首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hepatitis C virus (HCV)-specific CD8+ T cells in persistent HCV infection are low in frequency and paradoxically show a phenotype associated with controlled infections, expressing the memory marker CD127. We addressed to what extent this phenotype is dependent on the presence of cognate antigen. We analyzed virus-specific responses in acute and chronic HCV infections and sequenced autologous virus. We show that CD127 expression is associated with decreased antigenic stimulation after either viral clearance or viral variation. Our data indicate that most CD8 T-cell responses in chronic HCV infection do not target the circulating virus and that the appearance of HCV-specific CD127+ T cells is driven by viral variation.Hepatitis C virus (HCV) persists in the majority of acutely infected individuals, potentially leading to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The cellular immune response has been shown to play a significant role in viral control and protection from liver disease. Phenotypic and functional studies of virus-specific T cells have attempted to define the determinants of a successful versus an unsuccessful T-cell response in viral infections (10). So far these studies have failed to identify consistent distinguishing features between a T-cell response that results in self-limiting versus chronic HCV infection; similarly, the impact of viral persistence on HCV-specific memory T-cell formation is poorly understood.Interleukin-7 (IL-7) receptor alpha chain (CD127) is a key molecule associated with the maintenance of memory T-cell populations. Expression of CD127 on CD8 T cells is typically only observed when the respective antigen is controlled and in the presence of significant CD4+ T-cell help (9). Accordingly, cells specific for persistent viruses (e.g., HIV, cytomegalovirus [CMV], and Epstein-Barr virus [EBV]) have been shown to express low levels of CD127 (6, 12, 14) and to be dependent on antigen restimulation for their maintenance. In contrast, T cells specific for acute resolving virus infections, such as influenza virus, respiratory syncytial virus (RSV), hepatitis B virus (HBV), and vaccinia virus typically acquire expression of CD127 rapidly with the control of viremia (5, 12, 14). Results for HCV have been inconclusive. The expected increase in CD127 levels in acute resolving but not acute persisting infection has been found, while a substantial proportion of cells with high CD127 expression have been observed in long-established chronic infection (2). We tried to reconcile these observations by studying both subjects with acute and chronic HCV infection and identified the presence of antigen as the determinant of CD127 expression.Using HLA-peptide multimers we analyzed CD8+ HCV-specific T-cell responses and CD127 expression levels in acute and chronic HCV infection. We assessed a cohort of 18 chronically infected subjects as well as 9 individuals with previously resolved infection. In addition, we longitudinally studied 9 acutely infected subjects (5 individuals who resolved infection spontaneously and 4 individuals who remain chronically infected) (Tables (Tables11 and and2).2). Informed consent in writing was obtained from each patient, and the study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, as reflected in a priori approval from the local institutional review boards. HLA-multimeric complexes were obtained commercially from Proimmune (Oxford, United Kingdom) and Beckman Coulter (CA). The staining and analysis procedure was as described previously (10). Peripheral blood mononuclear cells (PBMCs) were stained with the following antibodies: CD3 from Caltag; CD8, CD27, CCR7, CD127, and CD38 from BD Pharmingen; and PD-1 (kindly provided by Gordon Freeman). Primer sets were designed for different genotypes based on alignments of all available sequences from the public HCV database (http://hcvpub.ibcp.fr). Sequence analysis was performed as previously described (8).

TABLE 1.

Patient information and autologous sequence analysis for patients with chronic and resolved HCV infection
CodeGenotypeStatusEpitope(s) targetedSequencea
02-031bChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
00-261bChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
99-242aChronicA2 NS3 1073-1083P: CINGVCWTV
No recognitionA: S-S--L---
A2 NS3 1406-1415P: KLVALGINAV
No recognitionA: A-RGM-L---
A2 NS5B 2594-2602P: ALYDVVTKL
A: no sequence
1111aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
A2 NS5 2594-2602P: ALYDVVTKL
A: ---------
00X3aChronicA2 NS5 2594-2602P: ALYDVVTKL
No recognitionA: -----IQ--
O3Qb1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03Sb1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
02A1aChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
01N1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03H1aChronicA2 NS3 1073-1083P: CINGVCWTV
Full recognitionA: ----A----
01-391aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03-45b1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
06P3aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
GS127-11aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-61aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-81bChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-161aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-201aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
04D4ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
01-49b1ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
A2 NS3 1406-1415P: KLVALGINAV
01-311ResolvedA1 NS3 1436-1444P: ATDALMTGY
B57 NS5 2629-2637P: KSKKTPMGF
04N1ResolvedA1 NS3 1436-1444P: ATDALMTGY
01E4ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
98A1ResolvedA2 NS3 1073-1083P: CINGVCWTV
00-10c1ResolvedA24 NS4 1745-1754P: VIAPAVQTNW
O2Z1ResolvedA1 NS3 1436-1444P: ATDALMTGY
99-211ResolvedB7 CORE 41-49P: GPRLGVRAT
OOR1ResolvedB35 NS3 1359-1367P: HPNIEEVAL
Open in a separate windowaP, prototype; A, autologous. Identical residues are shown by dashes.bHIV coinfection.cHBV coinfection.

TABLE 2.

Patient information and autologous sequence analysis for patients with acute HCV infection
CodeGenotypeOutcomeEpitope targeted and time analyzedSequencea
5541aPersistingA2 NS3 1073-1083P: CINGVCWTV
wk 8A: ---------
wk 30A: ---------
03-321aPersistingB35 NS3 1359-1367P: HPNIEEVAL
wk 8A: ---------
No recognition (wk 36)A: S--------
04-111a (1st)Persisting (1st) Resolving (2nd)A2 NS5 2594-2602P: ALYDVVTKL
1b (2nd)A: no sequence
00231bPersistingA1 NS3 1436-1444P: ATDALMTGY
Diminished (wk 7)A: --------F
Diminished (wk 38)A: --------F
A2 NS3 1073-1083P: CINGVCWTV
wk 7A: ---------
wk 38A: ---------
A2 NS3 1406-1415P: KLVALGINAV
Full recognition (wk 7)A: --S-------
Full recognition (wk 38)A: --S-------
3201ResolvingA2 NS3 1273-1282P: GIDPNIRTGV
5991ResolvingA2 NS3 1073-1083P: CINGVCWTV
11441ResolvingA2 NS3 1073-1083P: CINGVCWTV
B35 NS3 1359-1367P: HPNIEEVAL
06L3aResolvingB7 CORE 41-49P: GPRLGVRAT
05Y1ResolvingA2 NS3 1073-1083P: CINGVCWTV
Open in a separate windowaP, prototype; A, autologous. Identical residues are shown by dashes.In established persistent infection, CD8+ T-cell responses against HCV are infrequently detected in blood using major histocompatibility complex (MHC) class I tetramers and are only observed in a small fraction of those sampled (10). We were able to examine the expression of CD127 on antigen-specific T cells in such a group of 18 individuals. We observed mostly high levels of CD127 expression (median, 66%) on these populations (Fig. (Fig.1a),1a), although expression was higher on HCV-specific T-cell populations from individuals with resolved infection (median, 97%; P = 0.0003) (Fig. 1a and c). Importantly, chronically infected individuals displayed CD127 expression levels over a much broader range than resolved individuals (9.5% to 100% versus 92 to 100%) (Fig. (Fig.1a1a).Open in a separate windowFIG. 1.Chronically infected individuals express a range of CD127 levels on HCV-specific T cells. (a) CD127 expression levels on HCV-specific T-cell populations in individuals with established chronic or resolved infection. While individuals with resolved infection (11 tetramer stains in 9 subjects) uniformly express high levels of CD127, chronically infected individuals (21 tetramer stains in 18 subjects) express a wide range of CD127 expression levels. (b) CD127 expression levels are seen to be highly dependent on sequence match with the autologous virus, based on analysis of 9 responses with diminished recognition of the autologous virus and 8 responses with intact epitopes. (c) CD127 expression levels on HCV-specific T-cell B7 CORE 41-49-specific T cells from individual 01-49 with resolved HCV infection (left-hand panel). Lower CD127 expression levels are observed on an EBV-specific T-cell population from the same individual (right-hand panel). APC-A, allophycocyanin-conjugated antibody. (d) Low CD127 levels are observed on A2 NS3 1073-1083 HCV-specific T cells from individual 111 with chronic HCV infection in whom sequencing revealed an intact autologous sequence.Given the relationship between CD127 expression and antigenic stimulation as well as the potential of HCV to escape the CD8 T-cell response through viral mutation, we sequenced the autologous circulating virus in subjects with chronic infection (Table (Table1).1). A perfect match between the optimal epitope sequence and the autologous virus was found for only 8 responses. These were the only T-cell populations with lower levels of CD127 expression (Fig. (Fig.1a,1a, b, and d). In contrast, HCV T-cell responses with CD127 expression levels comparable to those observed in resolved infection (>85%) were typically mismatched with the viral sequence, with some variants compatible with viral escape and others suggesting infection with a non-genotype 1 strain (10) (Fig. (Fig.1).1). Enzyme-linked immunospot (ELISPOT) assays using T-cell lines confirmed the complete abrogation of T-cell recognition and thus antigenic stimulation in cases of cross-genotype mismatch (10). Responses targeting the epitope A1-143D expressed somewhat lower levels of CD127 (between 70% and 85%). Viral escape (Y to F at position 9) in this epitope has been shown to be associated with significantly diminished but not fully abolished recognition (11a), and was found in all chronically infected subjects whose T cells targeted this epitope. Thus, expression of CD127 in the presence of viremia is closely associated with the capacity of the T cell to recognize the circulating virus.That a decrease in antigenic stimulation is indeed associated with the emergence of CD127-expressing CD8 T cells is further demonstrated in subject 111. This subject with chronic infection targeted fully conserved epitopes with T cells with low CD127 expression; with clearance of viremia under antiviral therapy, CD127-negative HCV-specific CD8 T cells were no longer detectable and were replaced by populations expressing CD127 (data not shown). Overall these data support the notion that CD127 expression on HCV-specific CD8+ T-cell populations is dependent on an absence of ongoing antigenic stimulation.To further evaluate the dynamic relationship between antigenic stimulation and CD127 expression, we also analyzed HCV-specific T-cell responses longitudinally during acute HCV infection (Fig. (Fig.2a).2a). CD127 expression was generally low or absent during the earliest time points. After resolution of infection, we see a contraction of the HCV-specific T-cell response together with a continuous increase in CD127 expression, until virtually all tetramer-positive cells express CD127 approximately 6 months after the onset of disease (Fig. (Fig.2a).2a). A similar increase in CD127 expression was not seen in one subject (no. 554) with untreated persisting infection that maintained a significant tetramer-positive T-cell population for an extended period of time (Fig. (Fig.2a).2a). Importantly, sequence analysis of the autologous virus demonstrated the conservation of this epitope throughout persistent infection (8). In contrast, subject 03-32 (with untreated persisting infection) developed a CD8 T-cell response targeting a B35-restricted epitope in NS3 from which the virus escaped (8). The T cells specific for this epitope acquired CD127 expression in a comparable manner to those controlling infection (Fig. (Fig.2a).2a). In other subjects with persisting infection, HCV-specific T-cells usually disappeared from blood before the time frame in which CD127 upregulation was observed in the other subjects.Open in a separate windowFIG. 2.CD127 expression levels during acute HCV infection. (a) CD127 expression levels on HCV-specific T cells during the acute phase of HCV infection (data shown for 5 individuals who resolve and two individuals who remain chronically infected). (b) HCV RNA viral load and CD127 expression levels on HCV-specific T cells (A2 NS3 1073-1083 and A1 NS3 1436-1444) for chronically infected individual 00-23. PEG-IFN-α, pegylated alpha interferon. (c) Fluorescence-activated cell sorter (FACS) plots showing longitudinal CD127 expression levels on HCV-specific T cells (A2 NS3 1073-1083 and A1 NS3 1436-1444) from individual 00-23.We also characterized the levels of CD127 expression on HCV-specific CD4+ T-cell populations with similar results: low levels were observed during the acute phase of infection and increased levels in individuals after infection was cleared (data not shown). CD127 expression on CD4 T cells could not be assessed in viral persistence since we failed to detect significant numbers of HCV-specific CD4+ T cells, in agreement with other reports.In our cohort of subjects with acute HCV infection, we had the opportunity to study the effect of reencounter with antigen on T cells with high CD127 expression in 3 subjects in whom HCV viremia returned after a period of viral control. Subject 00-23 experienced viral relapse after interferon treatment (11), while subjects 05-13 and 04-11 were reinfected with distinct viral isolates. In all subjects, reappearance of HCV antigen that corresponded to the HCV-specific T-cell population was associated with massive expansion of HCV-specific T-cell populations and a decrease in CD127 expression on these T cells (Fig. (Fig.22 and and3)3) (data not shown). In contrast, T-cell responses that did not recognize the current viral isolate did not respond with an expansion of the population or the downregulation of CD127. This was observed in 00-23, where the sequence of the A1-restricted epitope 143D was identical to the frequent escape mutation described above in chronically infected subjects associated with diminished T-cell recognition (Fig. (Fig.2b2b and and3a).3a). In 05-13, the viral isolate during the second episode of viremia contained a variant in one of the anchor residues of the epitope A2-61 (Fig. (Fig.2d).2d). These results show that CD127 expression on HCV-specific T cells follows the established principles observed in other viral infections.Open in a separate windowFIG. 3.Longitudinal phenotypic changes on HCV-specific T cells. (a) HCV RNA viral load and CD127 expression (%) levels on A2 NS5B 2594-2602 HCV-specific T cells for individual 04-11. This individual was administered antiviral therapy, which resulted in a sustained virological response. Following reinfection, the individual spontaneously cleared the virus. (b) Longitudinal frequency of A2 NS5B 2594-2602 HCV-specific T cells and PD-1 expression levels (mean fluorescent intensity [MFI]) for individual 04-11. (c) Longitudinal analysis of 04-11 reveals the progressive differentiation of HCV-specific A2 259F CD8+ T cells following repetitive antigenic stimulation. FACS plots show longitudinal CD127, CD27, CD57, and CCR7 expression levels on A2 NS5B 2594-2602 tetramer-positive cells from individual 04-11. PE-A, phycoerthrin-conjugated antibody.In addition to the changes in CD127 expression for T cells during reencounter with antigen, we detected comparable changes in other phenotypic markers shortly after exposure to viremia. First, we detected an increase in PD-1 and CD38 expression—both associated with recent T-cell activation. Additionally, we observed a loss of CD27 expression, a feature of repetitive antigenic stimulation (Fig. (Fig.3).3). The correlation of CD127 and CD27 expression further supports the notion that CD127 downregulation is a marker of continuous antigenic stimulation (1, 7).In conclusion we confirm that high CD127 expression levels are common for detectable HCV-specific CD8+ T-cell populations in chronic infection and find that this phenotype is based on the existence of viral sequence variants rather than on unique properties of HCV-specific T cells. This is further demonstrated by our data from acute HCV infection showing that viral escape as well as viral resolution is driving the upregulation of CD127. We also show that some, but not all, markers typically used to phenotypically describe virus-specific T cells show a similar dependence on cognate HCV antigen. Our data further highlight that sequencing of autologous virus is vital when interpreting data obtained in chronic HCV infection and raise the possibility that previous studies, focused on individuals with established chronic infection, may have been confounded by antigenic variation within epitopes or superinfection with different non-cross-reactive genotypes. Interestingly, it should be pointed out that this finding is supported by previous data from both the chimpanzee model of HCV and from human HBV infection (3, 13).Overall our data clearly demonstrate that the phenotype of HCV-specific CD8+ T cells is determined by the level of antigen-specific stimulation. The high number of CD127 positive virus-specific CD8+ T cells that is associated with the presence of viral escape mutations is a hallmark of chronic HCV infection that clearly separates HCV from other chronic viral infections (4, 14).  相似文献   

