首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell reports》2020,30(10):3312-3322.e3
  1. Download : Download high-res image (180KB)
  2. Download : Download full-size image
  相似文献   

2.
Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.  相似文献   

3.
4.
Broken replication forks result in DNA breaks that are normally repaired via homologous recombination or break induced replication (BIR). Mild insufficiency in the replicative ligase Cdc9 in budding yeast Saccharomyces cerevisiae resulted in a population of cells with persistent DNA damage, most likely due to broken replication forks, constitutive activation of the DNA damage checkpoint and longer telomeres. This telomere lengthening required functional telomerase, the core DNA damage signaling cascade Mec1-Rad9-Rad53, and the components of the BIR repair pathway – Rad51, Rad52, Pol32, and Pif1. The Mec1-Rad53 induced phosphorylation of Pif1, previously found necessary for inhibition of telomerase at double strand breaks, was also important for the role of Pif1 in BIR and telomere elongation in cdc9-1 cells. Two other mutants with impaired DNA replication, cdc44-5 and rrm3Δ, were similar to cdc9-1: their long telomere phenotype was dependent on the Pif1 phosphorylation locus. We propose a model whereby the passage of BIR forks through telomeres promotes telomerase activity and leads to telomere lengthening.  相似文献   

5.
Mrc1 plays a role in mediating the DNA replication checkpoint. We surveyed replication elongation proteins that interact directly with Mrc1 and identified a replicative helicase, Mcm6, as a specific Mrc1-binding protein. The central portion of Mrc1, containing a conserved coiled-coil region, was found to be essential for interaction with the 168-amino-acid C-terminal region of Mcm6, and introduction of two amino acid substitutions in this C-terminal region abolished the interaction with Mrc1 in vivo. An mcm6 mutant bearing these substitutions showed a severe defect in DNA replication checkpoint activation in response to stress caused by methyl methanesulfonate. Interestingly, the mutant did not show any defect in DNA replication checkpoint activation in response to hydroxyurea treatment. The phenotype of the mcm6 mutant was suppressed when the mutant protein was physically fused with Mrc1. These results strongly suggest for the first time that an Mcm helicase acts as a checkpoint sensor for methyl methanesulfonate-induced DNA damage through direct binding to the replication checkpoint mediator Mrc1.Progression of the DNA replication machinery along chromosomes is a complex process. Replication forks pause occasionally when they encounter genomic regions that are difficult to replicate, such as highly transcribed regions, tRNA genes, and regions with specialized chromatin structure, like centromeric and heterochromatic regions (17). Replication forks also stall when treated with chemicals like methyl methanesulfonate (MMS), which causes DNA damage, or hydroxyurea (HU), which limits the cellular concentration of the deoxynucleoside triphosphate pool (17). Because de novo assembly and programming of the replisome do not occur after the onset of S phase (18), DNA replication forks must be protected from replicative stresses. The DNA replication checkpoint constitutes a surveillance mechanism for S-phase progression that safeguards replication forks from various replicative stresses (22, 38, 40), and malfunction of this checkpoint leads to chromosome instability and cancer development in higher organisms (4, 9).The Saccharomyces cerevisiae DNA replication checkpoint mediator Mrc1 is functionally conserved and is involved directly in DNA replication as a component of the replisome (1, 8, 16, 19, 29, 30). Mrc1, together with Tof1 and Csm3, is required for forming a replication pausing complex when the fork is exposed to replicative stress by HU (16). The pausing complex subsequently triggers events leading to DNA replication checkpoint activation and hence stable replicative arrest. A sensor kinase complex, Mec1-Ddc2 (ATR-ATRIP homolog of higher eukaryotes), is then recruited to the complex (14, 16). Mec1-Ddc2-mediated phosphorylation of Mrc1 activates the pausing complex, and phosphorylated Mrc1 likely recruits Rad53 (a putative homolog of CHK2 of higher eukaryotes), which is then activated via phosphorylation by Mec1-Ddc2 (1, 16, 20, 30). Activated Rad53 subsequently elicits a stress responses, i.e., stabilization of replication forks, induction of repair genes, and suppression of late-firing origins (24). It remains unclear, however, whether DNA replication checkpoint activation is induced in response to DNA damage by MMS, a reagent commonly used to study the DNA replication stress response. Several lines of evidence have suggested that MMS-induced damage is also sensed directly by the replication machinery (38, 40).Although biochemical and genetic interaction data have placed Mrc1 at the center of the replication checkpoint signal transduction cascade, its molecular function remains largely unknown. The proteins Mrc1, Tof1, and Csm3 associate with the Mcm complex (8, 27), a heterohexameric DNA helicase consisting of Mcm2 to Mcm7 proteins which unwinds the parental DNA duplex to allow replisome progression (3, 12, 18, 31, 32, 35). The Mcm complex associates with a specific set of regulatory proteins at forks to form replisome progression complexes (8). In addition to Mcm, Tof1, Csm3, and Mrc1, replisome progression complexes include factors such as Cdc45 and the GINS complex that are also required for fork progression (13, 26, 31, 32, 39). Claspin, a putative Xenopus laevis homolog of Mrc1, is also reported to associate with Cdc45, DNA polymerase ɛ (Polɛ), replication protein A, and two of the replication factor C complexes in aphidicolin-treated Xenopus egg extracts (19). Recently, Mrc1 was reported to interact directly with Polɛ (23).The aim of this study was to provide mechanistic insight into Mrc1 function in the DNA replication checkpoint. For this purpose, it was essential to identify, among all the essential proteins in the replication machinery, a specific protein that interacts with Mrc1 and to examine the role of this interaction in the DNA replication checkpoint. We found that Mrc1 interacts with Mcm6 directly and specifically. When the interaction between Mrc1 and Mcm6 was impaired, cells no longer activated the DNA replication checkpoint in response to MMS-induced replicative stress. Interestingly and unexpectedly, this interaction was not required for DNA replication checkpoint activation in response to HU-induced replicative stress. Our results provide the first mechanistic evidence that cells use separate mechanisms to transmit replicative stresses caused by MMS and HU for DNA replication checkpoint activation.  相似文献   

