of the hippocampus of mice was previously shown to stimulate proliferation, migration and neural differentiation of endogenous neural stem cells. We hypothesized that hMSCs would be beneficial in a mouse model of Huntington disease (HD) due to these neurogenic effects.

Results

We implanted hMSCs into the striatum of transgenic mice (N171-82Q) that are a model for HD. The implanted hMSCs rapidly disappeared over 3 to 15 days. However, they increased proliferation and neural differentiation of endogenous neural stem cells for up to 30 days. They also increased neurotrophic signaling and decreased atrophy of the striatum in 3-month old HD mice implanted with hMSCs one month earlier.

Conclusions

The results therefore suggested that neural implantation of hMSCs may be of benefit in HD but a number of parameters of dose, treatment schedule, and route of administration need to be optimized.  相似文献   

6.
Zheng B  Tan L  Mo X  Yu W  Wang Y  Tucker-Kellogg L  Welsch RE  So PT  Yu H 《PloS one》2011,6(11):e26230

Background/Aims

Many anti-fibrotic drugs with high in vitro efficacies fail to produce significant effects in vivo. The aim of this work is to use a statistical approach to design a numerical predictor that correlates better with in vivo outcomes.

Methods

High-content analysis (HCA) was performed with 49 drugs on hepatic stellate cells (HSCs) LX-2 stained with 10 fibrotic markers. ∼0.3 billion feature values from all cells in >150,000 images were quantified to reflect the drug effects. A systematic literature search on the in vivo effects of all 49 drugs on hepatofibrotic rats yields 28 papers with histological scores. The in vivo and in vitro datasets were used to compute a single efficacy predictor (Epredict).

Results

We used in vivo data from one context (CCl4 rats with drug treatments) to optimize the computation of Epredict. This optimized relationship was independently validated using in vivo data from two different contexts (treatment of DMN rats and prevention of CCl4 induction). A linear in vitro-in vivo correlation was consistently observed in all the three contexts. We used Epredict values to cluster drugs according to efficacy; and found that high-efficacy drugs tended to target proliferation, apoptosis and contractility of HSCs.

Conclusions

The Epredict statistic, based on a prioritized combination of in vitro features, provides a better correlation between in vitro and in vivo drug response than any of the traditional in vitro markers considered.  相似文献   

7.

Background

Bone marrow microenvironment (niche) plays essential roles in the fate of hematopoietic stem cells (HSCs). Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR) is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP), and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown.

Objective

To examine the effects of low CPR expression on HSCs function using a mouse model of globally suppressed Cpr gene expression (Cpr Low, CL mice).

Methods

Hematopoietic cell subpopulations in bone marrow (BM) and peripheral blood (PB) from WT and CL mice were examined for their repopulation and differentiation ability upon BM competitive transplantation and enriched HSC (LKS+) transplantation. Effects of low CPR expression on hematopoiesis were examined by transplanting normal BM cells into CL recipients. Reactive oxygen species (ROS), cell cycle, and apoptosis in CL mice were analyzed by flow cytometry for DCF-DA fluorescence intensity, Ki67 protein, and Annexin-V, respectively.

Results

The levels of ROS in BM cells, HPCs and HSCs were comparable between CL and WT mice. In comparison to WT mice, the number of LT-HSCs or ST-HSCs was lower in CL mice while CMPs, GMPs and MEPs in CL mice were higher than that in WT control. Competitive transplantation assay revealed enhanced repopulation capacity of HSCs with low CPR expression, but no difference in differentiation potential upon in vitro experiments. Furthermore, lymphoid differentiation of donor cells decreased while their myeloid differentiation increased under CL microenvironment although the overall level of donor hematopoietic repopulation was not significantly altered.

Conclusions

Our studies demonstrate that suppressing CPR expression enhances the repopulation efficiency of HSCs and a low CPR expression microenvironment favors the differentiation of myeloid over lymphoid lineage cells.  相似文献   

8.

Background

The human immunodeficiency virus type 1 (HIV-1) p17 is a matrix protein involved in virus life''s cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs), a key cell type involved in matrix deposition in liver fibrotic disorders.

Aim

In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes.

Methods

LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors.

Results

Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2.