2.
Poribacteria were found in nine sponge species belonging to six orders of Porifera from three oceans. Phylogenetic analysis revealed four distinct poribacterial clades, which contained organisms obtained from several different geographic regions, indicating that the distribution of poribacteria is cosmopolitan. Members of divergent poribacterial clades were also found in the same sponge species in three different sponge genera.Recently, a novel bacterial phylum, termed “Poribacteria,” was discovered, and members of this phylum have been found exclusively in sponges (2). Phylogenetic analyses of 16S rRNA genes indicated that poribacteria are evolutionarily deeply branching organisms and related to a superphylum composed of Planctomycetes, Verrucomicrobia, and Chlamydia (11). Poribacterial 16S rRNA genes contain 13 of 15 planctomycete signature nucleotides, but a level of sequence divergence of more than 25% compared to any other bacterial phylum, including the Planctomycetes, justifies the status of this taxon as an independent phylum. A consistent treeing pattern is difficult to resolve in comparative phylogenetic sequence analyses, making the poribacteria an unusual line of phylogenetic descent. In addition to their divergent status as a separate phylum on the basis of the 16S rRNA sequence, poribacteria are also divergent because they may have a compartmentalized cell structure, a cell plan they share only with members of the phyla Planctomycetes and Verrucomicrobia (2). They are also of interest for understanding the potential contribution of obligate sponge-associated bacteria to the sponges harboring them and as an example of a yet-to-be-cultured group of bacteria associated with invertebrate tissue apparently exclusively but for unknown reasons. This study aimed to further explore the presence and diversity of poribacteria in different marine demosponge genera using samples from around the world.The Mediterranean sponges were collected by scuba divers offshore at Banyuls sur Mer, France (42°29′N, 03°08′E). The Caribbean sponges were collected offshore at Little San Salvador Island, Bahamas (24°32′N, 75°55′W). The eastern Pacific sponge Aplysina fistularis was collected offshore at San Diego, CA (32°51′N, 117°15′W). The western Pacific sponge Theonella swinhoei was collected offshore at Palau (07°23′N, 134°38′E). All non-Great Barrier Reef (non-GBR) sponges were collected between May and July 2000, and once individual sponge specimens were brought to the surface, they were frozen in liquid nitrogen on board ship and stored at −80°C until microbiological processing (9). The GBR marine sponges were collected off Heron Island Research Station (23°27′S, 151°5′E) in April 2002 (5). Pseudoceratina clavata was collected by scuba divers at a depth of 14 m, and Rhabdastrella globostellata was collected at a depth of ca. 0.5 m after a reef walk consisting of a few hundred meters. The samples were immediately placed in plastic bags and brought to Heron Island Research Station, where they were stored at −80°C until processing. Sponge DNA was extracted as described previously (2, 5).Total sponge-derived genomic DNA was screened by PCR for the presence of poribacteria using a 16S rRNA gene primer set. Poribacterial 16S rRNA genes were amplified by employing a pair of Poribacteria-specific primers, POR389f (5′-ACG ATG CGA CGC CGC GTG-3′) and POR1130r (5′-GGC TCG TCA CCA GCG GTC-3′) (2). The poribacterial PCR products that were ca. 740 bp long derived from one sponge individual were cloned into the pGEM-T Easy vector (Promega, Madison, WI). Clone inserts were digested with restriction endonucleases MspI and HaeIII (New England Biolabs, Inc., United States), characterized to obtain restriction profiles and unique profiles, and sequenced. The compiled partial 16S rRNA gene sequences were then analyzed using BLASTN to select the most closely related poribacterial reference sequences.The sequences exhibiting levels of similarity of less than 97% were used for further analysis. Poribacterial 16S rRNA gene sequences were aligned using the ARB software package (7). The resulting alignment was imported into PAUP (10) and analyzed by using distance, maximum parsimony, and maximum likelihood algorithms together with bootstrap resamplings (3,000, 3,000, and 200 resamplings, respectively), and the resulting bootstrap values were applied to nodes on the ARB neighbor-joining tree. Signature sequences were detected using the ARB software package. A signature sequence is defined here as a short sequence that is present in a group of poribacterial sequences in a phylogenetic clade but is not found in any other clade in the poribacterial tree.Analysis of the 16S rRNA gene clone library sequences generated from sponge tissues revealed the presence of poribacteria in sponge individuals belonging to the orders Verongida, Astrophorida, Dictyoceratida, Haplosclerida, Lithistida, and Homosclerophorida, while poribacteria could not be detected in sponges belonging to the orders Hadromerida and Agelasida. In the order Halichondrida, poribacteria were detected in Xestospongia muta but not in Haliclona sp. Altogether, nine sponge species were added to the list of Poribacteria-containing sponges (Table (Table1).1). Three distinct clades were observed that were clearly supported by bootstrap values greater than 75 with every tree-building algorithm applied (Fig. (Fig.1),1), and one clade (clade I) was supported by bootstrap values of 64, 98, and 71 in distance, maximum parsimony, and maximum likelihood trees, respectively. Similarity calculations using approximately 740-bp amplified poribacterial 16S rRNA gene fragments and other poribacterial sequences from the NCBI database showed that the dissimilarity between clades was consistent with their separation in phylogenetic trees. For example, the levels of dissimilarity between members of clade I and clade II were 3 to 8%, while the levels of dissimilarity between members of clades I and III and between members of clades I and IV were 10 to 14% and 11 to 15%, respectively.Open in a separate windowFIG. 1.Neighbor-joining phylogenetic tree for poribacterial clones based on Poribacteria-specific PCR products (740 bp) of the 16S rRNA gene, showing relationships of poribacterial clones from different global regions. The poribacterial clones on the right are additional clones belonging to the same clades as strains in the tree at the same level. Bootstrap confidence values of >75% for distance, maximum parsimony, and maximum likelihood algorithm analyses are indicated by filled circles at nodes, and open circles indicate unsupported nodes. Prefixes for clones: A, Aplysina aerophoba; C, Aplysina cavernicola; F, Aplysina fistularis; L, Aplysina lacunosa; S, Ircinia sp.; P, Plakortis sp.; PC, Pseudoceratina clavata; RG, Rhabdastrella globostellata; T, Theonella swinhoei; X, Xestospongia muta. Scale bar = 0.1 nucleotide substitution per site.

TABLE 1.

Distribution of poribacteria in different demosponge orders
Sponge species or seawaterOrderGeographic locationaPresence of poribacteriabReference
Aplysina aerophobaVerongidaMED+2
Aplysina lacunosaVerongidaBAH+2
Aplysina fistularisVerongidaEPAC or BAH+2
Aplysina insularisVerongidaBAH+2
Verongula giganteaVerongidaBAH+2
Smenospongia aureaDictyoceratidaBAH+2
Aplysina cauliformisVerongidaBAH+This study
Aplysina archeriVerongidaBAH+This study
Aplysina cavernicolaVerongidaMED+This study
Pseudoceratina clavataVerongidaWPAC+This study
Rhabdastrella globostellataAstrophoridaWPAC+This study
Ircinia sp.DictyoceratidaBAH+This study
Xestospongia mutaHaploscleridaBAH+This study
Theonella swinhoeiLithistidaEPAC+This study
Plakortis sp.HomosclerophoridaBAH+This study
Chondrilla nuculaHadromeridaBAH2
Agelas wiedenmayeriAgelasidaBAH2
Agelas cerebrumAgelasidaBAHThis study
Axinella polypoidesHalichondridaMEDThis study
Ptilocaulis sp.HalichondridaBAH2
Dysidea avaraDictyoceratidaMEDThis study
Haliclona sp.HaploscleridaMEDThis study
Ectyoplasia feroxPoeciloscleridaBAH2
SeawaterNAcMEDThis study
Open in a separate windowaMED, Mediterranean Sea; BAH, Bahamas; WPAC, western Pacific Ocean; EPAC, eastern Pacific Ocean.bThe presence of poribacteria was evaluated by sequencing and phylogenetic analysis of amplified PCR products. +, present; −, absent.cNA, not applicable.Within each clade in the phylum Poribacteria, there were higher similarity values, including 94 to 100% among members of clade I, 94 to 99% among members of clade II, 96 to 99% among members of clade III, and 96 to 99% among members of clade IV. When members of the the phylum Poribacteria were compared to members of the Planctomycetes (Fig. (Fig.1),1), the 16S rRNA genes exhibited levels of sequence dissimilarity of up to 38%, consistent with the conclusion of Fieseler et al. concerning the separate phylum level status of poribacteria based on a similarity value of <75%. A phylogenetic correlation between sponge phylogeny and poribacterial phylogeny is not evident, since, for example, clones from A. fistularis and Aplysina aerophoba occurred in both clade I and clade II and one clone from A. aerophoba also occurred in clade III, while clones from P. clavata and R. globostellata occurred in clades I, II, and III but not in clade IV. Clades I and II included poribacterial clones derived from all sponge species occurring in all of the widely separated geographic regions examined in this study (Fig. (Fig.2).2). Clade III represented poribacterial clones derived from sponge species obtained in the eastern Pacific region, GBR, and the Bahamas but not in the Mediterranean region. The majority of poribacterial clones in clade IV were derived from sponge species obtained in the Bahamas, and one clade IV clone was obtained from a sponge species collected in the Mediterranean region.Open in a separate windowFIG. 2.Neighbor-joining phylogenetic tree for poribacterial clones based on Poribacteria-specific PCR products (740 bp) of the 16S rRNA gene, showing the internal relationships of and occurrence of clade I members in distinct sponge species representing cosmopolitan geographic regions. For an explanation of the colors, see Fig. Fig.1.1. Bootstrap confidence values of >75% for distance, maximum parsimony, and maximum likelihood algorithm analyses are indicated by filled circles at nodes, and open circles indicate unsupported nodes. Prefixes for clones: A, Aplysina aerophoba; C, Aplysina cavernicola; F, Aplysina fistularis; L, Aplysina lacunosa; S, Ircinia sp.; P, Plakortis sp.; PC, Pseudoceratina clavata; RG, Rhabdastrella globostellata; T, Theonella swinhoei; X, Xestospongia muta. Scale bar = 0.1 nucleotide substitution per site. Clones PC15, L8, T6, C2, P3, S2, and X1 were removed from this analysis to allow better branch resolution.Poribacterial clones from different sponges from widely separated marine habitats belonged to at least four major clades with similarities ranging from 94 and 96%. For clade III (Fig. (Fig.1),1), we detected a signature sequence characteristic of poribacterial clones from the GBR sponges R. globostellata and P. clavata. This signature sequence (CCA GTT AGC TTG ACG GTA) (Table (Table2)2) at E. coli positions 469 to 487 targeted 10 sequences, 5 of which were from GBR marine sponges generated in this study (clones RG68, RG112, RG105, PC96, and PC8). Another five poribacterial sequences were detected in an unpublished study investigating the microbial diversity in GBR sponges. This signature sequence indicates a specific geographic presence of poribacteria belonging to clade IV in the GBR region. In addition, a sequence (GAG TGT GAA ATG GCT TGG at E. coli positions 599 to 617) characteristic of clade IV was found in 11 sequences derived from sponges from the Bahamas and one sequence (A7) from a Mediterranean sponge.

TABLE 2.

