首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local, efflux-dependent auxin gradients and maxima mediate organ and tissue development in plants. The auxin-efflux pattern is regulated by dynamic expression and asymmetric subcellular localization of PIN auxin-efflux proteins during plant organogenesis. Thus, the question of how the expression and subcellular localization of PIN proteins are controlled goes to the heart of plant development. It has been shown that PIN expression and polarity are established not only through a self-organizing auxin-mediated polarization mechanism, but also through other means such as cell-fate determination. We found that the Arabidopsis NO VEIN (NOV) gene, encoding a novel, plant-specific nuclear factor, is required for leaf vascular development, cellular patterning and stem-cell maintenance in the root meristem and cotyledon outgrowth and separation. NOV function underlies cell-fate decisions associated with auxin gradients and maxima, thereby establishing cell type-specific PIN expression and polarity. We propose that NOV mediates cell acquisition of the competence to undergo auxin-dependent coordinated cell specification and patterning, thereby educing context-dependent auxin-mediated developmental responses.Key words: Arabidopsis, auxin, PIN, organ development, vascular development, stem-cell maintenance, NO VEINIn plants, local auxin gradients associated with auxin maxima mediate coordinated cell specification and patterning in the root,13 lateral organ,46 embryo79 and vascular tissue.1013 A central factor in the formation of auxin concentration gradients and maxima is polar auxin transport, which is defined by cell type-specific expression and asymmetric subcellular localization of the PIN family of auxin-efflux proteins.14,15 Reciprocally, auxin can induce changes in PIN localization16,17 and expression18,19 under the influence of cell fate. Therefore, PIN expression and polarity are established not only through the self-organizing auxin-mediated feedback mechanism, but also through cell-fate determination. However, the molecular mechanism regulating PIN expression and polarity remains largely unknown.As a model system to study auxin-mediated polarized development, we have genetically analyzed vascular development in Arabidopsis. The no vein-1 (nov-1) mutant was identified among Arabidopsis mutants defective in leaf vascular development. We found that the Arabidopsis NOV gene is required for leaf vascular development, cellular patterning and stem-cell maintenance in the root meristem and cotyledon outgrowth and separation.20 nov mutations affect many aspects of auxin-dependent development without directly affecting auxin perception. NOV encodes a novel, plant-specific nuclear factor expressed in developing embryos, leaf primordia, lateral-root primordia and the meristematic regions of shoots and roots.20 Here we present additional data on cell specification defects in nov-1 roots, further supporting that NOV function underlies cell-fate decisions associated with auxin gradients and maxima, thus establishing cell-type-specific PIN expression and polarity.In wild type, PIN3, PIN4 and PIN7 proteins exhibit differential expression patterns in the columella root-cap cells. The first tier of columella cells (columella stem cells) express PIN4, the second tier of columella cells expresses PIN3, PIN4 and PIN7 and the third tier expresses PIN3 and PIN7.2,3,20,21 In nov-1 columella cells, while expression of PIN3 and PIN7 was decreased or almost absent, PIN4 expression was expanded to the third tier of columella cells,20 suggesting that the differential expression of the PIN proteins is disrupted in nov-1. Cell specification defects are also seen in columella cells of nov mutants. In nov-1 and nov-3, the first tier columella stem cells contain starch granules, which in wild type are usually absent, suggesting that fate of the first tier columella stem cells is not maintained in nov-1 and nov-3.20 On the other hand, the columella stem-cell marker J2341 is ectopically expressed in the second and third tiers of nov-1 columella cells (cf. Fig. 1F with A), suggesting that these cells adopt at least some traits of first tier columella cells. Loss of PIN3 and PIN7 expression in the second and third