首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) and the UL20 protein (UL20p) are strictly required for virus-induced cell fusion, and mutations within either the gK or UL20 gene cause extensive cell fusion (syncytium formation). We have shown that gK forms a functional protein complex with UL20p, which is required for all gK and UL20p-associated functions in the HSV-1 life cycle. Recently, we showed that the amino-terminal 82 amino acids (aa) of gK (gKa) were required for the expression of the syncytial phenotype of the mutant virus gBΔ28 lacking the carboxyl-terminal 28 amino acids of gB (V. N. Chouljenko, A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. Kousoulas, J. Virol. 83:12301-12313, 2009). This work suggested that the amino terminus of gK may directly or indirectly interact with gB and/or other viral glycoproteins. Two-way coimmunoprecipitation experiments revealed that UL20p interacted with gB in infected cells. Furthermore, the gKa peptide was coimmunoprecipitated with gB but not gD. Three recombinant baculoviruses were constructed, expressing the amino-terminal 82 aa of gKa together with either the extracellular portion of gB (30 to 748 aa), gD (1 to 340 aa), or gH (1 to 792 aa), respectively. Coimmunoprecipitation experiments revealed that gKa physically interacted with the extracellular portions of gB and gH but not gD. Three additional recombinant baculoviruses expressing gKa and truncated gBs encompassing aa 30 to 154, 30 to 364, and 30 to 500 were constructed. Coimmunoprecipitation experiments showed that gKa physically interacted with all three truncated gBs. Computer-assisted prediction of possible gKa binding sites on gB suggested that gKa may interact predominantly with gB domain I (E. E. Heldwein, H. Lou, F. C. Bender, G. H. Cohen, R. J. Eisenberg, and S. C. Harrison, Science 313:217-220, 2006). These results imply that the gK/UL20p protein complex modulates the fusogenic properties of gB and gH via direct physical interactions.Herpes simplex virus type 1 (HSV-1) can enter into cells via the fusion of its viral envelope with cellular membranes. Also, the virus can spread from infected to uninfected cells by causing virus-induced cell fusion, allowing virions to enter into uninfected cells without being exposed to extracellular spaces. These membrane fusion phenomena are known to be mediated by viral glycoproteins and other viral proteins (reviewed in reference 36). Although wild-type viruses cause a limited amount of virus-induced cell fusion, certain mutations cause extensive virus-induced cell-to-cell fusion (syncytial, or syn, mutations). These syncytial mutations are located predominantly within the UL20 gene (5, 27, 28); the UL24 gene (25, 38); the UL27 gene, encoding glycoprotein gB (7, 15, 18, 32); and the UL53 gene, coding for gK (6, 11, 24, 34, 35, 37).The presence of syncytial mutations within different viral genes, as well as other accumulating evidence, suggests that virus-induced cell fusion is mediated by the concerted action and interactions of the viral glycoproteins gD, gB, and gH/gL as well as gK and the membrane protein UL20p. Specifically, recent studies have shown that gD interacts with both gB and gH/gL (1, 2, 21). However, gB and gH/gL can also interact with each other even in the absence of gD (3). In this membrane fusion model, the binding of gD to its cognate receptors, including nectin-1, herpesvirus entry mediator (HVEM), and other receptors (8, 19, 30, 39-42), is thought to trigger sequential conformational changes in gH/gL and gB causing the fusion of the viral envelope with cellular membranes during virus entry as well as fusion among cellular membranes (22, 23). The transient coexpression of gB, gD, and gH/gL causes cell-to-cell fusion (31, 43), suggesting that these four viral glycoproteins are necessary and sufficient for membrane fusion. However, this transient fusion system does not accurately depict virus-induced cell fusion. Specifically, viral glycoprotein K (gK) and the UL20 membrane protein (UL20p) have been shown to be strictly required for virus-induced cell fusion (10, 27, 29). Moreover, syncytial mutations within gK (6, 11, 24, 34, 35, 37) or UL20 (5, 27, 28) promote extensive virus-induced cell fusion, and viruses lacking gK enter more slowly than the wild-type virus into susceptible cells (17). In contrast, the transient coexpression of gK carrying a syncytial mutation with gB, gD, and gH/gL did not enhance cell fusion, while the coexpression of wild-type gK with gB, gD, and gH/gL was reported previously to inhibit cell fusion in certain cell lines (4). To date, there is no direct evidence that either gK or UL20p interacts with gB, gD, gH, or gL.The X-ray structure of the ectodomain of HSV-1 gB has been determined and was predicted to assume at least two major conformations, one of which may be necessary for the fusogenic properties of gB (23). Single-amino-acid changes within the carboxyl terminus of gB located intracellularly as well as the deletion of the terminal 28 amino acids (aa) of gB cause extensive virus-induced cell fusion, presumably because they alter the extracellular conformation of gB (15, 31, 43). We have previously shown that HSV-1 gK and UL20p functionally and physically interact and that these interactions are absolutely necessary for their coordinate intracellular transport, cell surface expression, and functions in the HSV-1 life cycle (13, 16). In contrast to gB, syncytial mutations in gK map predominantly within extracellular domains of gK and particularly within the amino-terminal portion of gK (domain I) (12), while syncytial mutations of UL20 are located within the amino terminus of UL20p shown to be located intracellularly (27).Recently, we showed that the a peptide composed of the amino-terminal 82 amino acids of gK (gKa) can complement in trans for gB-mediated cell fusion caused by the deletion of the carboxyl-terminal 28 amino acids of gB, suggesting that the gKa peptide interacted with gB or other viral glycoproteins involved in virus-induced cell fusion (10). In this work, we demonstrate that UL20p and the amino terminus of gKa physically interact with gB in infected cells, while the gKa peptide is also capable of binding to the extracellular portion of gH, suggesting that gK/UL20p modulates virus-induced cell fusion via direct interactions with gB and gH.  相似文献   

2.
Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic “fusion loops.” These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.Herpesvirus glycoproteins gB and gH/gL participate in two separate membrane fusion events that occur during different stages of virus replication. First, during virus entry into cells, gB and gH/gL promote fusion between the virion envelope and either the plasma membrane or endosomes (reviewed in references 6, 21, 27, and 39). Second, herpes simplex virus (HSV) gB and gH (likely complexed to form a heterodimer with gL), and likely homologues in other herpesviruses, promote nuclear egress (12). Herpesvirus capsids are produced in the nucleus and cross the nuclear envelope (NE) by envelopment at the inner nuclear membrane (NM), producing perinuclear virions that then fuse with the outer NM (reviewed in references 35 and 36). There is evidence that HSV gB and gH/gL function in a redundant fashion in fusion between enveloped, perinuclear virus particles and the outer NM (12), whereas both gB and gH/gL are essential for entry fusion (8, 13, 38). Much more is known about the mechanisms involved in entry fusion than those involved in egress fusion, and many important questions remain in terms of how these two membrane fusion processes relate to each other.Entry of HSV into cells involves interactions between the viral receptor-binding protein gD and the gD receptors (16, 28, 30, 37). When gD binds to its receptors, there are conformational changes in gD which apparently activate gB and gH/gL, so that these glycoproteins promote fusion involving the virion envelope and cellular membranes (21, 32). By using split green fluorescent protein fusion proteins, also denoted bimolecular complementation, two groups showed that gD binding to gD ligands triggers interactions between gB and gH/gL and that this is accompanied by cell-cell fusion (1, 2). There is also evidence that gB and gH/gL contribute to different stages of membrane fusion. When gH/gL is expressed with gD, there is hemifusion (mixing of the outer leaflets of membranes) of adjacent cells, and this partial fusion is apparently mediated by gH/gL (41). However, full fusion (mixing of both inner and outer leaflets) occurs only when gB is coexpressed with gD and gH/gL (41). Also supporting a role for gH in membrane fusion, peptides based on heptad repeats in gH can disrupt model membranes (14, 15, 17). HSV gB is a class III fusion protein, structurally similar to vesicular stomatitis virus G protein, with a three-stranded coil-coil barrel in the central region of the molecule reminiscent of class I fusion proteins, e.g., influenza virus hemagglutinin (22). Therefore, herpesvirus gB and gH/gL differ substantially from the fusion proteins expressed by all other well-studied viruses because both gB and gH/gL participate directly in membrane fusion, apparently functioning in different aspects of entry fusion.HSV gB and other viral class III fusion proteins differ from class I fusion proteins that have N-terminal, hydrophobic fusion peptides because class III fusion proteins possess internal bipartite “fusion loops” composed of both hydrophobic and hydrophilic residues (3, 22). In the solved structure of the HSV gB ectodomain, which might represent a postfusion form of the protein, the fusion loops are located near the base of the molecule, adjacent to the virion envelope (22). Mutant forms of gB with single amino acid substitutions in these fusion loops displayed diminished cell-cell fusion activity when transfected into cells with gD and gH/gL (20). Cell-cell fusion approximates the fusion that occurs during entry, defining the minimal fusion machinery, although there are differences between entry and cell-cell fusion (10). Moreover, full-length gB molecules with fusion loop mutations failed to complement gB null HSV (19). Recently, it was demonstrated that the HSV gB extracellular domain can interact with liposomes in vitro and that this binding depends upon gB''s fusion loops (19).Herpesvirus capsids are assembled in the nucleus and acquire an envelope by budding through the inner NM. For a short time, enveloped virus particles are found in the space between the inner and outer NMs (perinuclear space), but then the envelopes of these particles fuse with the outer NM, releasing capsids into the cytoplasm (reviewed in references 35 and 36). Cytoplasmic capsids acquire a second envelope by budding into the trans-Golgi network, and this secondary envelopment involves redundant or additive functions of gE/gI and