Poribacterial signature sequences for clades III and IV, including a GBR-specific signature sequence (pori_SSIII) and a signature sequence specific to 11 of 12 sequences from the Bahamas (pori_SSIV)
Signature sequenceNameFull nameaE. coli positionSequenceb
pori_SSIIIPla101PPla101P*469GGUGAUAAG-==================-CCAUAGUA
Pla131PPla131P*469GGUGAUAAG-==================-CCAUAGUA
Pla134PPla134P*469GGUGAUAAG-==================-CCAUAGUA
Pla50PPla50P*469GGUGAUAAG-==================-CCAUAGUA
Pla82PPla82P*469GGUGAUAAG-==================-CCAUAGUA
PO68Pori clone RGPo68469GGUGAUAAG-==================-GAGAAAAG
PO112Pori clone RGPo112469GGUGAUAAU-==================-CCAUAGUA
PO105Pori clone RGPo105469GGUGAUAAG-==================-CCAUAGUA
PO96Uncultured Pori clone469GGUGAUAAG-==================-CCAUAGUA
PCPO8Pori clone PCPo8469GGUGAUAAG-==================-CCAUAGUA
pori_SSIVAY485286Uncultured Pori clone599ACAUUAGUC-==================-CUCAACCA
AY485285Uncultured Pori clone599ACAUNAGUC-==================-CUCAACNA
AY485284Uncultured Pori clone599ACAUUAGUC-==================-CUCAACCA
AY485281Uncultured Pori bacterium599ACAUUAGUC-==================-CUCAACCA
A7A7599AUAUUAGUC-==================-CUCAACCA
F2F2599ACAUAAGUC-==================-CUCAACCA
L16L16599ACAUUAGUC-==================-CUCAACCA
P20P20599ACAUAAGUC-==================-CUCAACCA
P38P38599ACAUUAGUC-==================-CUCAACCA
S6S6599AUAUUAGUC-==================-CUCAACCA
S10S10599AUAUUAGUC-==================-CUCAACCA
X18X18599ACAUUAGUC-==================-CUCAACCA
Open in a separate windowaAsterisks indicate poribacterial clones derived from the GBR sponge R. globostellata in a separate study.bThe internal sequence (indicated by equals signs) of each pori_SSIII clone is CCAGUUAGCUUGACGGUA, and that of each pori_SSIV clone is GAGUGUGAAAUGGCUUGG.Based on the data presented here, Poribacteria appears to be a bacterial phylum that is specifically found in several demosponge genera of the phylum Porifera (Table (Table1).1). To our knowledge, this is the only case of a bacterial phylum specifically associated with a marine invertebrate phylum. Certain phylum members appear to be widely distributed among sponges belonging to different species and in different geographic regions, forming sponge-specific lineages (3), but these are individual species level or at most genus level clades in a subdivision of a phylum rather than in a whole phylum.PCR analyses of seawater samples collected in this study (Table (Table1)1) and searches using nucleotide sequence databases of seawater metagenomes were negative for poribacteria. This is consistent with the concept that Poribacteria is a sponge-specific phylum. Within the sponges poribacteria are distributed among members of distinct demosponge orders that occur in various geographic locations, indicating that there is wide distribution of poribacteria among marine demosponges. Very similar 16S rRNA clone sequences that cluster in clade I were found in sponges from all geographic regions sampled in this study, including locations in the Northern and Southern hemispheres (Fig. (Fig.2).2). Similarly, clade II contains poribacterial clones from the Mediterranean Aplysina species and from GBR Pseudoceratina and Rhabdastrella species. This appears to contrast, albeit at a lower level of resolution, with results suggesting that bacterial populations are endemic in different geographic regions, e.g., with the findings that marine bacterioplankton communities include few cosmopolitan operational taxonomic units (8), that fluorescent Pseudomonas genotypes from soil are endemic at different geographic sites (1), and that hyperthermophilic Sulfolobus archaea from different geothermal areas are genetically divergent (12). Judging the endemicity of populations in different geographic regions may depend on the taxonomic scale used to distinguish populations (1). In this study we provide evidence that at least some clades may be relatively characteristic of particular regions, e.g., GBR clade III (Table (Table2).2). It is remarkable that in the case of the sponge species R. globostellata and P. clavata from a single geographic region (GBR), the microbial communities include representatives of distantly related poribacterial clades II and III, whose sequences exhibit levels of dissimilarity ranging from 10 to 13%. In another case poribacteria belonging to clades I, II, and IV were found in a single host, A. aerophoba, from the Mediterranean. Thus, members of widely divergent poribacterial clades occur in the same specimen in sponges in widely separated geographic regions in the world''s oceans. Three different sponge species belonging to three different genera exhibit this phenomenon.The morphology and life strategy of sponges have remained unchanged for the past 580 million years, as judged by the dramatic similarity of the morphologies of Precambrian fossils to the morphologies of recent sponges (6). Adaptation of the poribacteria to this niche might have taken place early in evolution before the various sponge orders separated from each other. It seems likely that poribacteria diverged from other bacterial phyla long before evolution of the metazoans as part of the fan-like radiation by which all bacterial phyla appear to have arisen (4). This bacterial radiation may have resulted in the divergence of the clades that we have observed for the poribacteria, but there is no indication of cospeciation between host sponges and the poribacteria.In summary, poribacteria exhibit considerable diversity and are classified into four phylogenetic clades. Poribacteria seem to be widely distributed among many different marine demosponge genera, and further studies are needed to explain the nature of the poribacterium-sponge interaction.  相似文献   

3.
4.
GTP cyclohydrolase I (GCYH-I) is an essential Zn2+-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that displays no sequence identity to the canonical enzyme and is present in ∼25% of bacteria, the majority of which lack the canonical GCYH-I (renamed GCYH-IA). Genomic and genetic analyses indicate that in those organisms possessing both enzymes, e.g., Bacillus subtilis, GCYH-IA and -IB are functionally redundant, but differentially expressed. Whereas GCYH-IA is constitutively expressed, GCYH-IB is expressed only under Zn2+-limiting conditions. These observations are consistent with the hypothesis that GCYH-IB functions to allow folate biosynthesis during Zn2+ starvation. Here, we present biochemical and structural data showing that bacterial GCYH-IB, like GCYH-IA, belongs to the tunneling-fold (T-fold) superfamily. However, the GCYH-IA and -IB enzymes exhibit significant differences in global structure and active-site architecture. While GCYH-IA is a unimodular, homodecameric, Zn2+-dependent enzyme, GCYH-IB is a bimodular, homotetrameric enzyme activated by a variety of divalent cations. The structure of GCYH-IB and the broad metal dependence exhibited by this enzyme further underscore the mechanistic plasticity that is emerging for the T-fold superfamily. Notably, while humans possess the canonical GCYH-IA enzyme, many clinically important human pathogens possess only the GCYH-IB enzyme, suggesting that this enzyme is a potential new molecular target for antibacterial development.The Zn2+-dependent enzyme GTP cyclohydrolase I (GCYH-I; EC 3.5.4.16) is the first enzyme of the de novo tetrahydrofolate (THF) biosynthesis pathway (Fig. (Fig.1)1) (38). THF is an essential cofactor in one-carbon transfer reactions in the synthesis of purines, thymidylate, pantothenate, glycine, serine, and methionine in all kingdoms of life (38), and formylmethionyl-tRNA in bacteria (7). Recently, it has also been shown that GCYH-I is required for the biosynthesis of the 7-deazaguanosine-modified tRNA nucleosides queuosine and archaeosine produced in Bacteria and Archaea (44), respectively, as well as the 7-deazaadenosine metabolites produced in some Streptomyces species (33). GCYH-I is encoded in Escherichia coli by the folE gene (28) and catalyzes the conversion of GTP to 7,8-dihydroneopterin triphosphate (55), a complex reaction that begins with hydrolytic opening of the purine ring at C-8 of GTP to generate an N-formyl intermediate, followed by deformylation and subsequent rearrangement and cyclization of the ribosyl moiety to generate the pterin ring in THF (Fig. (Fig.1).1). Notably, the enzyme is dependent on an essential active-site Zn2+ that serves to activate a water molecule for nucleophilic attack at C-8 in the first step of the reaction (2).Open in a separate windowFIG. 1.Reaction catalyzed by GCYH-I, and metabolic fate of 7,8-dihydroneopterin triphosphate.A homologous GCYH-I is found in mammals and other higher eukaryotes, where it catalyzes the first step of the biopterin (BH4) pathway (Fig. (Fig.1),1), an essential cofactor in the biosynthesis of tyrosine and neurotransmitters, such as serotonin and l-3,4-dihydroxyphenylalanine (3, 52). Recently, a distinct class of GCYH-I enzymes, GCYH-IB (encoded by the folE2 gene), was discovered in microbes (26% of sequenced Bacteria and most Archaea) (12), including several clinically important human pathogens, e.g., Neisseria and Staphylococcus species. Notably, GCYH-IB is absent in eukaryotes.The distribution of folE (gene product renamed GCYH-IA) and folE2 (GCYH-IB) in bacteria is diverse (12). The majority of organisms possess either a folE (65%; e.g., Escherichia coli) or a folE2 (14%; e.g., Neisseria gonorrhoeae) gene. A significant number (12%; e.g., B. subtilis) possess both genes (a subset of 50 bacterial species is shown in Table Table1),1), and 9% lack both genes, although members of the latter group are mainly intracellular or symbiotic bacteria that rely on external sources of folate. The majority of Archaea possess only a folE2 gene, and the encoded GCYH-IB appears to be necessary only for the biosynthesis of the modified tRNA nucleoside archaeosine (44) except in the few halophilic Archaea that are known to synthesize folates, such as Haloferax volcanii, where GCYH-IB is involved in both archaeosine and folate formation (13, 44).

TABLE 1.

Distribution and candidate Zur-dependent regulation of alternative GCYH-I genes in bacteriaa
OrganismcPresence of:
folEfolE2
Enterobacteria
    Escherichia coli+
    Salmonella typhimurium+
    Yersinia pestis+
    Klebsiella pneumoniaeb++a
    Serratia marcescens++a
    Erwinia carotovora+
    Photorhabdus luminescens+
    Proteus mirabilis+
Gammaproteobacteria
    Vibrio cholerae+
    Acinetobacter sp. strain ADP1++a
    Pseudomonas aeruginosa++a
    Pseudomonas entomophila L48++a
    Pseudomonas fluorescens Pf-5++a
    Pseudomonas syringae++a
    Pseudomonas putida++a
    Hahella chejuensis KCTC 2396++a
    Chromohalobacter salexigens DSM 3043++a
    Methylococcus capsulatus++a
    Xanthomonas axonopodis++a
    Xanthomonas campestris++a
    Xylella fastidiosa++a
    Idiomarina loihiensis+
    Colwellia psychrerythraea++
    Pseudoalteromonas atlantica T6c++a
    Pseudoalteromonas haloplanktis TAC125++
    Alteromonas macleodi+
    Nitrosococcus oceani++
    Legionella pneumophila+
    Francisella tularensis+
Betaproteobacteria
    Chromobacterium violaceum+
    Neisseria gonorrhoeae+
    Burkholderia cepacia R18194++
    Burkholderia cenocepacia AU 1054++
    Burkholderia xenovorans+
    Burkholderia mallei+
    Bordetella pertussis+
    Ralstonia eutropha JMP134+
    Ralstonia metallidurans++
    Ralstonia solanacearum+
    Methylobacillus flagellatus+
    Nitrosomonas europaea+
    Azoarcus sp.++
Bacilli/Clostridia
    Bacillus subtilisd++
    Bacillus licheniformis++
    Bacillus cereus+
    Bacillus halodurans++
    Bacillus clausii+
    Geobacillus kaustophilus+
    Oceanobacillus iheyensis+
    Staphylococcus aureus+
Open in a separate windowaGenes that are preceded by candidate Zur binding sites.bZur-regulated cluster is on the virulence plasmid pLVPK.cExamples of organisms with no folE genes are in boldface type.dZn-dependent regulation of B. subtilis folE2 by Zur was experimentally verified (17).Expression of the Bacillus subtilis folE2 gene, yciA, is controlled by the Zn2+-dependent Zur repressor and is upregulated under Zn2+-limiting conditions (17). This led us to propose that the GCYH-IB family utilizes a metal other than Zn2+ to allow growth in Zn2+-limiting environments, a hypothesis strengthened by the observation that an archaeal ortholog from Methanocaldococcus jannaschii has recently been shown to be Fe2+ dependent (22). To test this hypothesis, we investigated the physiological role of GCYH-IB in B. subtilis, an organism that contains both isozymes, as well as the metal dependence of B. subtilis GCYH-IB in vitro. To gain a structural understanding of the metal dependence of GCYH-IB, we determined high-resolution crystal structures of Zn2+- and Mn2+-bound forms of the N. gonorrhoeae ortholog. Notably, although the GCYH-IA and -IB enzymes belong to the tunneling-fold (T-fold) superfamily, there are significant differences in their global and active-site architecture. These studies shed light on the physiological significance of the alternative folate biosynthesis isozymes in bacteria exposed to various metal environments, and offer a structural understanding of the differential metal dependence of GCYH-IA and -IB.  相似文献   