Conclusions

The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs.  相似文献   

9.
Hong F  Saiman Y  Si C  Mosoian A  Bansal MB 《PloS one》2012,7(3):e33659

Background & Aims

Patients coinfected with HIV-1 and HCV develop more rapid liver fibrosis than patients monoinfected with HCV. HIV RNA levels correlate with fibrosis progression implicating HIV directly in the fibrotic process. While activated hepatic stellate cells (HSCs) express the 2 major HIV chemokine coreceptors, CXCR4 and CCR5, little is known about the pro-fibrogenic effects of the HIV-1 envelope protein, gp120, on HSCs. We therefore examined the in vitro impact of X4 gp120 on HSC activation, collagen I expression, and underlying signaling pathways and examined the in vivo expression of gp120 in HIV/HCV coinfected livers.

Methods

Primary human HSCs and LX-2 cells, a human HSC line, were challenged with X4 gp120 and expression of fibrogenic markers assessed by qRT-PCR and Western blot +/− either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Downstream intracellular signaling pathways were evaluated with Western blot and pre-treatment with specific pathway inhibitors. Gp120 immunostaining was performed on HIV/HCV coinfected liver biopsies.

Results

X4 gp 120 significantly increased expression of alpha-smooth muscle actin (a-SMA) and collagen I in HSCs which was blocked by pre-incubation with either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Furthermore, X4 gp120 promoted Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and pretreatment with an ERK inhibitor attenuated HSC activation and collagen I expression. Sinusoidal staining for gp120 was evident in HIV/HCV coinfected livers.

Conclusions

X4 HIV-1 gp120 is pro-fibrogenic through its interactions with CXCR4 on activated HSCs. The availability of small molecule inhibitors to CXCR4 make this a potential anti-fibrotic target in HIV/HCV coinfected patients.  相似文献   

10.
11.

Background

Assisted reproductive technologies allow to utilize a limited number of fully grown oocytes despite the presence in the ovary of a large pool of meiotically incompetent gametes potentially able to produce live births. In vitro folliculogenesis could be useful to recruit these oocytes by promoting their growth and differentiation.

Methodology/Principal Findings

In vitro folliculogenesis was performed starting from sheep preantral (PA) follicles to evaluate oocyte nuclear/epigenetic maturation. Chromatin configuration, quantification of global DNA methylation, and epigenetic remodelling enzymes were evaluated with immunocytochemistry, telomere elongation was assessed with the Q-FISH technique, while the DNA methylation status at the DMRs of maternally IGF2R and BEGAIN, and paternally H19 methylated imprinted genes was determined by bisulfite sequencing and COBRA. Specifically, 70% of PA underwent early antrum (EA) differentiation and supported in culture oocyte global DNA methylation, telomere elongation, TERT and Dnmt3a redistribution thus mimicking the physiological events that involve the oocyte during the transition from secondary to tertiary follicle. Dnmt1 anticipated cytoplasmic translocation in in vitro grown oocytes did not impair global and single gene DNA methylation. Indeed, the in vitro grown oocytes acquired a methylation profile of IGF2R and BEGAIN compatible with the follicle/oocyte stage reached, and maintained an unmethylated status of H19. In addition, the percentage of oocytes displaying a condensed chromatin configuration resulted lower in in vitro grown oocytes, however, their ability to undergo meiosis and early embryo development after IVF and parthenogenetic activation was similar to that recorded in EA follicle in vivo grown oocytes.

Conclusions/Significance

In conclusion, the in vitro folliculogenesis was able to support the intracellular/nuclear mechanisms leading the oocytes to acquire a meiotic and developmental competence. Thus, the in vitro culture may increase the availability of fertilizable oocytes in sheep, and become an in vitro translational model to investigate the mechanisms governing nuclear/epigenetic oocyte maturation.  相似文献   

12.

Background

The engineering of functional tissues is a complex multi-stage process, the success of which depends on the careful control of culture conditions and ultimately tissue maturation. To enable the efficient optimization of tissue development protocols, techniques suitable for monitoring the effects of added stimuli and induced tissue changes are needed.

Methodology/Principal Findings

Here, we present the quantitative use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) as a noninvasive means to monitor the differentiation of human mesenchymal stem cells (hMSCs) using entirely endogenous sources of contrast. We demonstrate that the individual fluorescence contribution from the intrinsic cellular fluorophores NAD(P)H, flavoproteins and lipofuscin can be extracted from TPEF images and monitored dynamically from the same cell population over time. Using the redox ratio, calculated from the contributions of NAD(P)H and flavoproteins, we identify distinct patterns in the evolution of the metabolic activity of hMSCs maintained in either propagation, osteogenic or adipogenic differentiation media. The differentiation of these cells is mirrored by changes in cell morphology apparent in high resolution TPEF images and by the detection of collagen production via SHG imaging. Finally, we find dramatic increases in lipofuscin levels in hMSCs maintained at 20% oxygen vs. those in 5% oxygen, establishing the use of this chromophore as a potential biomarker for oxidative stress.