gD, i.e., either of these glycoproteins will suffice (11). The second step of the nuclear egress pathway involving membrane fusion between the envelope of perinuclear particles and the outer NM requires HSV glycoproteins gB and gH/gL (12). HSV double mutants lacking both gB and gH accumulate enveloped virus particles in the perinuclear space and in herniations, i.e., membrane vesicles that bulge into the nucleoplasm and derive from the inner NM (12). These observations, coupled with the evidence that gB and gH/gL are fusion proteins, suggested that gB and gH/gL promote the fusion between virus particles and the outer NM. However, there is one important difference between nuclear egress fusion and entry fusion. Virus mutants lacking either gB or gH are unable to enter cells, but such mutants have fewer defects in nuclear egress than double mutants lacking both gB and gH (12). Thus, as with secondary envelopment that involves gD and gE/gI, glycoproteins gB and gH/gL act in a redundant or additive fashion to mediate the fusion between the envelope of perinuclear virus particles and the outer NM. It is also important to note that there appear to be other mechanisms by which HSV particles can exit the perinuclear space. For example, although a substantial number of gB gH null double mutants accumulated in herniations (increased by ∼10-fold), some virions were seen on cell surfaces, although their numbers were reduced by ∼2.5- to 5-fold compared with those of wild-type HSV (12, 46).HSV entry fusion is triggered by gD binding to one of its ligands. However, it is not clear what triggers fusion of the envelope of perinuclear particles with the outer NM. gD, gB, gH, gM, gK, and other viral membrane proteins are all present in NMs and in perinuclear virus particles (4, 12, 25, 40, 42, 44). It seems unlikely that there are substantial quantities of known gD receptors in NMs, although this has not been carefully examined and there may well be unidentified gD receptors present in NMs. However, if fusion at NMs is not activated by gD binding to gD receptors, there must be other mechanisms to trigger this fusion. There is evidence that HSV gK negatively regulates fusion at the NE because (i) overexpression of gK causes enveloped virus particles to accumulate in the perinuclear space (25) and (ii) gK is primarily localized to the endoplasmic reticulum and NM and is not substantially found in extracellular virions (26, 34). Another potential regulatory mechanism for fusion at the outer NM involves phosphorylation of the cytoplasmic domain of gB by the HSV kinase US3 (46). An HSV recombinant lacking gH and expressing a mutant gB with a substitution, T887A, affecting an amino acid in the gB cytoplasmic domain displayed reduced US3-dependent phosphorylation and accumulated enveloped virus particles in herniations (46). This mutation in gB did not alter HSV entry into cells (31, 46). Together, these results suggest that HSV fusion with the outer NM differs from entry fusion in some, but likely not all, important mechanistic details.Given that both gB and gH/gL are well established as fusion proteins for virus entry, we hypothesized that these glycoproteins directly mediate the membrane fusion that occurs between the envelope of perinuclear virus particles and the outer NM (12, 46). However, there are other possibilities. For example, it is conceivable that loss of both gB and gH alters the structure of the envelope of perinuclear HSV virions so that other HSV glycoproteins (that directly promote fusion) are affected. To address this issue and extend our understanding of how gB functions in nuclear egress fusion, we constructed HSV recombinants that express mutant forms of gB with substitutions in the fusion loops. These viruses also lacked gH, making nuclear egress totally dependent on a functional form of gB. By propagating these recombinants using gH-expressing cells, we could produce virus particles including gH and the mutant gB molecules. These HSV recombinants expressing gH as well as gB fusion loops, W174R, W174Y, Y179K, and A261D, were all unable to enter cells. However, two recombinants, expressing W174Y and Y179K, exhibited some cell-to-cell spread while the other two, expressing W174R and A261D, did not spread beyond single infected cells. All four recombinants infected into cells lacking gH exhibited defects in nuclear egress. These results provide strong support for the hypothesis that gB acts directly to mediate the fusion of the virion envelope with the outer NM during HSV egress.  相似文献   

3.