5.
6.
7.
Twelve cluster groups of Escherichia coli O26 isolates found in three cattle farms were monitored in space and time. Cluster analysis suggests that only some O26:H11 strains had the potential for long-term persistence in hosts and farms. As judged by their virulence markers, bovine enterohemorrhagic O26:H11 isolates may represent a considerable risk for human infection.Shiga toxin (Stx)-producing Escherichia coli (STEC) strains comprise a group of zoonotic enteric pathogens (42). In humans, infections with some STEC serotypes result in hemorrhagic or nonhemorrhagic diarrhea, which can be complicated by hemolytic-uremic syndrome (HUS) (49). These STEC strains are also designated “enterohemorrhagic E. coli” (EHEC). Consequently, EHEC strains represent a subgroup of STEC with a high pathogenic potential for humans. Strains of the E. coli serogroup O26 were originally classified as enteropathogenic E. coli due to their association with outbreaks of infantile diarrhea in the 1940s. In 1977, Konowalchuk et al. (37) recognized that these bacteria produced Stx, and 10 years later, the Stx-producing E. coli O26:H11/H− strains were classified as EHEC. EHEC O26 strains constitute the most common non-O157 EHEC group associated with diarrhea and HUS in Europe (12, 21, 23, 24, 26, 27, 55, 60). Reports on an association between EHEC O26 and HUS or diarrhea from North America including the United States (15, 30, 33), South America (51, 57), Australia (22), and Asia (31, 32) provide further evidence for the worldwide spread of these organisms. Studies in Germany and Austria (26, 27) on sporadic HUS cases between 1996 and 2003 found that EHEC O26 accounted for 14% of all EHEC strains and for ∼40% of non-O157 EHEC strains obtained from these patients. A proportion of 11% EHEC O26 strains was detected in a case-control study in Germany (59) between 2001 and 2003. In the age group <3 years, the number of EHEC O26 cases was nearly equal to that of EHEC O157 cases, although the incidence of EHEC O26-associated disease is probably underestimated because of diagnostic limitations in comparison to the diagnosis of O157:H7/H− (18, 34). Moreover, EHEC O26 has spread globally (35). Beutin (6) described EHEC O26:H11/H−, among O103:H2, O111:H, O145:H28/H−, and O157:H7/H−, as the well-known pathogenic “gang of five,” and Bettelheim (5) warned that we ignore the non-O157 STEC strains at our peril.EHEC O26 strains produce Stx1, Stx2, or both (15, 63). Moreover, these strains contain the intimin-encoding eae gene (11, 63), a characteristic feature of EHEC (44). In addition, EHEC strains possess other markers associated with virulence, such as a large plasmid that carries further potential virulence genes, e.g., genes coding for EHEC hemolysin (EHEC-hlyA), a catalase-peroxidase (katP), and an extracellular serine protease (espP) (17, 52). The efa1 (E. coli factor for adherence 1) gene was identified as an intestinal colonization factor in EHEC (43). EHEC O26 represents a highly dynamic group of organisms that rapidly generate new pathogenic clones (7, 8, 63).Ruminants, especially cattle, are considered the primary reservoir for human infections with EHEC. Therefore, the aim of this study was the molecular characterization of bovine E. coli field isolates of serogroup O26 using a panel of typical virulence markers. The epidemiological situation in the beef herds from which the isolates were obtained and the spatial and temporal behavior of the clonal distribution of E. coli serogroup O26 were analyzed during the observation period. The potential risk of the isolates inducing disease in humans was assessed.In our study, 56 bovine E. coli O26:H11 isolates and one bovine O26:H32 isolate were analyzed for EHEC virulence-associated factors. The isolates had been obtained from three different beef farms during a long-term study. They were detected in eight different cattle in farm A over a period of 15 months (detected on 10 sampling days), in 3 different animals in farm C over a period of 8 months (detected on 3 sampling days), and in one cow on one sampling day in farm D (Table (Table1)1) (28).

TABLE 1.

Typing of E. coli O26 isolates
Sampling day, source, and isolateSerotypeVirulence profile by:
fliC PCR-RFLPstx1 genestx2 geneStx1 (toxin)Stx2 (toxin)Subtype(s)
efa1 genebEHEC-hlyA genekatP geneespP genePlasmid size(s) in kbCluster
stx1/stx2eaetirespAespB
Day 15
    Animal 6 (farm A)
        WH-01/06/002-1O26:H11H11++stx1ββββ+/++++110, 127
        WH-01/06/002-2O26:H11H11++stx1ββββ+/++++110, 127
        WH-01/06/002-3O26:H11H11++stx1ββββ+/++++110, 127
    Animal 8 (farm A)
        WH-01/08/002-2O26:H11H11++stx1ββββ+/++++110, 127
    Animal 26 (farm A)
        WH-01/26/001-2O26:H11H11++stx1ββββ+/++++130, 127
        WH-01/26/001-5O26:H11H11++stx1ββββ+/++++110, 127
        WH-01/26/001-6O26:H11H11++stx1ββββ+/++++110, 127
        WH-01/26/001-7O26:H11H11++stx1ββββ+/−+++110, 127
Day 29
    Animal 2 (farm A)
        WH-01/02/003-1O26:H11H11++stx1ββββ+/++++110, 126
        WH-01/02/003-2O26:H11H11++stx1ββββ+/++++110, 126
        WH-01/02/003-5O26:H11H11++stx1ββββ+/++++110, 126
        WH-01/02/003-6O26:H11H11++stx1ββββ+/+++110, 126
        WH-01/02/003-7O26:H11H11++stx1ββββ+/++++110, 126
        WH-01/02/003-8O26:H11H11++stx1ββββ−/++++110, 126
        WH-01/02/003-9O26:H11H11++stx1ββββ+/++++1106
        WH-01/02/003-10O26:H11H11++stx1ββββ+/++++1106
    Animal 26 (farm A)
        WH-01/26/002-2O26:H11H11++stx1ββββ+/++++130, 125
        WH-01/26/002-5O26:H11H11++stx1ββββ+/++++130, 125
        WH-01/26/002-8O26:H11H11++stx1ββββ+/++++130, 125
        WH-01/26/002-9O26:H11H11++stx1ββββ+/++110, 125
        WH-01/26/002-10O26:H11H11++stx1ββββ+/++++130, 125
Day 64
    Animal 20 (farm A)
        WH-01/20/005-3O26:H11H11++stx1ββββ+/+130, 2.52
Day 78
    Animal 29 (farm A)
        WH-01/29/002-1O26:H11H11++stx1ββββ+/−+130, 12, 2.54
        WH-01/29/002-2O26:H11H11++stx1ββββ+/++++130, 12, 2.54
        WH-01/29/002-3O26:H11H11++stx1ββββ+/++++130, 12, 2.54
        WH-01/29/002-4O26:H11H11++stx1ββββ+/++++130, 12, 2.54
        WH-01/29/002-5O26:H11H11++stx1ββββ+/++130, 12, 2.54
Day 106
    Animal 27 (farm A)
        WH-01/27/005-2O26:H11H11++stx1ββββ+/−+++145, 110, 123
        WH-01/27/005-5O26:H11H11++stx1ββββ+/++++130, 12, 2.55
        WH-01/27/005-6O26:H11H11++stx1ββββ+/+130, 12, 2.55
Day 113
    Animal 7 (farm C)
        WH-04/07/001-2O26:H11H11++++stx1/stx2ββββ+/+++55, 35, 2.511
        WH-04/07/001-4O26:H11H11++++stx1/stx2ββββ+/++++5512
        WH-04/07/001-6O26:H11H11++++stx1/stx2ββββ+/++++5512
Day 170
    Animal 22 (farm C)
        WH-04/22/001-1O26:H11H11++stx1ββββ+/++++110, 12, 6.312
        WH-04/22/001-4O26:H11H11++stx1ββββ+/++++110, 12, 6.312
        WH-04/22/001-5O26:H11H11++stx1ββββ+/++++110, 12, 6.312
Day 176
    Animal 14 (farm D)
        WH-03/14/004-8O26:H11H11++stx1ββββ+/+++11010
Day 218
    Animal 27 (farm A)
        WH-01/27/009-1O26:H11H11++++stx1/stx2ββββ+/++++110, 129
        WH-01/27/009-2O26:H11H11++++stx1/stx2ββββ+/++++110, 129
        WH-01/27/009-3O26:H11H11++++stx1/stx2ββββ+/++++110, 128
        WH-01/27/009-8O26:H11H11++++stx1/stx2ββββ+/++110, 128
        WH-01/27/009-9O26:H11H11++++stx1/stx2ββββ+/++++110, 129
Day 309
    Animal 29 (farm A)
        WH-01/29/010-1O26:H11H11++stx1ββββ+/++++110, 35, 124
        WH-01/29/010-2O26:H11H11++stx1ββββ+/++130, 55, 358
        WH-01/29/010-3O26:H11H11++stx1ββββ+/++++130, 35, 128
Day 365
    Animal 8 (farm C)
        WH-04/08/008-6O26:H11H11++stx1ββββ+/++++110, 5512
Day 379
    Animal 9 (farm A)
        WH-01/09/016-2O26:H32H32++stx1/stx2−/−145, 130, 1.81
    Animal 27 (farm A)
        WH-01/27/014-3O26:H11H11++stx1ββββ+/++++110, 129
        WH-01/27/014-4O26:H11H11++stx1ββββ+/++++110, 129
        WH-01/27/014-5O26:H11H11++stx1ββββ+/++++110, 128
Day 407
    Animal 29 (farm A)
        WH-01/29/013-4O26:H11H11++stx1ββββ+/++++110, 12, 2.58
        WH-01/29/013-7O26:H11H11++stx1ββββ+/++++110, 12, 2.58
Day 478
    Animal 27 (farm A)
        WH-01/27/017-1O26:H11H11++++stx1/stx2ββββ+/++++110, 128
        WH-01/27/017-5O26:H11H11++++stx1/stx2ββββ+/++++110, 128
        WH-01/27/017-6O26:H11H11++++stx1/stx2ββββ+/++++1108
        WH-01/27/017-7O26:H11H11++++stx1/stx2ββββ+/++++1108
        WH-01/27/017-10O26:H11H11+++stx1ββββ+/++++130, 12, 2.58
Open in a separate windowastx1/stx2, gene stx1 or stx2.befa1 was detected by two hybridizations (with lifA1-lifA2 and lifA3-lifA4 probes). +/+, complete gene; +/− or −/+, incomplete gene; −/−, efa1 negative.The serotyping of the O26 isolates was confirmed by the results of the fliC PCR-restriction fragment length polymorphism (RFLP) analysis performed according to Fields et al. (25), with slight modifications described by Zhang et al. (62). All O26:H11 isolates showed the H11 pattern described by Zhang et al. (62). In contrast, the O26:H32 isolate demonstrated a different fliC RFLP pattern that was identical to the H32 pattern described by the same authors. It has been demonstrated that EHEC O26:H11 strains belong to at least four different sequence types (STs) in the common clone complex 29 (39). In the multilocus sequence typing analysis for E. coli (61), the tested five EHEC O26:H11 isolates (WH-01/02/003-1, WH-01/20/005-3, WH-01/27/009-9, WH-03/14/004-8, and WH-04/22/001-1) of different farms and clusters were characterized as two sequence types (ST 21 and ST 396). The isolates from farms A and C belong to ST 21, the most frequent ST of EHEC O26:H11 isolates found in humans and animals (39), but the single isolate from farm D was characterized as ST 396.Typing and subtyping of genes (stx1 and/or stx2, eae, tir, espA, espB, EHEC-hlyA, katP, and espP) associated with EHEC were performed with LightCycler fluorescence PCR (48) and different block-cycler PCRs. To identify the subtypes of the stx2 genes and of the locus of enterocyte effacement-encoding genes eae, tir, espA, and espB, the PCR products were digested by different restriction endonucleases (19, 26, 46). The complete pattern of virulence markers was detected in most bovine isolates examined in our study. An stx1 gene was present in all O26 isolates. In addition, an stx2 gene was found in nine O26:H11 isolates in farm A and in three isolates of the same type in farm C, as well as in the O26:H32 isolate. Both Stx1 and Stx2 were closely related to families of Stx1 and Stx2 variants or alleles. EHEC isolates with stx2 genes are significantly more often associated with HUS and other severe disease manifestations than isolates with an stx1 gene, which are more frequently associated with uncomplicated diarrhea and healthy individuals (13). In contrast to STEC strains harboring stx2 gene variants, however, STEC strains of the stx2 genotype were statistically significantly associated with HUS (26). The stx2 genotype was found in all O26 isolates with an stx2 gene, while the GK3/GK4 amplification products after digestion with HaeIII and FokI restriction enzymes showed the typical pattern for this genotype described by Friedrich et al. (26). The nucleotide sequences of the A and B subunits of the stx2 gene of the selected bovine O26:H11 isolate WH-01/27/017-1 (GenBank accession no. EU700491) were identical to the stx2 genes of different sorbitol-fermenting EHEC O157:H− strains associated with human HUS cases and other EHEC infections in Germany (10) and 99.3% identical in their DNA sequences to the stx2 gene of the EHEC type strain EDL933, a typical O157:H7 isolate from an HUS patient. A characteristic stx1 genotype was present in all O26 isolates. The nucleotide sequences of the A and B subunits of the stx1 gene of the tested bovine O26:H11 isolate WH-01/27/017-1 (GenBank accession no. EU700490) were nearly identical to those of the stx1 genes of the EHEC O26:H11 reference type strains H19 and DEC10B, which had been associated with human disease outbreaks in Canada and Australia. Nucleotide exchanges typical for stx1c and stx1d subtypes as described by Kuczius et al. (38) were not found. All bovine O26:H11 strains produced an Stx1 with high cytotoxicity for Vero cells tested by Stx enzyme-linked immunosorbent assay and Vero cell neutralization assay (53). The Stx2 cytotoxicity for Vero cells was also very high in the O26:H11 isolates.Not only factors influencing the basic and inducible Stx production are important in STEC pathogenesis. It has been suggested that the eae and EHEC-hlyA genes are likely contributors to STEC pathogenicity (2, 3, 13, 50). Ritchie et al. (50) found both genes in all analyzed HUS-associated STEC isolates. In all O26:H11 isolates we obtained, stx genes were present in combination with eae genes. Only the O26:H32 isolate lacked an eae gene. To date, 10 distinct variants of eae have been described (1, 19, 36, 45, 47). Some serotypes were closely associated with a particular intimin variant: the O157 serogroup was linked to γ-eae, the O26 serogroup to β-eae, and the O103 serogroup to ɛ-eae (4, 19, 20, 58). Our study confirms these associations. All bovine O26:H11 isolates were also typed as members of the β-eae subgroup. A translocated intimin receptor gene (tir gene) and the type III secreted proteins encoded by the espA and espB genes were found in all 56 O26:H11 isolates but not in the O26:H32 isolate. These other tested locus of enterocyte effacement-associated genes belonged to the β-subgroups. These results are in accord with the results of China et al. (19), who detected the pathotypes β-eae, β-tir, β-espA, and β-espB in all investigated human O26 strains. Like the eae gene, the EHEC-hlyA gene was found in association with severe clinical disease in humans (52). Aldick et al. (2) showed that EHEC hemolysin is toxic (cytolytic) to human microvascular endothelial cells and may thus contribute to the pathogenesis of HUS. In our study, the EHEC-hlyA gene was detected in 50 of the 56 bovine E. coli O26:H11 isolates which harbored virulence-associated plasmids of different sizes (Table (Table1).1). The presence of virulence-associated plasmids corresponded to the occurrence of additional virulence markers such as the espP and katP genes (17). The katP gene and the espP gene were detected in 49 and 50 of the 56 O26:H11 isolates, respectively. The espP gene was missing in six of the seven bovine O26:H11 isolates in which the katP genes were also absent. Both genes were not found in the O26:H32 isolate (Table (Table1).1). Although we found large plasmids of the same size in O26:H11 isolates, they lacked one or more of the plasmid-associated virulence factors (Table (Table1).1). Two DNA probes were used to detect the efa1 genes by colony hybridization. (DNA probes were labeled with digoxigenin [DIG] with lifA1-lifA2 and lifA3-lifA4 primers [14] using the PCR DIG probe synthesis kit [Roche Diagnostics, Mannheim, Germany]; DIG Easy Hyb solution [Roche] was used for prehybridization and hybridization.) Positive results with both DNA probes were obtained for 52 of 56 E. coli O26:H11 isolates. A positive signal was only found in three isolates with the lifA1-lifA2 DNA probe and in one isolate with the lifA3-lifA4 probe. An efa1 gene was not detected in the O26:H32 isolate (Table (Table11).We also analyzed the spatial and temporal behavior of the O26:H11/H32 isolates in the beef herds by cluster analysis (conducted in PAUP* for Windows version 4.0, 2008 [http://paup.csit.fsu.edu/about.html]). This was performed with distance matrices using the neighbor-joining algorithm, an agglomerative cluster method which generates a phylogenetic tree. The distance matrices were calculated by pairwise comparisons of the fragmentation patterns produced by genomic typing through pulsed-field gel electrophoresis analysis with four restriction endonucleases (XbaI, NotI, BlnI, and SpeI) and the presence or absence of potential virulence markers (Fig. (Fig.11 and Table Table1).1). To this end, the total character difference was used, which counts the pairwise differences between two given patterns. During a monitoring program of 3 years in four cattle farms (29), different O26:H11 cluster groups and one O26:H32 isolate were detected in three different farms. The genetic distance of the O26:H32 isolate was very high relative to the O26:H11 isolates. Therefore, the O26:H32 isolate was outgrouped. The O26:H11 isolates of each farm represented independent cluster groups. The single isolate from farm D fitted better to the isolates from farm C than to those from farm A. This finding is in accord with the geographical distance between the farms. The fact that the farms were located in neighboring villages may suggest that direct or indirect connections between the farms were possible (e.g., by person contacts or animal trade). However, the isolates from farm C and farm D belonged to different sequence types (ST 21 and ST 396), which may argue against a direct connection. Interestingly, O26:H11 isolates with and without stx2 genes were detected in the same clusters. This phenomenon was observed in both farm A and farm C. In farm A, the isolates with additional stx2 genes were found in animal 27 and were grouped in clusters 8 and 9 (day 218). An stx2 gene was repeatedly found (four isolates) in the same animal (animal 27). The isolates grouped in cluster 8 on a later day of sampling (day 478). All other O26:H11 isolates grouped in the same clusters and obtained from the same animals (27 and 29) on different sampling days lacked an stx2 gene. Also, the isolates obtained from animal 27 on previous sampling days, which grouped in clusters 3 and 5, exhibited no stx2 genes. In farm C, the three isolates with additional stx2 genes obtained from animal 7 grouped in clusters 11 and 12. An stx2 gene was absent from all other O26:H11 isolates grouped in the same cluster 12 on later sampling days, and no other isolates of cluster 11 were found later on. However, we detected members of many clusters over relatively long periods (clusters 5, 8, and 9 in farm A and cluster 12 in farm C), but members of other clusters were only found on single occasions. This patchy temporal pattern is apparently not a unique property of O26:H11, as we found similar results for cluster groups of other EHEC serotypes of bovine origin (28). The isolates grouped in the dominant cluster 8 were found on 5 of 9 sampling days over a period of 10 months. In contrast, we found the members of clusters 4, 5, 9, and 12 only on two nonconsecutive sampling days. The period during which isolates of these groups were not detected was particularly long for cluster 4 (231 days). We also observed the coexistence of different clusters over long periods in the same farm and in the same cattle (clusters 8 and 9), while one of the clusters dominated. Transmission of clusters between cattle was also observed. These results suggest that some of the EHEC O26:H11 strains had the potential for a longer persistence in the host population, while others had not. The reasons for this difference are not yet clear. Perhaps the incomplete efa1 gene found in isolates of clusters which were only detected once might explain why some strains disappeared rapidly. Efa1 has been discussed as a potential E. coli colonization factor for the bovine intestine used by non-O157 STEC, including O26 (54, 56). The O165:H25 cluster detected during a longer period in farm B may have disappeared after it had lost its efa1 gene (28). The precise biological activity of Efa1 in EHEC O26 is not yet known, but it has been demonstrated that the molecule is a non-Stx virulence determinant which can increase the virulence of EHEC O26 in humans (8).Open in a separate windowFIG. 1.Neighbor-joining tree of bovine E. coli O26:H11/H32 strains based on the restriction pattern obtained after digestion with XbaI, NotI, BlnI, and SpeI.We distinguished 12 different clusters, but complete genetic identity was only found in two isolates. The variations in the O26:H11 clusters may be due to increasing competition between the bacterial populations of the various subtypes in the bovine intestine or to potential interactions between EHEC O26:H11 and the host.The ephemeral occurrence of additional stx2 genes in different clusters and farms may be the result of recombination events due to horizontal gene transfer (16). The loss of stx genes may occur rapidly in the course of an infection, but the reincorporation by induction of an stx-carrying bacteriophage into the O26:H11 strains is possible at any time (9, 40). Nevertheless, an additional stx2 gene may increase the dangerousness of the respective EHEC O26:H11 strains. While all patients involved in an outbreak caused by an EHEC O26:H11 strain harboring the gene encoding Stx2 developed HUS (41), the persons affected by another outbreak caused by an EHEC O26:H11 strain that produced exclusively Stx1 had only uncomplicated diarrhea (60).In conclusion, our results showed that bovine O26:H11 isolates can carry virulence factors of EHEC that are strongly associated with EHEC-related disease in humans, particularly with severe clinical manifestations such as hemorrhagic colitis and HUS. Therefore, strains of bovine origin may represent a considerable risk for human infection. Moreover, some clusters of EHEC O26:H11 persisted in cattle and farms over longer periods, which may increase the risk of transmission to other animals and humans even further.  相似文献   