tiers of columella cells and expansion of PIN4 expression to the third tier in nov-1 fit well with the idea that the second and third tiers of columella cells adopt the first tier traits in nov-1. These data suggest that the first to third tiers of nov-1 columella cells adopt mixed cell fates and that NOV is required for establishing both cell fate and PIN expression pattern in columella root cap cells.Open in a separate windowFigure 1Cell-marker expression in wild-type and nov-1 root tips. (A and F) Expression of the columella initials marker J2341. In wild-type roots (A), J2341 is expressed strongly in the first tier of columella cells and very weakly in the quiescent center and other initials. In nov-1 roots (F), J2341 expression encompasses the first to third tiers of columella cells, the quiescent center and cortex/endodermis initial cells. (B, C, G and H) Expression of the ground-tissue marker J0571. In wild-type roots (B and C), J0571 is expressed in the cortex and endodermis and weakly in the quiescent center and cortex/endodermis initials. In nov-1 roots (G and H), J0571 expression is disrupted in the cortex and occasionally perturbed in the endodermis. (D, E, I and J) Expression of Q2500. In wild-type roots (D and E), Q2500 is expressed mainly in the endodermis, weakly in the pericycle and in the epidermis and cortex closer to the root stem-cell niche. In nov-1 roots (I and J), Q2500 expression is also disrupted in the epidermis and cortex. Seedlings used were vertically grown on the surface of 1.5% agar plates for 5 (B, C, G and H) and 7 (A, D–F, I and J) days. The reporter GFP expression (green) is shown with (magenta; A, B, D, F, G and I) and without (C, E, H and J) propidium iodide staining for cell boundary. Arrows in (A) and (F) indicate positions of the first tiers of columella cells. Asterisks in (B–E) and (G–J) mark positions of the cortex cell files. Scale bars = 20 µm [equal scale in (A and B) and in (B–E and G–J), respectively].In wild-type root tips, PIN2 is polarized apically in the epidermis and basally in the cortex.22 In nov-1, PIN2 polarity in the cortex was not basal, but either apical or non-polar.20 In nov mutants, root cortex cells also have cell specification defects. In seedlings of nov-1 and embryos of nov-2, -3, -4 and -5, cortex/endodermis stem cells often undergo premature periclinal division without prior anticlinal division and are thus not maintained as stem cells.20 In nov-1 roots, expression of the ground-tissue marker J0571 is disrupted in the cortex and occasionally perturbed in the endodermis (cf. Fig. 1G and H with 1B1B and C) and Q2500 expression is also disrupted in the cortex (cf. Fig. 1I and J with 1D1D and E), suggesting that nov-1 root cortex cells lose some traits of the cortex. These indicate that NOV is required for establishing both cell fate and PIN2 polarity in root cortex cells.Collectively, our data suggest that the NOV indirectly regulates expression and polarity of PIN proteins through mechanisms that include the determination and/or stabilization of cell fate in the root meristem.20 We have also shown that NOV is required for provascular PIN1 expression and region-specific expression of PIN7 in leaf primordia, that NOV helps cells to acquire and maintain their ability to differentiate into vascular cells in response to auxin, that NOV is required for normal cellular organization and stem-cell maintenance in the root stem-cell niche, that NOV has an important role in auxin-mediated embryonic development, and that NOV encodes a previously undescribed plant-specific nuclear factor specifically expressed in developing organs and tissues.20 Together with the data presented in this report, we suggest that NOV function underlies cell-fate decisions associated with auxin gradients and maxima, thus establishing PIN expression and polarity and auxin-mediated development. We propose that NOV is a novel competence factor mediating cell acquisition of competence to undergo auxin-dependent coordinated cell specification and patterning, thereby educing context-dependent developmental responses. Future studies on NOV may shed new light on the fundamental mechanisms by which auxin regulates the formation of plant organs and tissues, regardless of their fate and origin.  相似文献   