Herpesviruses can enter host cells using pH-dependent endocytosis pathways in a cell-specific manner. Envelope glycoprotein B (gB) is conserved among all herpesviruses and is a critical component of the complex that mediates membrane fusion and entry. Here we demonstrate that mildly acidic pH triggers specific conformational changes in herpes simplex virus (HSV) gB. The antigenic structure of gB was specifically altered by exposure to low pH both in vitro and during entry into host cells. The oligomeric conformation of gB was altered at a similar pH range. Exposure to acid pH appeared to convert virion gB into a lower-order oligomer. The detected conformational changes were reversible, similar to those in other class III fusion proteins. Exposure of purified, recombinant gB to mildly acidic pH resulted in similar changes in conformation and caused gB to become more hydrophobic, suggesting that low pH directly affects gB. We propose that intracellular low pH induces alterations in gB conformation that, together with additional triggers such as receptor binding, are essential for virion-cell fusion during herpesviral entry by endocytosis.Herpes simplex virus (HSV) is an important human pathogen, causing significant morbidity and mortality worldwide. HSV enters host cells by fusion of the viral envelope with either an endosomal membrane (38) or the plasma membrane (63). The entry pathway taken is thought to be determined by both virus (17, 45) and host cell (4, 17, 35, 39, 45) factors. Based on experiments with lysosomotropic agents, which elevate the normally low pH of endosomes, acidic pH has been implicated in the endocytic entry of HSV into several cell types, including human epithelial cells (37). Low pH has also recently been implicated in cell infection by several other human and veterinary herpesviruses (1, 21, 26, 47). The mechanistic role of endosomal pH in herpesvirus entry into cells is not known.Herpesviruses are a paradigm for membrane fusion mediated by a complex of several glycoproteins. We have proposed that HSV likely encodes machinery to mediate both pH-dependent and pH-independent membrane fusion reactions. Envelope glycoproteins glycoprotein B (gB) and gD and the heterodimer gH-gL are required for both pH-independent and pH-dependent entry pathways (11, 22, 30, 39, 46). Interaction of gD with one of its cognate receptors is an essential trigger for membrane fusion and entry (13, 52), regardless of the cellular pathway. However, engagement of a gD receptor is not sufficient for fusion, and at least one additional unknown trigger involving gB or gH-gL is likely necessary. gB is conserved among all herpesviruses, and in all cases studied to date, it plays roles in viral entry, including receptor binding and membrane fusion. The crystal structure of an ectodomain fragment of HSV type 1 (HSV-1) gB is an elongated, rod-like structure containing hydrophobic internal fusion loops (28). This structure bears striking architectural homology to the low pH, postfusion form of G glycoprotein from vesicular stomatitis virus (VSV-G) (43). Both the gB and G structures have features of class I and class II fusion proteins and are thus designated class III proteins (57).During entry of the majority of virus families, low pH acts directly on glycoproteins to induce membrane fusion (60). In some cases, the low pH trigger is not sufficient, or it plays an indirect role. For example, host cell proteases, such as cathepsins D and L, require intravesicular low pH to cleave Ebola virus and severe acute respiratory syndrome (SARS) glycoproteins to trigger fusion (14, 51).We investigated the role of low pH in the molecular mechanism of herpesviral entry. The results suggest that mildly acidic pH, similar to that found within endosomes, triggers a conformational change in gB. We propose that, together with other cellular cues such as receptor interaction, intracellular low pH can play a direct activating role in HSV membrane fusion and entry.  相似文献   

4.
5.