8.
A molecular diagnostic system using single nucleotide polymorphisms (SNPs) was developed to identify four Sclerotinia species: S. sclerotiorum (Lib.) de Bary, S. minor Jagger, S. trifoliorum Erikss., and the undescribed species Sclerotinia species 1. DNAs of samples are hybridized with each of five 15-bp oligonucleotide probes containing an SNP site midsequence unique to each species. For additional verification, hybridizations were performed using diagnostic single nucleotide substitutions at a 17-bp sequence of the calmodulin locus. The accuracy of these procedures was compared to that of a restriction fragment length polymorphism (RFLP) method based on Southern hybridizations of EcoRI-digested genomic DNA probed with the ribosomal DNA-containing plasmid probe pMF2, previously shown to differentiate S. sclerotiorum, S. minor, and S. trifoliorum. The efficiency of the SNP-based assay as a diagnostic test was evaluated in a blind screening of 48 Sclerotinia isolates from agricultural and wild hosts. One isolate of Botrytis cinerea was used as a negative control. The SNP-based assay accurately identified 96% of Sclerotinia isolates and could be performed faster than RFLP profiling using pMF2. This method shows promise for accurate, high-throughput species identification.Sclerotinia is distinguished morphologically from other genera in the Sclerotiniaceae (Ascomycota, Pezizomycotina, Leotiomycetes) by the production of tuberoid sclerotia that do not incorporate host tissue, by the production of microconidia that function as spermatia but not as a disseminative asexual state, and by the development of a layer of textura globulosa composing the outer tissue of apothecia (8). Two hundred forty-six species of Sclerotinia have been reported, most distinguished morphotaxonomically (Index Fungorum [www.indexfungorum.org]). These include the four species of agricultural importance now recognized plus many that are imperfectly known, seldom collected, or apparently endemic to relatively small geographic areas (2, 5, 6, 7, 8, 9, 17).The main species of phythopathological interest in the genus Sclerotinia are S. sclerotiorum (Lib.) de Bary, S. minor Jagger, S. trifoliorum Erikss., and the undescribed species Sclerotinia species 1. Sclerotinia species 1 is an important cause of disease in vegetables in Alaska (16) and has been found in association with wild Taraxacum sp., Caltha palustris, and Aconitum septentrionalis in Norway (7). It is morphologically indistinguishable from S. sclerotiorum, but it was shown to be a distinct species based on distinctive polymorphisms in sequences from internal transcribed spacer 2 (ITS2) of the nuclear ribosomal repeat (7). The other three species have been delimited using morphological, cytological, biochemical, and molecular characters (3, 8, 9, 10, 12, 15). Interestingly, given that the ITS is sufficiently polymorphic in many fungal genera to resolve species, in Sclerotinia, only species 1 and S. trifoliorum are distinguished by characteristic ITS sequence polymorphisms; S. sclerotiorum and S. minor cannot be distinguished based on ITS sequence (2, 7).Sclerotinia sclerotiorum is a necrotrophic pathogen with a broad host range (1). S. minor has a more restricted host range but causes disease in a variety of important crops such as lettuce, peanut, and sunflower crops (11). S. trifoliorum has a much narrower host range, limited to the Fabaceae (3, 8, 9). Sclerotial and ascospore characteristics also serve to differentiate among the three species. Sclerotinia minor has small sclerotia that develop throughout the colony in vitro and aggregate to form crusts on the host, while the sclerotia of S. sclerotiorum and S. trifoliorum are large and form at the colony periphery in vitro, remaining separate on the host (8, 9). The failure of an isolate to produce sclerotia or apothecia in vitro is not unusual, especially after serial cultivation (8). The presence of dimorphic, tetranucleate ascospores characterizes S. trifoliorum, while S. sclerotiorum and S. minor both have uniformly sized ascospores that are binucleate and tetranucleate, respectively (9, 14).With the apparent exception of Sclerotinia species 1, morphological characteristics are sufficient to delimit Sclerotinia species given that workers have all manifestations of the life cycle in hand. In cultures freshly isolated from infected plants, investigators usually have mycelia and sclerotia but not apothecia. Restriction fragment length polymorphisms (RFLPs) in ribosomal DNA (rDNA) are diagnostic for Sclerotinia species (3, 10), but the assay requires cloned probes (usually accessed from other laboratories) hybridized to Southern blots from vertical gels, an impractical procedure for large samples. We have analyzed sequence data from previous phylogenetic studies (2) and have identified diagnostic variation for the rapid identification of the four Sclerotinia species. The single nucleotide polymorphism (SNP) assay that we report here is amenable to a high throughput of samples and requires only PCR amplification with a standard set of primers and oligonucleotide hybridizations to Southern blots in a dot format.The SNP assay was performed using two independent sets of species-specific oligonucleotide probes, all with SNP sites shown to differentiate the four Sclerotinia species (Fig. (Fig.1).1). A panel of 49 anonymously coded isolates (Table (Table1)1) was screened using these species-specific SNP probes, as outlined in Fig. Fig.1.1. The assay was validated by comparison to Southern hybridizations of EcoRI-digested genomic DNA hybridized with pMF2, a plasmid probe containing the portion of the rDNA repeat with the 18S, 5.8S, and 26S rRNA cistrons of Neurospora crassa (4, 10).Open in a separate windowFIG. 1.Protocol for the SNP-based identification of Sclerotinia species, with diagnostic SNP sites underlined and in boldface type for each hybridization probe.

TABLE 1.