2.
ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.  相似文献   

3.
4.
The hormone auxin plays a crucial role in plant morphogenesis. In the shoot apical meristem, the PIN-FORMED1 (PIN1) efflux carrier concentrates auxin into local maxima in the epidermis, which position incipient leaf or floral primordia. From these maxima, PIN1 transports auxin into internal tissues along emergent paths that pattern leaf and stem vasculature. In Arabidopsis thaliana, these functions are attributed to a single PIN1 protein. Using phylogenetic and gene synteny analysis we identified an angiosperm PIN clade sister to PIN1, here termed Sister-of-PIN1 (SoPIN1), which is present in all sampled angiosperms except for Brassicaceae, including Arabidopsis. Additionally, we identified a conserved duplication of PIN1 in the grasses: PIN1a and PIN1b. In Brachypodium distachyon, SoPIN1 is highly expressed in the epidermis and is consistently polarized toward regions of high expression of the DR5 auxin-signaling reporter, which suggests that SoPIN1 functions in the localization of new primordia. In contrast, PIN1a and PIN1b are highly expressed in internal tissues, suggesting a role in vascular patterning. PIN1b is expressed in broad regions spanning the space between new primordia and previously formed vasculature, suggesting a role in connecting new organs to auxin sinks in the older tissues. Within these regions, PIN1a forms narrow canals that likely pattern future veins. Using a computer model, we reproduced the observed spatio-temporal expression and localization patterns of these proteins by assuming that SoPIN1 is polarized up the auxin gradient, and PIN1a and PIN1b are polarized to different degrees with the auxin flux. Our results suggest that examination and modeling of PIN dynamics in plants outside of Brassicaceae will offer insights into auxin-driven patterning obscured by the loss of the SoPIN1 clade in Brassicaceae.  相似文献   

5.
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible and is expressed during multiple auxin–regulated developmental processes. Loss of pin6 function interfered with primary root growth and lateral root development. Misexpression of PIN6 affected auxin transport and interfered with auxin homeostasis in other growth processes such as shoot apical dominance, lateral root primordia development, adventitious root formation, root hair outgrowth and root waving. These changes in auxin-regulated growth correlated with a reduction in total auxin transport as well as with an altered activity of DR5-GUS auxin response reporter. Overall, the data indicate that PIN6 regulates auxin homeostasis during plant development.  相似文献   

6.
Control of organ size by cell expansion and cell proliferation is a fundamental process during development, but the importance of BIG in this process is still poorly understood. Here, we report the isolation and characterization of a new allele mutant of BIG in Arabidopsis: big-j588. The mutant displayed small aerial organs that were characterized by reduced cell size in the epidermis and short roots with decreased cell numbers. The big-j588 axr1 double and big-j588 arf7 arf19 triple mutants displayed more severe defects in leaf expansion and root elongation than their parents, implying BIG is involved in auxin-dependent organ growth. Genetic analysis suggests that BIG may act synergistically with PIN1 to affect leaf growth. The PIN1 protein level decreased in both the root cells and the tips of leaf pavement cell lobes of big-j588. Further analysis showed that the auxin maxima in the roots and the leaves of big-j588 decreased. Therefore, we concluded that the small leaves and the short roots of big-j588 were associated with reduction of auxin maxima. Overall, our study suggested that BIG is required for Arabidopsis organ growth via auxin action.  相似文献   

7.
8.
9.
Local concentration gradients of the plant growth regulator auxin (indole-3-acetic acid [IAA]) are thought to instruct the positioning of organ primordia and stem cell niches and to direct cell division, expansion, and differentiation. High-resolution measurements of endogenous IAA concentrations in support of the gradient hypothesis are required to substantiate this hypothesis. Here, we introduce fluorescence-activated cell sorting of green fluorescent protein–marked cell types combined with highly sensitive mass spectrometry methods as a novel means for analyses of IAA distribution and metabolism at cellular resolution. Our results reveal the presence of IAA concentration gradients within the Arabidopsis thaliana root tip with a distinct maximum in the organizing quiescent center of the root apex. We also demonstrate that the root apex provides an important source of IAA and that cells of all types display a high synthesis capacity, suggesting a substantial contribution of local biosynthesis to auxin homeostasis in the root tip. Our results indicate that local biosynthesis and polar transport combine to produce auxin gradients and maxima in the root tip.  相似文献   