Herpes simplex virus (HSV) entry into cells requires four membrane glycoproteins: gD is the receptor binding protein, and gB and gH/gL constitute the core fusion machinery. Crystal structures of gD and its receptors have provided a basis for understanding the initial triggering steps, but how the core fusion proteins function remains unknown. The gB crystal structure shows that it is a class III fusion protein, yet unlike other class members, gB itself does not cause fusion. Bimolecular complementation (BiMC) studies have shown that gD-receptor binding triggers an interaction between gB and gH/gL and concurrently triggers fusion. Left unanswered was whether BiMC led to fusion or was a by-product of it. We used gB monoclonal antibodies (MAbs) to block different aspects of these events. Non-virus-neutralizing MAbs to gB failed to block BiMC or fusion. In contrast, gB MAbs that neutralize virus blocked fusion. These MAbs map to three functional regions (FR) of gB. MAbs to FR1, which contains the fusion loops, and FR2 blocked both BiMC and fusion. In contrast, MAbs to FR3, a region involved in receptor binding, blocked fusion but not BiMC. Thus, FR3 MAbs separate the BiMC interaction from fusion, suggesting that BiMC occurs prior to fusion. When substituted for wild-type (wt) gB, fusion loop mutants blocked fusion and BiMC, suggesting that loop insertion precedes BiMC. Thus, we postulate that each of the gB FRs are involved in different aspects of the path leading to fusion. Upon triggering by gD, gB fusion loops are inserted into target lipid membranes. gB then interacts with gH/gL, and this interaction is eventually followed by fusion.Entry of herpes simplex virus (HSV) into cells requires four viral glycoproteins, gB, gD, gH, and gL, plus one of several cell receptors, either herpesvirus entry mediator (HVEM), nectin-1, or 3-OST (45). Crystal structures and other studies have documented that receptor binding triggers conformational changes to gD that trigger the downstream events leading to fusion (10, 11, 18, 26, 28, 52). Moreover, when HSV receptor-bearing cells are transfected with expression plasmids for glycoproteins gB, gD, gH, and gL, the cells fuse to form multinucleated giant cells or syncytia (39, 48). However, the precise series of events that take place after receptor binding have not yet been fully elucidated. What we do know is that both gB and a heterodimer of gH/gL constitute the core fusion machinery that is conserved and required for the fusion step of entry of all herpesviruses (18, 26, 30, 46, 49).Thus far, we know the crystal structure of one form of the gB ectodomain of HSV type 1 (HSV-1) (19). This protein has the characteristics of a fusion protein and is a charter member of the class III group of viral fusion proteins (4). Others in this class include Epstein-Barr virus gB, vesicular stomatitis virus (VSV) G, and baculovirus gp64 (5, 22, 41). Like VSV G and gp64, gB has two putative fusion loops at the base of each protomer of the crystallized trimer. Single-amino-acid mutations in many of the hydrophobic residues of the putative fusion loops of gB ablate its ability to function in cell-cell fusion assays (16, 17). Moreover, these mutants are unable to complement the entry of a gB-null virus (16). Finally, the ectodomains of these mutants, unlike wild-type protein, failed to coassociate with liposomes, indicating that the putative fusion loops do insert into membranes (16, 17). Recently, it was shown that several of these mutants are also defective for fusion events involved in virus egress (51). Together, these studies provide compelling evidence that HSV gB functions as a fusion protein and that the fusion loops are critical for this function. However, unlike VSV G and baculovirus gp64, gB does not function on its own in entry but, rather, requires the participation of gH/gL. In the absence of crystallographic data for gH/gL, it is not yet clear what role it plays in herpesvirus fusion. In a previous study, we used bimolecular complementation (BiMC) to examine protein-protein interactions that occur among the viral glycoproteins during fusion (1). A similar study was carried out by Avitabile et al. (2). The BiMC assay is based on the observation that N- and C-terminal fragments of green fluorescent protein (GFP) (and derivatives such as enhanced yellow fluorescent protein [EYFP]) do not spontaneously reconstitute a functional fluorophore (20, 29, 40). However, the codons for each half can be appended to the genes for two interacting proteins (23, 24). When these are cotransfected, an interaction between the two proteins of interest brings the two halves of the fluorophore in close enough contact to restore fluorescence.When HSV receptor-bearing cells, such as B78H1 cells that are engineered to express nectin-1, are transfected with plasmids that express gB, gD, gH, and gL, they undergo cell-cell fusion (13, 15, 27, 31, 48). When gD is omitted, no fusion occurs. We found that fusion of these transfected cells could be triggered by addition of a soluble form of gD (the gD ectodomain). We then used this approach to examine interactions between gB and gH/gL during cell fusion (1). Therefore, we tagged gB with the C-terminal half of EYFP and gH with the N-terminal half. When plasmids bearing these forms were cotransfected into C10 cells along with a plasmid for untagged gL, no fusion occurred, but importantly, no BiMC occurred. However, when we added gD306, cells began to fuse within 10 min, and all of the syncytia that formed exhibited bright EYFP fluorescence indicative of BiMC. We concluded that gD triggers both fusion and a physical interaction between gB and gH/gL. However, these experiments did not separate these two events, so we were unable to determine if the interaction preceded fusion or merely was a by-product of it.The purpose of this study was to determine if the gB-gH/gL interaction is essential for fusion and if it occurs prior to fusion. We focused on gB because its structure is known and we have a panel of well-characterized monoclonal antibodies (MAbs) to gB. Our approach was to determine which of these MAbs, if any, could block fusion and also block the interaction with gH/gL. We also examined the effect of mutations to the fusion loops of gB on its interaction with gH/gL. We previously mapped these MAbs to four functional regions (FR) of gB, three of which were resolved in the crystal structure (6, 19). Of these, FR1 contains the fusion loops, FR2 is in the center of the gB structure with no known function, and FR3 is at in the crown of the protein and may be involved in binding to cells (7). Our rationale was that if the interaction between gB and gH/gL is important for fusion, then it should not be blocked by nonneutralizing anti-gB MAbs. At the same time, we thought that some neutralizing MAbs might not only block fusion but also block BiMC. We found that neutralizing MAbs to FR1 and FR2 inhibited both BiMC and fusion. In contrast, we found that neutralizing MAbs that map to FR3 blocked fusion but failed to block the interaction between gB and gH/gL, thereby dissociating the two events. Finally, we found that gB mutants with changes in the fusion loops that were fusion negative were also unable to bind to gH/gL. The latter results suggest that insertion of gB into the target membrane precedes its interaction with gH/gL.  相似文献   

6.