Isolates and hybridization results for all SNP-based oligonucleotide probesf
Collector''s isolateAnonymous codePrescreened presumed species identityOriginHostSpecies-specific SNP
IGS50CAL448 S.trifolCAL124CAL448 S.minorRAS148CAL446 S.sp1CAL19ACAL19BCAL448 S.sclero
LMK1849Botrytis cinereaOntario, CanadaAllium cepa
FA2-13Sclerotinia minorNorth CarolinaArachis hypogaea++
W15Sclerotinia minorNorth CarolinaCyperus esculentus++
W1030Sclerotinia minorNorth CarolinaOenothra laciniata++
PF1-138Sclerotinia minorNorth CarolinaArachis hypogaea++
PF18-49714Sclerotinia minorOklahomaArachis hypogaea++
PF17-48246Sclerotinia minorOklahomaArachis hypogaea++
PF19-51948Sclerotinia minorOklahomaArachis hypogaea++
LF-2720Sclerotinia minorUnited StatesLactuca sativa++
AR12811Sclerotinia sclerotiorumArgentinaArachis hypogaea++
AR128216Sclerotinia sclerotiorumArgentinaArachis hypogaea++
LMK2116Sclerotinia sclerotiorumCanadaBrassica napus++
LMK5725Sclerotinia sclerotiorumNorwayRanunculus ficaria++
LMK75415Sclerotinia sclerotiorumNorwayRanunculus ficaria++
UR1939Sclerotinia sclerotiorumUruguayLactuca sativa++
UR4789Sclerotinia sclerotiorumUruguayLactuca sativa++
CA90132Sclerotinia sclerotiorumCaliforniaLactuca sativa++
CA99540Sclerotinia sclerotiorumCaliforniaLactuca sativa++
CA104441Sclerotinia sclerotiorumCaliforniaLactuca sativa++
1980a34Sclerotinia sclerotiorumNebraskaPhaseolus vulgaris++
Ss00113Sclerotinia sclerotiorumNew YorkbGlycine max++
Ssp00531Sclerotinia sclerotiorumNew YorkGlycine max++
H02-V2833Sclerotinia species 1AlaskacUnknown vegetable crop++
H01-V1426Sclerotinia species 1AlaskaUnknown vegetable crop++
LMK74521Sclerotinia species 1NorwayTaraxacum sp.++
02-2611Sclerotinia trifoliorumFinlanddTrifolium pratense+
06-1429Sclerotinia trifoliorumFinlandTrifolium pratense++
2022Sclerotinia trifoliorumFinlandTrifolium pratense++
2-L945Sclerotinia trifoliorumFinlandTrifolium pratense++
3-A524Sclerotinia trifoliorumFinlandTrifolium pratense
5-L912Sclerotinia trifoliorumFinlandTrifolium pratense++
K14Sclerotinia trifoliorumFinlandTrifolium pratense++
K237Sclerotinia trifoliorumFinlandTrifolium pratense++
L-11223Sclerotinia trifoliorumFinlandTrifolium pratense++
L-11944Sclerotinia trifoliorumFinlandTrifolium pratense++
LMK3619Sclerotinia trifoliorumTasmaniaTrifolium repens++
Ssp00118Sclerotinia trifoliorumNew YorkLotus corniculatus++
Ssp00210Sclerotinia trifoliorumNew YorkLotus corniculatus++
Ssp00328Sclerotinia trifoliorumNew YorkLotus corniculatus++
Ssp00436Sclerotinia trifoliorumNew YorkLotus corniculatus++
LMK4743Sclerotinia trifoliorumVirginiaMedicago sativa++
MBRS-127UnknownAustraliaeBrassica spp.++
MBRS-27UnknownAustraliaBrassica spp.++
MBRS-342UnknownAustraliaBrassica spp.++
MBRS-522UnknownAustraliaBrassica spp.++
WW-135UnknownAustraliaBrassica spp.++
WW-28UnknownAustraliaBrassica spp.++
WW-317UnknownAustraliaBrassica spp.++
WW-447UnknownAustraliaBrassica spp.++
Open in a separate windowaThe annotated genome for S. sclerotiorum strain 1980 (ATCC 18683) is publicly available through the Broad Institute, Cambridge, MA (http://www.broad.mit.edu/annotation/genome/sclerotinia_sclerotiorum/Home.html).bAll isolates from New York were provided by Gary C. Bergstrom, Cornell University, Ithaca, NY. Isolates Ss001 and Ssp005 were submitted as S. sclerotiorum, and Ssp001 through Ssp004 were submitted as S. trifoliorum.cAll isolates from Alaska, submitted as Sclerotinia species 1, were provided by Lori Winton, USDA-ARS Subarctic Agricultural Research Unit, University of Alaska, Fairbanks.dAll isolates from Finland, submitted as S. trifoliorum, were provided by Tapani Yli-Mattila, University of Turku, Turku, Finland.eAll isolates from Australia, presumed to be S. sclerotiorum but requiring species confirmation, were provided by Martin Barbetti, DAF Plant Protection Branch, South Perth, Australia.fThe probes that are diagnostic for S. minor, S. sclerotiorum, S. trifoliorum, and Sclerotinia species 1 are listed, with a “+” indicating a positive hybridization for the probe and a “−” indicating no hybridization of the probe.  相似文献   

9.
10.
11.
In Archaea, the preflagellin peptidase (a type IV prepilin-like peptidase designated FlaK in Methanococcus voltae and Methanococcus maripaludis) is the enzyme that cleaves the N-terminal signal peptide from preflagellins. In methanogens and several other archaeal species, the typical flagellin signal peptide length is 11 to 12 amino acids, while in other archaea preflagellins possess extremely short signal peptides. A systematic approach to address the signal peptide length requirement for preflagellin processing is presented in this study. M. voltae preflagellin FlaB2 proteins with signal peptides 3 to 12 amino acids in length were generated and used as a substrate in an in vitro assay utilizing M. voltae membranes as an enzyme source. Processing by FlaK was observed in FlaB2 proteins containing signal peptides shortened to 5 amino acids; signal peptides 4 or 3 amino acids in length were unprocessed. In the case of Sulfolobus solfataricus, where the preflagellin peptidase PibD has broader substrate specificity, some predicted substrates have predicted signal peptides as short as 3 amino acids. Interestingly, the shorter signal peptides of the various mutant FlaB2 proteins not processed by FlaK were processed by PibD, suggesting that some archaeal preflagellin peptidases are likely adapted toward cleaving shorter signal peptides. The functional complementation of signal peptidase activity by FlaK and PibD in an M. maripaludis ΔflaK mutant indicated that processing of preflagellins was detected by complementation with either FlaK or PibD, yet only FlaK-complemented cells were flagellated. This suggested that a block in an assembly step subsequent to signal peptide removal occurred in the PibD complementation.The bacterial type IV prepilin peptidase (TFPP) is a well-characterized enzyme belonging to a family of novel aspartic acid proteases (20). It is responsible for the cleavage of N-terminal signal peptides from prepilins and pseudopilins, prior to their incorporation into the type IV pilus structure (22, 30, 31). The prepilin peptidase is also responsible for the processing of prepilin-like proteins needed for type II secretion (22). In Archaea, the existence of bacterial TFPP-like enzymes has also been reported, and they have been most extensively studied in relation to the assembly of the archaeal flagellum. In the euryarchaeotes Methanococcus maripaludis and Methanococcus voltae, the preflagellin peptidase FlaK was demonstrated to be responsible for cleaving the N-terminal signal peptide from the preflagellin prior to its incorporation into the growing flagellar filament, a step essential to flagellar assembly (6, 7, 26). In Sulfolobus solfataricus, an acidophilic crenarchaeote, the equivalent enzyme, PibD, was also shown to process preflagellins (4). Site-directed mutagenesis of FlaK and PibD demonstrated that both aspartic acid residues that aligned with aspartic acid residues essential for bacterial TFPP activity were also essential in the archaeal enzymes (6, 32), indicating that the two archaeal peptidases belong with the bacterial TFPPs in this novel family of aspartic acid proteases (20). More recently, an additional archaeal TFPP was found to be required for cleavage of the prepilin substrates (33) that are assembled into the unique pili of M. maripaludis (37).The substrate specificity of the archaeal preflagellin peptidase remains an open question. Like prepilin peptidases, FlaK in M. voltae has stringent requirements for the amino acids surrounding the cleavage site of the substrate, especially the −1 glycine, −2 and −3 lysines, and the +3 glycine (numbers given relative to the cleavage site) (35); the last position was conserved in all archaeal flagellins (25). Upon N-terminal sequence alignment of all available archaeal flagellin amino acid sequences at the predicted cleavage site, it was found that most archaeal preflagellin signal peptides are quite conserved in length, with the typical flagellin signal peptide being 11 to 12 amino acids in length (Table (Table1).1). It is speculated that while a certain amount of flexibility might exist, some optimum and minimum length probably exists that is crucial for the juxtaposition of the signal peptide and signal peptidase with respect to each other and the membrane (18). A recent study examining possible type IV pilin-like substrates in archaea using the FlaFind program indicated that such substrates may be more widespread than initially thought (33). Since in Methanococcus the pilins are processed by a second TFPP (EppA) (33), it is very possible that the preflagellins might be the only substrates of FlaK in these archaea.

TABLE 1.

N-terminal amino acid alignment of selected archaeal flagellin sequencesa
OrganismFlagellinN-terminal sequence
Archaeoglobus fulgidusFlaB1MGMRFLKNEKGFTGLEAAIVLIAFVTVAAVFSYVLL
Aeropyrum pernixFlaB1MRRRRGIVGIEAAIVLIAFVIVAAALAFVAL
Haloarcula marismortuiFlaAMFEKIANENERGQVGIGTLIVFIAMVLVAAIAAGVLI
Halobacterium salinarumFlgA1MFEFITDEDERGQVGIGTLIVFIAMVLVAAIAAGVLI
Methanocaldococcus jannaschiiFlaB1MKVFEFLKGKRGAMGIGTLIIFIAMVLVAAVAAAVLI
Methanococcoides burtoniiFlaMKANKHLMMNNDRAQAGIGTLIIFIAMVLVAAVAAAVLI
Methanococcus aeolicusFlaMNLEHFSFLKNKKGAMGIGTLIIFIAMVLVAAVAASVLI
Methanococcus maripaludisFlaB1MKIKEFLKTKKGASGIGTLIVFIAMVLVAAVAASVLI
Methanococcus vannieliiFlaB1MSVKNFMNNKKGDSGIGTLIVFIAMVLVAAVAASVLI
Methanococcus voltaeFlaB2MKIKEFMSNKKGASGIGTLIVFIAMVLVAAVAASVLI
Methanothermococcus thermolithotrophicusFlaB1MKIAQFIKDKKGASGIGTLIVFIAMVLVAAVAASVLI
Methanogenium marisnigriFlaMKRQFNDNAFTGLEAAIVLIAFIVVAAVFSYVVL
Methanospirillum hungateiFlaMNNEDGFSGLEAMIVLIAFVVVAAVFAYATL
Natrialba magadiiFlaB1MFEQNDDRDRGQVGIGTLIVFIAMVLVAAIAAGVLI
Natronomonas pharaonisFlg1MFETLTETKERGQVGIGTLIVFIALVLVAAIAAGVLI
Pyrococcus abyssiFlaB1MRRGAIGIGTLIVFIAMVLVAAVAAGVLI
Pyrococcus furiosusFlaMKKGAIGIGTLIVFIAMVLVAAVAAGVLI
Pyrococcus horikoshiiFlaB1MRRGAIGIGTLIVFIAMVLVAAVAAAVLI
Sulfolobus solfataricusFlaMNSKKMLKEYNKKVKRKGLAGLDTAIILIAFIITASVLAYVAI
Sulfolobus tokodaiiFlaMGAKNAIKKYNKIVKRKGLAGLDTAIILIAFIITASVLAYVAI
Thermococcus kodakarensisFlaB1MKTRTRKGAVGIGTLIVFIAMVLVAAVAAAVLI
Thermoplasma acidophilumFlaMRKVFSLKADNKAETGIGTLIVFIAMVLVAAVAATVLI
Thermoplasma volcaniumFlaMYIVKKMPILKLLNSIKRIFKTDDSKAESGIGVLIVFIAMILVAAVAASVLI
Open in a separate windowaIn all organisms listed, except Sulfolobus, there are multiple flagellins but only a single example is shown. The signal peptide is shown in boldface type. In some cases, analyses of the amino acid sequences of the signal peptides with unusual lengths revealed in-frame methionines or alternative start sites (underlined) that, if they represent the true translation start site, would result in signal peptides of more typical lengths. For S. solfataricus, Albers et al. (4) used the internal start site to give a signal peptide of 13 amino acids and demonstrated signal peptide processing.Studies on PibD in S. solfataricus, however, present interesting disparities. A recent genomic survey revealed a surprisingly large group of proteins possessing type IV pilin-like signal peptides in Sulfolobus compared to other archaea (2, 33). Besides the preflagellins, other substrates for PibD include pilins and proteins involved in sugar binding. Deletions of pibD appear to be nonviable (1), unlike the case for flaK, reinforcing the role of pibD in processes other than flagellum and pilus formation. Site-directed mutagenesis on the glucose-binding protein precursor (GlcS) signal peptide revealed that a wide variety of substitutions around the cleavage site still permitted processing. The allowed substitutions were consistent with the signal peptide sequences of a list of proposed PibD substrates, some of which have predicted signal peptides as short as 3 amino acids (4). Based on the observation that homologues of S. solfataricus sugar-binding proteins that contain type IV prepilin-like sequences were absent in the genome of another species of Sulfolobus, Sulfolobus tokodaii, it was speculated that S. solfataricus PibD may have undergone a specialization allowing for a broader substrate specificity (4). However, whether the extremely short signal peptides would be functional and recognizable as preflagellin peptidase substrates remains to be biochemically demonstrated.Although the typical flagellin signal peptide is 11 to 12 amino acids in length, a small number of archaeal preflagellins contain signal peptides of unusual lengths. Some are annotated to be unusually long (e.g., MJ0893 of Methanocaldococcus jannaschii and Ta1407 of Thermoplasma acidophilum) (Table (Table1).1). These sequences, however, contain in-frame alternative translational start sites that, if they correspond to true translation start sites, would result in signal peptides more typical in length. On the other hand, organisms with preflagellins predicted to possess unusually short signal peptides of 4 to 6 amino acids include Pyrococcus abyssi, Pyrococcus furiosus, Pyrococcus horikoshii, and Aeropyrum pernix (Table (Table1).1). These unusual signal peptides are deduced exclusively from gene sequences. Biochemical or genetic data to explain these peculiarities are still lacking. Assuming that the annotations of these genes are accurate, this would suggest that certain archaeal TFPP-like enzymes possess the capacity to process these much shorter signal peptides.In this study, for the first time, a systematic evaluation of critical signal peptide length for recognition and cleavage by two very different archaeal TFPP-like signal peptidases, M. voltae FlaK and S. solfataricus PibD, is reported.  相似文献   

12.
13.
The effects of the challenge dose and major histocompatibility complex (MHC) class IB alleles were analyzed in 112 Mauritian cynomolgus monkeys vaccinated (n = 67) or not vaccinated (n = 45) with Tat and challenged with simian/human immunodeficiency virus (SHIV) 89.6Pcy243. In the controls, the challenge dose (10 to 20 50% monkey infectious doses [MID50]) or MHC did not affect susceptibility to infection, peak viral load, or acute CD4 T-cell loss, whereas in the chronic phase of infection, the H1 haplotype correlated with a high viral load (P = 0.0280) and CD4 loss (P = 0.0343). Vaccination reduced the rate of infection acquisition at 10 MID50 (P < 0.0001), and contained acute CD4 loss at 15 MID50 (P = 0.0099). Haplotypes H2 and H6 were correlated with increased susceptibility (P = 0.0199) and resistance (P = 0.0087) to infection, respectively. Vaccination also contained CD4 depletion (P = 0.0391) during chronic infection, independently of the challenge dose or haplotype.Advances in typing of the major histocompatibility complex (MHC) of Mauritian cynomolgus macaques (14, 20, 26) have provided the opportunity to address the influence of host factors on vaccine studies (13). Retrospective analysis of 22 macaques vaccinated with Tat or a Tat-expressing adenoviral vector revealed that monkeys with the H6 or H3 MHC class IB haplotype were overrepresented among aviremic or controller animals, whereas macaques with the H2 or H5 haplotype clustered in the noncontrollers (12). More recently, the H6 haplotype was reported to correlate with control of chronic infection with simian immunodeficiency virus (SIV) mac251, regardless of vaccination (18).Here, we performed a retrospective analysis of 112 Mauritian cynomolgus macaques, which included the 22 animals studied previously (12), to evaluate the impact of the challenge dose and class IB haplotype on the acquisition and severity of simian/human immunodeficiency virus (SHIV) 89.6Pcy243 infection in 45 control monkeys and 67 monkeys vaccinated with Tat from different protocols (Table (Table11).