Conclusions/Significance

In this study we demonstrate that it is possible to monitor the metabolic activity, morphology, ECM production and oxidative stress of hMSCs in a non-invasive manner. This is accomplished using generally available multiphoton microscopy equipment and simple data analysis techniques, such that the method can widely adopted by laboratories with a diversity of comparable equipment. This method therefore represents a powerful tool, which enables researchers to monitor engineered tissues and optimize culture conditions in a near real time manner.  相似文献   

13.

Background

Hematopoietic stem cell (HSC) regulation is highly dependent on interactions with the marrow microenvironment, of which osteogenic cells play a crucial role. While evidence is accumulating for an important role of intrinsic miR-17 in regulating HSCs and HPCs, whether miR-17 signaling pathways are also necessary in the cell-extrinsic control of hematopoiesis hereto remains poorly understood.

Methodology/Principal Findings

Using the immortalized clone with the characteristics of osteoblasts, FBMOB-hTERT, in vitro expansion, long-term culture initiating cell (LTC-IC) and non-obese diabetic/severe combined immunodeficient disease (NOD/SCID) mice repopulating cell (SRC) assay revealed that the ectopic expression of miR-17 partly promoted the ability of FBMOB-hTERT to support human cord blood (CB) CD34+ cell expansion and maintain their multipotency. It also seemed that osteoblastic miR-17 was prone to cause a specific expansion of the erythroid lineage. Conversely, deficient expression of miR-17 partly inhibited the hematopoietic supporting ability of FBMOB-hTERT. We further identified that HIF-1α is responsible for, at least in part, the promoted hematopoietic supporting ability of FBMOB-hTERT caused by miR-17. HIF-1α expression is markedly enhanced in miR-17 overexpressed FBMOB-hTERT upon interaction with CB CD34+ cells compared to other niche associated factors. More interestingly, the specific erythroid lineage expansion of CB CD34+ cells caused by osteoblastic miR-17 was abrogated by HIF-1α knock down.

Conclusion/Significance

Our data demonstrated that CB CD34+ cell expansion can be partly promoted by osteoblastic miR-17, and in particular, ectopic miR-17 can cause a specific expansion of the erythroid lineage through augmenting HIF-1α in osteoblasts.  相似文献   

14.
15.
16.
17.

Objectives

The purpose of our study was to assess the chondrogenic potential and the MR signal effects of GadofluorineM-Cy labeled matrix associated stem cell implants (MASI) in pig knee specimen.

Materials and Methods

Human mesenchymal stem cells (hMSCs) were labeled with the micelle-based contrast agent GadofluorineM-Cy. Ferucarbotran-labeled hMSCs, non-labeled hMSCs and scaffold only served as controls. Chondrogenic differentiation was induced and gene expression and histologic evaluation were performed. The proportions of spindle-shaped vs. round cells of chondrogenic pellets were compared between experimental groups using the Fisher''s exact test. Labeled and unlabeled hMSCs and chondrocytes in scaffolds were implanted into cartilage defects of porcine femoral condyles and underwent MR imaging with T1- and T2-weighted SE and GE sequences. Contrast-to-noise ratios (CNR) between implants and adjacent cartilage were determined and analyzed for significant differences between different experimental groups using the Kruskal-Wallis test. Significance was assigned for p<0.017, considering a Bonferroni correction for multiple comparisons.

Results

Collagen type II gene expression levels were not significantly different between different groups (p>0.017). However, hMSC differentiation into chondrocytes was superior for unlabeled and GadofluorineM-Cy-labeled cells compared with Ferucarbotran-labeled cells, as evidenced by a significantly higher proportion of spindle cells in chondrogenic pellets (p<0.05). GadofluorineM-Cy-labeled hMSCs and chondrocytes showed a positive signal effect on T1-weighted images and a negative signal effect on T2-weighted images while Ferucarbotran-labeled cells provided a negative signal effect on all sequences. CNR data for both GadofluorineM-Cy-labeled and Ferucarbotran-labeled hMSCs were significantly different compared to unlabeled control cells on T1-weighted SE and T2*-weighted MR images (p<0.017).