We recently reported that the herpes simplex virus 1 (HSV-1) Us3 protein kinase phosphorylates threonine at position 887 (Thr-887) in the cytoplasmic tail of envelope glycoprotein B (gB) (A. Kato, J. Arii, I. Shiratori, H. Akashi, H. Arase, and Y. Kawaguchi, J. Virol. 83:250-261, 2009; T. Wisner, C. C. Wright, A. Kato, Y. Kawaguchi, F. Mou, J. D. Baines, R. J. Roller and D. C. Johnson, J. Virol. 83:3115-3126, 2009). In the studies reported here, we examined the effect(s) of this phosphorylation on viral replication and pathogenesis in vivo and present data showing that replacement of gB Thr-887 by alanine significantly reduced viral replication in the mouse cornea and development of herpes stroma keratitis and periocular skin disease in mice. The same effects have been reported for mice infected with a recombinant HSV-1 carrying a kinase-inactive mutant of Us3. These observations suggested that Us3 phosphorylation of gB Thr-887 played a critical role in viral replication in vivo and in HSV-1 pathogenesis. In addition, we generated a monoclonal antibody that specifically reacted with phosphorylated gB Thr-887 and used this antibody to show that Us3 phosphorylation of gB Thr-887 regulated subcellular localization of gB, particularly on the cell surface of infected cells.The herpes simplex virus 1 (HSV-1) Us3 gene encodes a serine/threonine protein kinase with an amino acid sequence that is conserved in the subfamily Alphaherpesvirinae (9, 20, 29). The Us3 kinase phosphorylation target site has been reported to be similar to that of protein kinase A (PKA), a cellular cyclic AMP-dependent protein kinase (3, 12). Us3 catalytic activity plays important roles in viral replication and pathogenesis in vivo, based on studies showing that recombinant Us3 null mutant viruses and recombinant viruses encoding catalytically inactive Us3 have significantly reduced virulence, pathogenicity, and replication in mouse models (21, 34). In contrast, Us3 is not essential for growth in tissue culture cells (29). Thus, recombinant Us3 mutants grow as well as wild-type virus in Vero cells and have modestly impaired growth in a specific cell line such as HEp-2 cells (32, 33). The catalytic activity of Us3 is, in part, regulated by autophosphorylation of its serine at position 147 (Ser-147), and regulation of Us3 activity by autophosphorylation of Ser-147 appears to play a critical role in HSV-1 replication in vivo and in HSV-1 pathogenesis (34). Numerous studies have elucidated the potential downstream effects of Us3, including blocking apoptosis (18, 26-28), promoting nuclear egress of progeny nucleocapsids through the nuclear membrane (24, 32, 33), redistributing and phosphorylating nuclear membrane-associated viral nuclear egress factors UL31 and UL34 (13, 24, 30, 31) and cellular proteins including lamin A/C and emerin (16, 22, 23), controlling infected cell morphology (12, 27), and downregulating cell surface expression of viral envelope glycoprotein B (gB) (11).Two substrates that mediate some of the Us3 functions described above have been identified. First, it has been shown that Us3 phosphorylates Thr-887 in the cytoplasmic tail of gB, which appears to downregulate cell surface expression of gB (11). This conclusion is based on the observation that a T887A mutation in gB (gB-T887A) markedly upregulated cell surface expression of gB in infected cells: this upregulation was also observed with a recombinant virus encoding a Us3 kinase-inactive mutant, whereas a phosphomimetic substitution for gB Thr-887 restored wild-type cell surface expression of gB (11). Us3 phosphorylation of gB Thr-887 has also been proposed to be involved in regulation of fusion of the nascent progeny virion envelope with the cell''s outer nuclear membrane, based on the observation that virions accumulated aberrantly in the perinuclear space in cells infected with a mutant virus carrying the gB-T887A substitution mutation and lacking the capacity to produce gH (42). Second, it has been shown that Us3 may phosphorylate some or all of the six serines in the UL31 N-terminal region (24). Such phosphorylation might regulate proper localization of UL31 and UL34 at the nuclear membrane, nuclear egress of nucleocapsids, and viral growth in cell cultures since the Us3 kinase-inactive mutant phenotype for nuclear egress (i.e., mislocalization of UL31 and UL34 at the nuclear membrane, aberrant accumulation of virions within herniations of the nuclear membrane, and decreased viral growth in cell cultures) is also produced by replacement of the six serines in the UL31 N-terminal region with alanines while phosphomimetic substitutions of the six