TABLE 1.

Summary of treatment, challenge dose, and outcome of infection in cynomolgus monkeys
Protocol codeNo. of monkeysImmunogen (dose)aAdjuvantbSchedule of immunization (wk)RoutecChallenged (MID50)Virological outcomee
Reference(s) or source
ACV
ISS-ST6Tat (10)Alum or RIBI0, 2, 6, 12, 15, 21, 28, 32, 36s.c., i.m.104114, 17
ISS-ST1Tat (6)None0, 5, 12, 17, 22, 27, 32, 38, 42, 48i.d.101004, 17
ISS-PCV3pCV-tat (1 mg)Bupivacaine + methylparaben0, 2, 6, 11, 15, 21, 28, 32, 36i.m.103006
ISS-ID3Tat (6)none0, 4, 8, 12, 16, 20, 24, 28, 39, 43, 60i.d.10111B. Ensoli, unpublished data
ISS-TR6Tat (10)Alum-Iscom0, 2, 6, 11, 16, 21, 28, 32, 36s.c., i.d., i.m.10420Ensoli, unpublished
ISS-TGf3Tat (10)Alum0, 4, 12, 22s.c.1503Ensoli, unpublished
ISS-TG3Tatcys22 (10)Alum1503Ensoli, unpublished
ISS-TG4Tatcys22 (10) + Gag (60)Alum1504Ensoli, unpublished
ISS-TG4Tat (10) + Gag (60)Alum1504Ensoli, unpublished
ISS-MP3Tat (10)H1D-Alum0, 4, 12, 18, 21, 38s.c., i.m.15021Ensoli, unpublished
ISS-MP3Tat (10)Alums.c.15003Ensoli, unpublished
ISS-GS6Tat (10)H1D-Alum0, 4, 12, 18, 21, 36s.c., i.m.15132Ensoli, unpublished
NCI-Ad-tat/Tat7Ad-tat (5 × 108 PFU), Tat (10)Alum0, 12, 24, 36i.n., i.t., s.c.15232Ensoli, unpublished
NCI-Tat9Tat (6 and 10)Alum/Iscom0, 2, 6, 11, 15, 21, 28, 32, 36s.c., i.d., i.m.1524312
ISS-NPT3pCV-tat (1 mg)Bupivacaine + methylparaben-Iscom0, 2, 8, 13, 17, 22, 28, 46, 71i.m.20003Ensoli, unpublished
ISS-NPT3pCV-tatcys22 (1 mg)Bupivacaine + methylparaben-Iscom0, 2, 8, 13, 17, 22, 28, 46, 71i.m.20111
    Total vaccinated67191731
        Naive11NoneNoneNAgNA10 or 15137
        Control34None, Ad, or pCV-0Alum, RIBI, H1D, Iscom or bupivacaine + methylparaben-Iscoms.c., i.d., i.n., i.t., i.m.10, 15, or 2051316
    Total controls4561623
    Total112253354
Open in a separate windowaAll animals were inoculated with the indicated dose of Tat plasmid DNA (pCV-tat [8], adenovirus-tat [Ad-tat] [27]) or protein, Gag protein, or empty vectors (pCV-0, adenovirus [Ad]) by the indicated route. Doses are in micrograms unless indicated otherwise.bAlum, aluminum phosphate (4); RIBI oil-in-water emulsions containing squalene, bacterial monophosphoryl lipid A, and refined mycobacterial products (4); Iscom, immune-stimulating complex (4); H1D are biocompatible anionic polymeric microparticles used for vaccine delivery (10, 12, 25a).cs.c., subcutaneous; i.m., intramuscular; i.d., intradermal; i.n., intranasal; i.t., intratracheal.dAll animals were inoculated intravenously with the indicated dose of the same SHIV89.6.Pcy243 stock.eAccording to the virological outcome upon challenge, monkeys were grouped as aviremic (A), controllers (C), or viremic (V).fBecause of the short follow-up, controller status could not be determined and all infected monkeys of the ISS-TG protocol were therefore considered viremic.gNA, not applicable.  相似文献   

14.
15.
Short-chain alcohol dehydrogenase, encoded by the gene Tsib_0319 from the hyperthermophilic archaeon Thermococcus sibiricus, was expressed in Escherichia coli, purified and characterized as an NADPH-dependent enantioselective oxidoreductase with broad substrate specificity. The enzyme exhibits extremely high thermophilicity, thermostability, and tolerance to organic solvents and salts.Alcohol dehydrogenases (ADHs; EC 1.1.1.1.) catalyze the interconversion of alcohols to their corresponding aldehydes or ketones by using different redox-mediating cofactors. NAD(P)-dependent ADHs, due to their broad substrate specificity and enantioselectivity, have attracted particular attention as catalysts in industrial processes (5). However, mesophilic ADHs are unstable at high temperatures, sensitive to organic solvents, and often lose activity during immobilization. In this relation, there is a considerable interest in ADHs from extremophilic microorganisms; among them, Archaea are of great interest. The representatives of all groups of NAD(P)-dependent ADHs have been detected in genomes of Archaea (11, 12); however, only a few enzymes have been characterized, and the great majority of them belong to medium-chain (3, 4, 14, 16, 19) or long-chain iron-activated ADHs (1, 8, 9). Up to now, a single short-chain archaeal ADH from Pyrococcus furiosus (10, 18) and only one archaeal aldo-keto reductase also from P. furiosus (11) have been characterized.Thermococcus sibiricus is a hyperthermophilic anaerobic archaeon isolated from a high-temperature oil reservoir capable of growth on complex organic substrates (15). The complete genome sequence of T. sibiricus has been recently determined and annotated (13). Several ADHs are encoded by the T. sibiricus genome, including three short-chain ADHs (Tsib_0319, Tsib_0703, and Tsib_1998) (13). In this report, we describe the cloning and expression of the Tsib_0319 gene from T. sibiricus and the purification and the biochemical characterization of its product, the thermostable short-chain ADH (TsAdh319).The Tsib_0319 gene encodes a protein with a size of 234 amino acids and the calculated molecular mass of 26.2 kDa. TsAdh319 has an 85% degree of sequence identity with short-chain ADH from P. furiosus (AdhA; PF_0074) (18). Besides AdhA, close homologs of TsAdh319 were found among different bacterial ADHs, but not archaeal ADHs. The gene flanked by the XhoI and BamHI sites was PCR amplified using two primers (sense primer, 5′-GTTCTCGAGATGAAGGTTGCTGTGATAACAGGG-3′, and antisense primer, 5′-GCTGGATCCTCAGTATTCTGGTCTCTGGTAGACGG-3′) and cloned into the pET-15b vector. TsAdh319 was overexpressed, with an N-terminal His6 tag in Escherichia coli Rosetta-gami (DE3) and purified to homogeneity by metallochelating chromatography (Hi-Trap chelating HP column; GE Healthcare) followed by gel filtration on Superdex 200 10/300 GL column (GE Healthcare) equilibrated in 50 mM Tris-HCl (pH 7.5) with 200 mM NaCl. The homogeneity and the correspondence to the calculated molecular mass of 28.7 kDa were verified by SDS-PAGE (7). The molecular mass of native TsAdh319 was 56 to 60 kDa, which confirmed the dimeric structure in solution.The standard ADH activity measurement was made spectrophotometrically at the optimal pH by following either the reduction of NADP (in 50 mM Gly-NaOH buffer; pH 10.5) or the oxidation of NADPH (in 0.1 M sodium phosphate buffer; pH 7.5) at 340 nm at 60°C. The enzyme exhibited a strong preference for NADP(H) and broad substrate specificity (Table (Table1).1). The highest oxidation rates were found with pentoses d-arabinose (2.0 U mg−1) and d-xylose (2.46 U mg−1), and the highest reduction rates were found with dimethylglyoxal (5.9 U mg−1) and pyruvaldehyde (2.2 U mg−1). The enzyme did not reduce sugars which were good substrates for the oxidation reaction. The kinetic parameters of TsAdh319 determined for the preferred substrates are shown in Table Table2.2. The enantioselectivity of the enzyme was estimated by measuring the conversion rates of 2-butanol enantiomers. TsAdh319 showed an evident preference, >2-fold, for (S)-2-butanol over (RS)-2-butanol. The enzyme stereoselectivity is confirmed by the preferred oxidation of d-arabinose over l-arabinose (Table (Table1).1). The fact that TsAdh319 is metal independent was supported by the absence of a significant effect of TsAdh319 preincubation with 10 mM Me2+ for 30 min before measuring the activity in the presence of 1 mM Me2+ or EDTA (Table (Table3).3). TsAdh319 also exhibited a halophilic property, so the enzyme activity increased in the presence of NaCl and KCl and the activation was maintained even at concentration of 4 M and 3 M, respectively (Table (Table33).

TABLE 1.

Substrate specificity of TsAdh319
SubstrateaRelative activity (%)
Oxidation reactionb
    Methanol0
    2-Methoxyethanol0
    Ethanol36
    1-Butanol80
    2-Propanol100
    (RS)-(±)-2-Butanol86
    (S)-(+)-2-Butanol196
    2-Pentanol67
    1-Phenylmethanol180
    1.3-Butanediol91
    Ethyleneglycol0
    Glycerol16
    d-Arabinose*200
    l-Arabinose*17
    d-Xylose*246
    d-Ribose*35
    d-Glucose*146
    d-Mannose*48
    d-Galactose*0
    Cellobiose*71
Reduction reactionc
    Pyruvaldehyde100
    Dimethylglyoxal270
    Glyoxylic acid36
    Acetone0
    Cyclopentanone0
    Cyclohexanone4
    3-Methyl-2-pentanone*13
    d-Arabinose*0
    d-Xylose*0
    d-Glucose*0
    Cellobiose*0
Open in a separate windowaSubstrates were present in 250 mM or 50 mM (*) concentrations.bRelative rates, measured under standard conditions, were calculated by defining the activity for 2-propanol as 100%, which corresponds to 1.0 U mg−1. Data are averages from triplicate experiments.cRelative rates, measured under standard conditions, were calculated by defining the activity for pyruvaldehyde as 100%, which corresponds to 2.2 U mg−1. Data are averages from triplicate experiments.

TABLE 2.

Apparent Km and Vmax values for TsAdh319
Coenzyme or substrateApparent Km (mM)Vmax (U mg−1)kcat (s−1)
NADPa0.022 ± 0.0020.94 ± 0.020.45 ± 0.01
NADPHb0.020 ± 0.0033.16 ± 0.111.51 ± 0.05
2-Propanol168 ± 291.10 ± 0.090.53 ± 0.04
d-Xylose54.4 ± 7.41.47 ± 0.090.70 ± 0.04
Pyruvaldehyde17.75 ± 3.384.26 ± 0.402.04 ± 0.19
Open in a separate windowaActivity was measured under standard conditions with 2-propanol. Data are averages from triplicate experiments.bActivity was measured under standard conditions with pyruvaldehyde. Data are averages from triplicate experiments.

TABLE 3.

Effect of various ions and EDTA on TsAdh319a
CompoundConcn (mM)Relative activity (%)
None0100
NaCl400206
600227
4,000230
KCl600147
2,000200
3,000194
MgCl21078
CoCl210105
NiSO410100
ZnSO41079
FeSO41074
EDTA1100
580
Open in a separate windowaThe activity was measured under standard conditions with 2-propanol; relative rates were calculated by defining the activity without salts as 100%, which corresponds to 0.9 U mg−1. Data are averages from duplicate experiments.The most essential distinctions of TsAdh319 are the thermophilicity and high thermostability of the enzyme. The optimum temperature for the 2-propanol oxidation catalyzed by TsAdh319 was not achieved. The initial reaction rate of oxidation increased up to 100°C (Fig. (Fig.1).1). The Arrhenius plot is a straight line, typical of a single rate-limited thermally activated process, but there is no obvious transition point due to the temperature-dependent conformational changes of the protein molecule. The activation energy for the oxidation of 2-propanol was estimated at 84.0 ± 5.8 kJ·mol−1. The thermostability of TsAdh319 was calculated from residual TsAdh319 activity after preincubation of 0.4 mg/ml enzyme solution in 50 mM Tris-HCl buffer (pH 7.5) containing 200 mM NaCl at 70, 80, 90, or 100°C. The preincubation at 70°C or 80°C for 1.5 h did not cause a decrease in the TsAdh319 activity, but provoked slight activation. The residual TsAdh319 activities began to decrease after 2 h of preincubation at 70°C or 80°C and were 10% and 15% down from the control, respectively. The determined half-life values of TsAdh319 were 2 h at 90°C and 1 h at 100°C.Open in a separate windowFIG. 1.Temperature dependence of the initial rate of the 2-propanol reduction by TsAdh319. The reaction was initiated by enzyme addition to a prewarmed 2-propanol-NADP mixture. The inset shows the Arrhenius plot of the same data.Protein thermostability often correlates with such important biotechnological properties as increased solvent tolerance (2). We tested the influence of organic solvents at a high concentration (50% [vol/vol]) on TsAdh319 by using either preincubation of the enzyme at a concentration of 0.2 mg/ml with solvents for 4 h at 55°C or solvent addition into the reaction mixture to distinguish the effect of solvent on the protein stability and on the enzyme activity. TsAdh319 showed significant solvent tolerance in both cases (Table (Table4),4), and the effects of solvents could be modulated by salts, acting apparently as molecular lyoprotectants (17). Furthermore, TsAdh319 maintained 57% of its activity in 25% (vol/vol) 2-propanol, which could be used as the cosubstrate in cofactor regeneration (6).