10.
A common morphological feature of typical angiosperms is the patterning of lateral organs along primary axes of asymmetry—a proximodistal, a mediolateral, and an adaxial–abaxial axis. Angiosperm leaves usually have distinct adaxial–abaxial identity, which is required for the development of a flat shape. By contrast, many unifacial leaves, consisting of only the abaxial side, show a flattened morphology. This implicates a unique mechanism that allows leaf flattening independent of adaxial–abaxial identity. In this study, we report a role for auxin in outgrowth of unifacial leaves. In two closely related unifacial-leaved species of Juncaceae, Juncus prismatocarpus with flattened leaves, and Juncus wallichianus with transversally radialized leaves, the auxin-responsive gene GLYCOSIDE HYDROLASE3 displayed spatially different expression patterns within leaf primordia. Treatment of J. prismatocarpus seedlings with exogenous auxin or auxin transport inhibitors, which disturb endogenous auxin distribution, eliminated leaf flatness, resulting in a transversally radialized morphology. These treatments did not affect the radialized morphology of leaves of J. wallichianus. Moreover, elimination of leaf flatness by these treatments accompanied dysregulated expression of genetic factors needed to specify the leaf central-marginal polarity in J. prismatocarpus. The findings imply that lamina outgrowth of unifacial leaves relies on proper placement of auxin, which might induce initial leaf flattening and subsequently act to specify leaf polarity, promoting further flattening growth of leaves.

Lamina outgrowth of unifacial leaves, which lack adaxial identity, relies on proper localization of auxin, which might induce initial leaf flattening and subsequently act to specify leaf polarity, promoting further flattening growth of leaves.  相似文献   

11.
MicroRNAs function in a range of developmental processes. Here, we demonstrate that miR847 targets the mRNA of the auxin/indole acetic acid (Aux/IAA) repressor-encoding gene IAA28 for cleavage. The rapidly increased accumulation of miR847 in Arabidopsis thaliana coincided with reduced IAA28 mRNA levels upon auxin treatment. This induction of miR847 by auxin was abolished in auxin receptor tir1-1 and auxin-resistant axr1-3 mutants. Further analysis demonstrates that miR847 functions as a positive regulator of auxin-mediated lateral organ development by cleaving IAA28 mRNA. Importantly, the ectopic expression of miR847 increases the expression of cell cycle genes as well as the neoplastic activity of leaf cells, prolonging later-stage rosette leaf growth and producing leaves with serrated margins. Moreover, both miR847 and IAA28 mRNAs are specifically expressed in marginal meristems of rosette leaves and lateral root initiation sites. Our data indicate that auxin-dependent induction of miR847 positively regulates meristematic competence by clearing IAA28 mRNA to upregulate auxin signaling, thereby determining the duration of cell proliferation and lateral organ growth in Arabidopsis. IAA28 mRNA encodes an Aux/IAA repressor protein, which is degraded through the proteasome in response to auxin. Altered signal sensitization to IAA28 mRNA levels, together with targeted IAA28 degradation, ensures a robust signal derepression.  相似文献   

12.
13.
Plants, compared to animals, exhibit an amazing adaptability and plasticity in their development. This is largely dependent on the ability of plants to form new organs, such as lateral roots, leaves, and flowers during postembryonic development. Organ primordia develop from founder cell populations into organs by coordinated cell division and differentiation. Here, we show that organ formation in Arabidopsis involves dynamic gradients of the signaling molecule auxin with maxima at the primordia tips. These gradients are mediated by cellular efflux requiring asymmetrically localized PIN proteins, which represent a functionally redundant network for auxin distribution in both aerial and underground organs. PIN1 polar localization undergoes a dynamic rearrangement, which correlates with establishment of auxin gradients and primordium development. Our results suggest that PIN-dependent, local auxin gradients represent a common module for formation of all plant organs, regardless of their mature morphology or developmental origin.  相似文献   