Conclusion

hMSCs can be labeled by simple incubation with GadofluorineM-Cy. The labeled cells provide significant MR signal effects and less impaired chondrogenesis compared to Ferucarbotran-labeled hMSCs. Thus, GadoflurineM-Cy might represent an alternative MR cell marker to Ferucarbotran, which is not distributed any more in Europe or North America.  相似文献   

18.

Background

Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors.

Methodology/Principal Findings

We identified collagen triple helix repeat containing-1 (Cthrc1) as a downstream target of bone morphogenetic protein-2 (BMP2) in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice). Microcomputed tomography (micro-CT) and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU) assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss.

Conclusions/Significance

Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the treatment of osteoporosis.  相似文献   

19.

Background

Osteoblasts are bone forming cells that play an essential role in osteogenesis. The elucidation of the mechanisms that control osteoblast number is of major interest for the treatment of skeletal disorders characterized by abnormal bone formation. Canonical Wnt signalling plays an important role in the control of osteoblast proliferation, differentiation and survival. Recent studies indicate that the cell-cell adhesion molecule N-cadherin interacts with the Wnt co-receptors LRP5/6 to regulate osteoblast differentiation and bone accrual. The role of N-cadherin in the control of osteoblast proliferation and survival remains unknown.

Methods and Principal Findings

Using murine MC3T3-E1 osteoblastic cells and N-cadherin transgenic mice, we demonstrate that N-cadherin overexpression inhibits cell proliferation in vitro and in vivo. The negative effect of N-cadherin on cell proliferation results from decreased Wnt, ERK and PI3K/Akt signalling and is restored by N-cadherin neutralizing antibody that antagonizes N-cadherin-LRP5 interaction. Inhibition of Wnt signalling using DKK1 or Sfrp1 abolishes the ability of N-cadherin blockade to restore ERK and PI3K signalling and cell proliferation, indicating that the altered cell growth in N-cadherin overexpressing cells is in part secondary to alterations in Wnt signalling. Consistently, we found that N-cadherin overexpression inhibits the expression of Wnt3a ligand and its downstream targets c-myc and cyclin D1, an effect that is partially reversed by N-cadherin blockade. We also show that N-cadherin overexpression decreases osteoblast survival in vitro and in vivo. This negative effect on cell survival results from inhibition of PI3K/Akt signalling and increased Bax/Bcl-2, a mechanism that is rescued by Wnt3a.

Conclusion

The data show that N-cadherin negatively controls osteoblast proliferation and survival via inhibition of autocrine/paracrine Wnt3a ligand expression and attenuation of Wnt, ERK and PI3K/Akt signalling, which provides novel mechanisms by which N-cadherin regulates osteoblast number.  相似文献   

20.

Background

Human mesenchymal stem cells (hMSCs) are multipotent by nature and are originally isolated from bone marrow. In light of a future application of hMSCs in the oral cavity, a body compartment with varying oxygen partial pressures and an omnipresence of different bacterial species i.e. periodontitis pathogens, we performed this study to gain information about the behavior of hMSC in an anaerobic system and the response in interaction with oral bacterial pathogens.

Methodology/Principal Findings

We established a model system with oral pathogenic bacterial species and eukaryotic cells cultured in anaerobic conditions. The facultative anaerobe bacteria Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were studied. Their effects on hMSCs and primary as well as permanent gingival epithelial cells (Ca9-22, HGPEC) were comparatively analyzed. We show that hMSCs cope with anoxic conditions, since 40% vital cells remain after 72 h of anaerobic culture. The Ca9-22 and HGPEC cells are significantly more sensitive to lack of oxygen. All bacterial species reveal a comparatively low adherence to and internalization into hMSCs (0.2% and 0.01% of the initial inoculum, respectively). In comparison, the Ca9-22 and HGPEC cells present better targets for bacterial adherence and internalization. The production of the pro-inflammatory chemokine IL-8 is higher in both gingival epithelial cell lines compared to hMSCs and Fusobacterium nucleatum induce a time-dependent cytokine secretion in both cell lines. Porphyromonas gingivalis is less effective in stimulating secretion of IL-8 in the co-cultivation experiments.

Conclusions/significance

HMSCs are suitable for use in anoxic regions of the oral cavity. The interaction with local pathogenic bacteria does not result in massive pro-inflammatory cytokine responses. The test system established in this study allowed further investigation of parameters prior to set up of oral hMSC in vivo studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号