6.
The replication time of Saccharomyces cerevisiae telomeres responds to TG1–3 repeat length, with telomeres of normal length replicating late during S phase and short telomeres replicating early. Here we show that Tel1 kinase, which is recruited to short telomeres, specifies their early replication, because we find a tel1Δ mutant has short telomeres that nonetheless replicate late. Consistent with a role for Tel1 in driving early telomere replication, initiation at a replication origin close to an induced short telomere was reduced in tel1Δ cells, in an S phase blocked by hydroxyurea. The telomeric chromatin component Rif1 mediates late replication of normal telomeres and is a potential substrate of Tel1 phosphorylation, so we tested whether Tel1 directs early replication of short telomeres by inactivating Rif1. A strain lacking both Rif1 and Tel1 behaves like a rif1Δ mutant by replicating its telomeres early, implying that Tel1 can counteract the delaying effect of Rif1 to control telomere replication time. Proteomic analyses reveals that in yku70Δ cells that have short telomeres, Rif1 is phosphorylated at Tel1 consensus sequences (S/TQ sites), with phosphorylation of Serine-1308 being completely dependent on Tel1. Replication timing analysis of a strain mutated at these phosphorylation sites, however, suggested that Tel1-mediated phosphorylation of Rif1 is not the sole mechanism of replication timing control at telomeres. Overall, our results reveal two new functions of Tel1 at shortened telomeres: phosphorylation of Rif1, and specification of early replication by counteracting the Rif1-mediated delay in initiation at nearby replication origins.  相似文献   

7.
Dyskeratosis Congenita (DC) is a heritable multi-system disorder caused by abnormally short telomeres. Clinically diagnosed by the mucocutaneous symptoms, DC patients are at high risk for bone marrow failure, pulmonary fibrosis, and multiple types of cancers. We have recapitulated the most common DC-causing mutation in the shelterin component TIN2 by introducing a TIN2-R282H mutation into cultured telomerase-positive human cells via a knock-in approach. The resulting heterozygous TIN2-R282H mutation does not perturb occupancy of other shelterin components on telomeres, result in activation of telomeric DNA damage signaling or exhibit other characteristics indicative of a telomere deprotection defect. Using a novel assay that monitors the frequency and extension rate of telomerase activity at individual telomeres, we show instead that telomerase elongates telomeres at a reduced frequency in TIN2-R282H heterozygous cells; this recruitment defect is further corroborated by examining the effect of this mutation on telomerase-telomere co-localization. These observations suggest a direct role for TIN2 in mediating telomere length through telomerase, separable from its role in telomere protection.  相似文献   