serines restored the wild-type phenotype (24).Thus, the molecular mechanisms for some of the downstream effects of Us3 phosphorylation have been gradually elucidated. However, it remains to be shown whether the Us3 functions reported to date are in fact involved in viral replication and pathogenicity in vivo. In the present study, we focused on Us3 phosphorylation of gB Thr-887 and examined the effect(s) of this phosphorylation on viral replication and pathogenesis in vivo. These studies have shown that replacement of gB Thr-887 by alanine significantly reduced viral replication in the mouse cornea and development of herpes stroma keratitis (HSK) and periocular skin disease in mice, as reported for infection of mice with a recombinant virus carrying a Us3 kinase-inactive mutant (34). These observations suggested that Us3 phosphorylation of gB Thr-887 played a critical role in viral replication in vivo and in HSV-1 pathogenesis. In addition, we generated a monoclonal antibody that specifically recognized phosphorylated gB Thr-887 and used this antibody to directly study the functional consequences of Us3 phosphorylation of gB Thr-887 in infected cells. We also present data showing that Us3 phosphorylation of gB Thr-887 regulated subcellular localization of gB, particularly gB localization on the cell surface of infected cells.  相似文献   

7.
Membrane fusion induced by enveloped viruses proceeds through the actions of viral fusion proteins. Once activated, viral fusion proteins undergo large protein conformational changes to execute membrane fusion. Fusion is thought to proceed through a “hemifusion” intermediate in which the outer membrane leaflets of target and viral membranes mix (lipid mixing) prior to fusion pore formation, enlargement, and completion of fusion. Herpes simplex virus type 1 (HSV-1) requires four glycoproteins—glycoprotein D (gD), glycoprotein B (gB), and a heterodimer of glycoprotein H and L (gH/gL)—to accomplish fusion. gD is primarily thought of as a receptor-binding protein and gB as a fusion protein. The role of gH/gL in fusion has remained enigmatic. Despite experimental evidence that gH/gL may be a fusion protein capable of inducing hemifusion in the absence of gB, the recently solved crystal structure of HSV-2 gH/gL has no structural homology to any known viral fusion protein. We found that in our hands, all HSV entry proteins—gD, gB, and gH/gL—were required to observe lipid mixing in both cell-cell- and virus-cell-based hemifusion assays. To verify that our hemifusion assay was capable of detecting hemifusion, we used glycosylphosphatidylinositol (GPI)-linked hemagglutinin (HA), a variant of the influenza virus fusion protein, HA, known to stall the fusion process before productive fusion pores are formed. Additionally, we found that a mutant carrying an insertion within the short gH cytoplasmic tail, 824L gH, is incapable of executing hemifusion despite normal cell surface expression. Collectively, our findings suggest that HSV gH/gL may not function as a fusion protein and that all HSV entry glycoproteins are required for both hemifusion and fusion. The previously described gH 824L mutation blocks gH/gL function prior to HSV-induced lipid mixing.Membrane fusion is an essential step during the entry process of enveloped viruses, such as herpes simplex virus (HSV), into target cells. The general pathway by which enveloped viruses fuse with target membranes through the action of fusion proteins is fairly well understood. Viral fusion proteins use the free energy liberated during their own protein conformational changes to draw the two membranes—viral and target—together. Fusion is thought to proceed through a “hemifusion” intermediate, in which the proximal leaflets of the two bilayers have merged but a viral pore has not yet formed and viral contents have not yet mixed with the cell cytoplasm (10, 38). Fusion proteins then drive the completion of fusion, which includes fusion pore formation, pore enlargement, and complete content mixing.HSV, an enveloped neurotropic virus, requires four glycoproteins—glycoprotein B (gB), glycoprotein D (gD), glycoprotein H (gH), and glycoprotein L (gL)—to execute fusion (9, 57, 60). gB, gD, and gH are membrane bound; gL is a soluble protein which complexes with gH to form a heterodimer (gH/gL). HSV-1 gH is not trafficked to the cell or virion surface in the absence of gL (32, 52). The requirement of four entry glycoproteins sets HSV apart from other enveloped viruses, most of which induce fusion through the activity of a single fusion protein. Although the specific mode of HSV entry is cell type dependent—fusion with neurons