14.
15.
Genetic evidence links the Arabidopsis MONOPTEROS (MP) and PIN-FORMED1 (PIN1) genes to the patterning of leaf veins. To elucidate their potential functions and interactions in this process, we have assessed the dynamics of MP and PIN1 expression during vascular patterning in Arabidopsis leaf primordia. Both genes undergo a dynamic process of gradual refinement of expression into files one to two cells wide before overt vascular differentiation. The subcellular distribution of PIN1 is also gradually refined from a non-polar distribution in isodiametric cells to strongly polarized in elongated procambial cells and provides an indication of overall directions of auxin flow. We found evidence that MP expression can be activated by auxin exposure and that PIN1 as well as DR5::GUS expression is defective in mp mutant leaves. Taken together the results suggest a feedback regulatory loop that involves auxin, MP and PIN1 and provide novel experimental support for the canalization-of-auxin-flow hypothesis.  相似文献   

16.

Background

N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.

Methodology/Principal Findings

Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.

Conclusion/Significance

NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.  相似文献   

17.
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.  相似文献   

18.
Auxin and auxin-mediated signaling pathways are known to regulate lateral root development. Although exocytic vesicle trafficking plays an important role in recycling the PIN-FORMED (PIN) auxin efflux carriers and in polar auxin transport during lateral root formation, the mechanistic details of these processes are not well understood. Here, we demonstrate that BYPASS1-LIKE (B1L) regulates lateral root initiation via exocytic vesicular trafficking-mediated PIN recycling in Arabidopsis thaliana. b1l mutants contained significantly more lateral roots than the wild type, primarily due to increased lateral root primordium initiation. Furthermore, the auxin signal was stronger in stage I lateral root primordia of b1l than in those of the wild type. Treatment with exogenous auxin and an auxin transport inhibitor indicated that the lateral root phenotype of b1l could be attributed to higher auxin levels and that B1L regulates auxin efflux. Indeed, compared to the wild type, C-terminally green fluorescent protein-tagged PIN1 and PIN3 accumulated at higher levels in b1l lateral root primordia. B1L interacted with the exocyst, and b1l showed defective PIN exocytosis. These observations indicate that B1L interacts with the exocyst to regulate PIN-mediated polar auxin transport and lateral root initiation in Arabidopsis.  相似文献   

19.
20.

Background and Aims

The root apical meristem (RAM) is the plant stem cell niche which provides for the formation and continuous development of the root. Auxin is the main regulator of RAM functioning, and auxin maxima coincide with the sites of RAM initiation and maintenance. Auxin gradients are formed due to local auxin biosynthesis and polar auxin transport. The PIN family of auxin transporters plays a critical role in polar auxin transport, and two mechanisms of auxin maximum formation in the RAM based on PIN-mediated auxin transport have been proposed to date: the reverse fountain and the reflected flow mechanisms.

Methods

The two mechanisms are combined here in in silico studies of auxin distribution in intact roots and roots cut into two pieces in the proximal meristem region. In parallel, corresponding experiments were performed in vivo using DR5::GFP Arabidopsis plants.

Key Results

The reverse fountain and the reflected flow mechanism naturally cooperate for RAM patterning and maintenance in intact root. Regeneration of the RAM in decapitated roots is provided by the reflected flow mechanism. In the excised root tips local auxin biosynthesis either alone or in cooperation with the reverse fountain enables RAM maintenance.

Conclusions

The efficiency of a dual-mechanism model in guiding biological experiments on RAM regeneration and maintenance is demonstrated. The model also allows estimation of the concentrations of auxin and PINs in root cells during development and under various treatments. The dual-mechanism model proposed here can be a powerful tool for the study of several different aspects of auxin function in root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号