TABLE 4.

Influence of various solvents on TsAdh319 activitya
SolventRelative activity (%)bRelative activity (%)c
Buffer without NaClBuffer with 600 mM NaCl
None100100100
DMSOd98040
DMFAe1011341
Methanol98259
Acetonitrile9500
Ethyl acetate470*33*
Chloroform10579*81*
n-Hexane10560*118*
n-Decane3691*107*
Open in a separate windowaThe activity measured at the standard condition with 2-propanol as a substrate. Data are averages from triplicate experiments.bPreincubation for 4 h at 55°C in the presence of 50% (vol/vol) of solvent prior the activity assay.cWithout preincubation, solvent addition to the reaction mixture up to 50% (vol/vol) or using the buffer saturated by a solvent (*).dDMSO, dimethyl sulfoxide.eDMFA, dimethylformamide.From all the aforesaid we may suppose TsAdh319 or its improved variant to be interesting both for the investigation of structural features of protein tolerance and for biotechnological applications.  相似文献   

16.
17.
18.
Escherichia coli isolates (72 commensal and 10 O157:H7 isolates) were compared with regard to physiological and growth parameters related to their ability to survive and persist in the gastrointestinal tract and found to be similar. We propose that nonhuman hosts in E. coli O157:H7 strains function similarly to other E. coli strains in regard to attributes relevant to gastrointestinal colonization.Escherichia coli is well known for its ecological versatility (15). A life cycle which includes both gastrointestinal and environmental stages has been stressed by both Savageau (15) and Adamowicz et al. (1). The gastrointestinal stage would be subjected to acid and detergent stress. The environmental stage is implicit in E. coli having transport systems for fungal siderophores (4) as well as pyrroloquinoline quinone-dependent periplasmic glucose utilization (1) because their presence indicates evolution in a location containing fungal siderophores and pyrroloquinoline quinone (1).Since its recognition as a food-borne pathogen, there have been numerous outbreaks of food-borne infection due to E. coli O157:H7, in both ground beef and vegetable crops (6, 13). Cattle are widely considered to be the primary reservoir of E. coli O157:H7 (14), but E. coli O157:H7 does not appear to cause disease in cattle. To what extent is E. coli O157:H7 physiologically unique compared to the other naturally occurring E. coli strains? We feel that the uniqueness of E. coli O157:H7 should be evaluated against a backdrop of other wild-type E. coli strains, and in this regard, we chose the 72-strain ECOR reference collection originally described by Ochman and Selander (10). These strains were chosen from a collection of 2,600 E. coli isolates to provide diversity with regard to host species, geographical distribution, and electromorph profiles at 11 enzyme loci (10).In our study we compared the 72 strains of the ECOR collection against 10 strains of E. coli O157:H7 and six strains of E. coli which had been in laboratory use for many years (Table (Table1).1). The in vitro comparisons were made with regard to factors potentially relevant to the bacteria''s ability to colonize animal guts, i.e., acid tolerance, detergent tolerance, and the presence of the Entner-Doudoroff (ED) pathway (Table (Table2).2). Our longstanding interest in the ED pathway (11) derives in part from work by Paul Cohen''s group (16, 17) showing that the ED pathway is important for E. coli colonization of the mouse large intestine. Growth was assessed by replica plating 88 strains of E. coli under 40 conditions (Table (Table2).2). These included two LB controls (aerobic and anaerobic), 14 for detergent stress (sodium dodecyl sulfate [SDS], hexadecyltrimethylammonium bromide [CTAB], and benzalkonium chloride, both aerobic and anaerobic), 16 for acid stress (pH 6.5, 6.0, 5.0, 4.6, 4.3, 4.2, 4.1, and 4.0), four for the ability to grow in a defined minimal medium (M63 glucose salts with and without thiamine), and four for the presence or absence of a functional ED pathway (M63 with gluconate or glucuronate). All tests were done with duplicate plates in two or three separate trials. The data are available in Tables S1 to S14 in the supplemental material, and they are summarized in Table Table22.

TABLE 1.

E. coli strains used in this study
E. coli strain (n)Source
ECOR strains (72)Thomas Whittman
Laboratory adapted (6)
    K-12 DavisPaul Blum
    CG5C 4401Paul Blum
    K-12 StanfordPaul Blum
    W3110Paul Blum
    BTyler Kokjohn
    AB 1157Tyler Kokjohn
O157:H7 (10)
    FRIK 528Andrew Benson
    ATCC 43895Andrew Benson
    MC 1061Andrew Benson
    C536Tim Cebula
    C503Tim Cebula
    C535Tim Cebula
    ATCC 43889William Cray, Jr.
    ATCC 43890William Cray, Jr.
    ATCC 43888Willaim Cray, Jr.
    ATCC 43894William Cray, Jr.
Open in a separate window

TABLE 2.

Physiological comparison of 88 strains of Escherichia coli
Growth medium or conditionOxygencNo. of strains with type of growthb
ECOR strains (n = 72)
Laboratory strains (n = 6)
O157:H7 strains (n = 10)
GoodPoorNoneVariableGoodPoorNoneVariableGoodPoorNoneVariable
LB controlaBoth72000600010000
1% SDSAerobic6930060008002
5% SDSAerobic6840060008200
1% SDSAnaerobic53154023101702
5% SDSAnaerobic0684004200704
CTABd (all)Both00720006000100
0.05% BACAerobic31158202220091
0.2% BACAerobic01710105000100
0.05% BACAnaerobic2367001500091
0.2% BACAnaerobic00720006000100
pH 6.5Both72000600010000
pH 6Both72000600010000
pH 5Both7020060009001
pH 4.6Both70200600010000
pH 4.3Aerobic14015731203205
pH 4.3Anaerobic6930031201100
pH 4.1 or 4.2Aerobic00720NDgND
pH 4.0Both0072000600091
M63 with supplemente
    GlucoseAerobicf6912050109010
    GlucoseAnaerobicf7002050109010
    GluconateBoth6912050109010
    GlucuronateAerobic6822050109010
    GlucuronateAnaerobic6912050109010
Open in a separate windowaEight LB controls were run, two for each set of LB experiments: SDS, CTAB, benzalkonium chloride (BAC), and pH stress.bGrowth was measured as either +++, +, or 0 (good, poor, and none, respectively), with +++ being the growth achieved on the LB control plates. “Variable” means that two or three replicates did not agree. All experiments were done at 37°C.c“Anaerobic” refers to use of an Oxoid anaerobic chamber. Aerobic and anaerobic growth data are presented together when the results were identical and separately when the results were not the same or the anaerobic set had not been done. LB plates were measured after 1 (aerobic) or 2 (anaerobic) days, and the M63 plates were measured after 2 or 3 days.dCTAB used at 0.05, 0.2%, and 0.4%.eM63 defined medium (3) was supplemented with glucose, gluconate, or glucuronate, all at 0.2%.fIdentical results were obtained with and without 0.0001% thiamine.gND, not determined.  相似文献   

19.
20.
All cultivated Thermotogales are thermophiles or hyperthermophiles. However, optimized 16S rRNA primers successfully amplified Thermotogales sequences from temperate hydrocarbon-impacted sites, mesothermic oil reservoirs, and enrichment cultures incubated at <46°C. We conclude that distinct Thermotogales lineages commonly inhabit low-temperature environments but may be underreported, likely due to “universal” 16S rRNA gene primer bias.Thermotogales, a bacterial group in which all cultivated members are anaerobic thermophiles or hyperthermophiles (5), are rarely detected in anoxic mesothermic environments, yet their presence in corresponding enrichment cultures, bioreactors, and fermentors has been observed using metagenomic methods and 16S rRNA gene amplification (6) (see Table S1 in the supplemental material). The most commonly detected lineage is informally designated here “mesotoga M1” (see Table S1 in the supplemental material). PCR experiments indicated that mesotoga M1 sequences amplified inconsistently using “universal” 16S rRNA gene primers, perhaps explaining their poor detection in DNA isolated from environmental samples (see text and Table S2 in the supplemental material). We therefore designed three 16S rRNA PCR primer sets (Table (Table1)1) targeting mesotoga M1 bacteria and their closest cultivated relative, Kosmotoga olearia. Primer set A was the most successful set, detecting a wider diversity of Thermotogales sequences than set B and being more Thermotogales-specific than primer set C (Table (Table22).

TABLE 1.

Primers targeting mesotoga M1 bacteria constructed and used in this study
PrimerSequence (5′ to 3′)Position in mesotoga 16S rRNA geneNo. of heterogeneity hot spotsaPotential primer match in other Thermotogales lineages
Primer set A1 (helix 17)
    NMes16S.286FCGGCCACAAGGAYACTGAGA286Perfect match in Kosmotoga olearia. The last 7 or 8 nucleotides at the 3′ end are conserved in other Thermotogales lineages.
    NMes16S.786RTGAACATCGTTTAGGGCCAG786One 5′ mismatch in Kosmotoga olearia and Petrotoga mobilis; 2-4 internal and 5′ mismatches in other lineages
Primer set BNone
    BaltD.42FATCACTGGGCGTAAAGGGAG540Perfect match in Kosmotoga olearia; one or two 3′ mismatches in most other Thermotogales lineages
    BaltD.494RGTGGTCGTTCCTCTTTCAAT992No match in other Thermotogaleslineages. The primer is located in heterogeneity hot spot helices 33 and 34. This primer also fails to amplify some mesotoga M1 sequences.
Primer set C9 (all 9 regions)
    TSSU-3FTATGGAGGGTTTGATCCTGG3Perfect match in Thermotoga spp., Kosmotoga olearia, and Petrotoga mobilis; two or three 5′ mismatches in other Thermotogales lineages; one 5′ mismatch to mesotoga M1 16S rRNA genes
    Mes16S.RACCAACTCGGGTGGCTTGAC1390One 5′ mismatch in Kosmotoga olearia; 1-3 internal or 5′ mismatches in other Thermotogales lineages
Open in a separate windowaHeterogeneity hot spots identified in reference 1.

TABLE 2.

Mesotoga clade sequences detected in environmental samples and enrichment cultures screened in this studya
Site (abbreviation)Temp in situ(°C)WaterfloodedEnvironmental samplesb
Enrichment cultures
Primer set A
Primer set B
Primer set C
Thermotogalesdetected by primer setc:
Lineage(s) detected
No. of OTUs (no. of clones)LineageNo. of OTUs (no. of clones)LineageNo. of OTUs (no. of clones)LineageABC
Sidney Tar Ponds sediment (TAR)TemperateNA1 (5)M11M1+++M1, M2, M5
Oil sands settling basin tailings (05mlsb)∼12dNA1 (6)M1+M1
Grosmont A produced water (GrosA)20No1 (15)M11 (22)M12 (14)M1+++M1
Foster Creek produced water (FC)14No1 (21)M11 (23)M11 (1)M1+NDM1
Oil field D wellhead water (DWH)e,f52-53gYes1 (14)Kosmotogai1 (6)M1i1 (1)KosmotogaiNANANANA
Oil field D FWKO water (DF)f,h20-30Yes1 (45)Kosmotogai1 (17)M1i++M1, Kosmotoga, Petrotoga
Oil field H FWKO water (HF)j30-32Yes7 (59)M1, M2, M3, M4, Kosmotoga1 (29)M1++M1, Petrotoga
Oil field H satellite water (HSAT)e,j41 and 50gYes1 (8)M12 (16)Kosmotoga, ThermotogaNANANANA
Oil field H wellhead water (HWH)e,j41 and 50gYesNANANANA+++M1, Petrotoga
Open in a separate windowaSee the supplemental material for site and methodological details. NA, not applicable; ND, not determined.bThe number of OTUs observed at a 0.01 distance cutoff is given for each primer set. The numbers of clones with Thermotogales sequences are in parentheses. —, PCR was attempted but no Thermotogales sequences were obtained or the PCR consistently failed.c+, sequence(s) detected; −, not detected. For more information on the enrichments, see the text and Table S3 in the supplemental material.dFrom April to May 2004, the temperature at the depth where the sample was taken was 12°C (7).eThere were no water samples from DWH and HSAT available for enrichment cultures, and no DNA was available from HWH.fThis reservoir has been treated with biocides; moreover, at this site, the water is filtered before being reinjected into the reservoir.gTemperatures of the oil pool where the water sample was obtained. The HSAT facility receives water from two oil pools, one at 41°C and one at 50°C.hWe screened DNA from samples taken in 2006 and 2008 but detected the same sequences in both, so sequences from the two samples were pooled.iThe mesotoga M1 and Kosmotoga sequences from DWH and DF were >99% similar and were assembled into one sequence in Fig. Fig.11.jThis reservoir has been injected with water from a neighboring oil reservoir.Since the putative mesophilic Thermotogales have been overwhelmingly associated with polluted and hydrocarbon-impacted environments and mesothermic oil reservoirs are the only natural environments where mesotoga M1 sequences previously were detected (see Table S1 in the supplemental material), we selected four oil reservoirs with in situ temperatures of 14°C to 53°C and two temperate, chronically hydrocarbon-impacted sites for analysis (Table (Table2).2). Total community DNA was extracted, the 16S rRNA genes were amplified, cloned, and sequenced as described in the supplemental material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号