8.
Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a+/−, Rassf1a−/− and an intestinal epithelial cell specific knockout mouse (Rassf1a IEC-KO) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury. Furthermore, epithelial restitution/repair was inhibited in DSS-treated Rassf1a−/− mice with reduction of several makers of proliferation including Yes associated protein (YAP)-driven proliferation. Surprisingly, tyrosine phosphorylation of YAP was detected which coincided with increased nuclear p73 association, Bax-driven epithelial cell death and p53 accumulation resulting in enhanced apoptosis and poor survival of DSS-treated Rassf1a knockout mice. We can inhibit these events and promote the survival of DSS-treated Rassf1a knockout mice with intraperitoneal injection of the c-Abl and c-Abl related protein tyrosine kinase inhibitor, imatinib/gleevec. However, p53 accumulation was not inhibited by imatinib/gleevec in the Rassf1a−/− background which revealed the importance of p53-dependent cell death during intestinal inflammation. These observations suggest that tyrosine phosphorylation of YAP (to drive p73 association and up-regulation of pro-apoptotic genes such as Bax) and accumulation of p53 are consequences of inflammation-induced injury in DSS-treated Rassf1a−/− mice. Mechanistically, we can detect robust associations of RASSF1A with membrane proximal Toll-like receptor (TLR) components to suggest that RASSF1A may function to interfere and restrict TLR-driven activation of NFκB. Failure to restrict NFκB resulted in the inflammation-induced DNA damage driven tyrosine phosphorylation of YAP, subsequent p53 accumulation and loss of intestinal epithelial homeostasis.  相似文献   

9.
10.
The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His99 and Cys136), and an Asp (Asp134) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. These data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast.  相似文献   

11.
12.
HIV-1 integrase (IN) is an important target for contemporary antiretroviral drug design research. Historically, efforts at inactivating the enzyme have focused upon blocking its active site. However, it has become apparent that new classes of allosteric inhibitors will be necessary to advance the antiretroviral field in light of the emergence of viral strains resistant to contemporary clinically used IN drugs. In this study we have characterized the importance of a close network of IN residues, distant from the active site, as important for the obligatory multimerization of the enzyme and viral replication as a whole. Specifically, we have determined that the configuration of six residues within a highly symmetrical region at the IN dimerization interface, composed of a four-tiered aromatic interaction flanked by two salt bridges, significantly contributes to proper HIV-1 replication. Additionally, we have utilized a quantitative luminescence assay to examine IN oligomerization and have determined that there is a very low tolerance for amino acid substitutions along this region. Even conservative residue substitutions negatively impacted IN multimerization, resulting in an inactive viral enzyme and a non-replicative virus. We have shown that there is a very low tolerance for amino acid variation at the symmetrical dimeric interface region characterized in this study, and therefore drugs designed to target the amino acid network detailed here could be expected to yield a significantly reduced number of drug-resistant escape mutations compared to contemporary clinically-evaluated antiretrovirals.  相似文献   

13.
14.
Kinetoplast DNA, the trypanosome mitochondrial genome, is a network of interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Minicircles replicate after release from the network, and their progeny reattach. Remarkably, trypanosomes have six mitochondrial DNA helicases related to yeast PIF1 helicase. Here we report that one of the six, TbPIF1, functions in minicircle replication. RNA interference (RNAi) of TbPIF1 causes a growth defect and kinetoplast DNA loss. Minicircle replication intermediates decrease during RNAi, and there is an accumulation of multiply interlocked, covalently closed minicircle dimers (fraction U). In studying the significance of fraction U, we found that this species also accumulates during RNAi of mitochondrial topoisomerase II. These data indicate that one function of TbPIF1 is an involvement, together with topoisomerase II, in the segregation of minicircle progeny.  相似文献   

15.
16.
Maintenance of functional telomeres, the highly complex nucleo-protein structures, at the end of linear eukaryotic chromosomes appears to be essential for growth and survival of the cells. The compelling correlation between telomerase re-activation and cellular immortalization led to the idea that inhibition of telomerase may provide a way for effective hindrance of cancer cell growth by interfering with telomere maintenance. In addition to targeting the components of telomerase enzyme directly to prevent telomere synthesis, several approaches including disruption of telomeres, interference with telomerase component assembly, translocation of the catalytic component of telomerase etc., have also been under extensive investigation due to the advances in understanding the biology of telomeres and telomerase in recent years. This review will focus on the so far identified approaches to prevent cancer cell growth by targeting telomerase and telomeres with a brief introduction about structure and function of telomeres and telomerase.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号