and Vero cells occurs at the plasma membrane at neutral pH; fusion with HeLa and CHO cells involves pH-dependent endocytosis, and fusion with C10 cells involves pH-independent endocytosis (42, 45)—all routes of entry require gD, gB, and gH/gL. Furthermore, although some discrepancies between virus-cell and cell-cell fusion have been observed (8, 44, 55, 58), both generally require the actions of gD, gB, and gH/gL.Much work has gone toward the understanding of how the required HSV entry glycoproteins work together to accomplish fusion, and many questions remain. After viral attachment, mediated by glycoprotein C and/or gB (54), the first step in HSV fusion is thought to be gD binding a host cell receptor (either herpesvirus entry mediator [HVEM], nectin-1, nectin-2, or heparan sulfate modified by specific 3-O-sulfotransferases) (56). The gD-receptor interaction induces a conformational change in gD (39) that is thought to trigger gD-gB and/or gD-gH/gL interactions that are required for the progression of fusion (1-4, 13, 18, 23, 49).gB and gH/gL are considered the core fusion machinery of most herpesviruses. The HSV-1 gB structure revealed surprising structural homology to the postfusion structures of two known viral fusion proteins (31, 35, 51). This structural homology indicates that despite not being sufficient for HSV fusion, gB is likely a fusion protein. Although the gB cytoplasmic tail (CT) is not included in the solved structure, it acts as a regulator of fusion, as CT truncations can cause either hyperfusion or fusion-null phenotypes (5, 17). The gB CT has been proposed to bind stably to lipid membranes and negatively regulate membrane fusion (12). Another proposed regulator of gB function is gH/gL. Despite conflicting accounts of whether gD and a gD receptor are required for the interaction of gH/gL and gB (1, 3, 4), a recent study indicates that gH/gL and gB interact prior to fusion and that gB may interact with target membranes prior to an interaction with gH/gL (2). The gB-gH/gL interaction seems to be required for the progression of fusion.Compared to the other required HSV entry glycoproteins, the role of gH/gL during fusion remains enigmatic. Mutational studies have revealed several regions of the gH ectodomain, transmembrane domain (TM), and CT that are required for its function (19, 25, 26, 30, 33). gH/gL of another herpesvirus, Epstein-Barr virus (EBV), have been shown to bind integrins during epithelial cell fusion, and soluble forms of HSV gH/gL have been shown to bind cells and inhibit viral entry in vitro (24, 46). However, the role of gH/gL binding to target cells in regard to the fusion process remains to be determined.There are some lines of evidence that suggest that gH/gL is a fusion protein. The gH/gL complexes of VZV and CMV have been reported to independently execute some level of cell-cell fusion (14, 37). HSV-1 gH/gL has been reported to independently mediate membrane fusion during nuclear egress (15). In silico analyses and studies of synthetic HSV gH peptides have proposed that gH has fusogenic properties (20, 21, 25-28). Finally, of most importance to the work we report here, gH/gL has been shown to be sufficient for induction of hemifusion in the presence of gD and a gD receptor, further promoting the premise that gH/gL is a fusion protein (59). However, the recently solved crystal structure of HSV-2 gH/gL revealed a tight complex of gH/gL in a “boot-like” structure, which bears no structural homology to any known fusion proteins (11). The HSV-2 gH/gL structure and research demonstrating that gH/gL and gB interactions are critical to fusion (2) have together prompted a new model of HSV fusion in which gH/gL is required to either negatively or positively regulate the activity of gB through direct binding.We wanted to investigate the ability of a previously reported gH CT mutant, 824L, to execute hemifusion. 824L gH contains a five-residue insertion at gH residue 824, just C-terminal of the TM domain. 824L is expressed on cell surfaces and incorporated into virions at levels indistinguishable from those of wild-type gH by either cell-based ELISA or immunoblotting, yet it is nonfunctional (33). We relied on a fusion assay capable of detecting hemifusion, developed by Subramanian et al. (59), which we modified to include an additional control for hemifusion or nonenlarging pore formation, glycosylphosphatidylinositol (GPI)-linked hemagglutinin (GPI-HA). GPI-HA is a variant of the influenza virus fusion protein, HA, that is known to stall the fusion process before enlarging fusion pores are formed.We were surprised to find that in our hands, gD, a gD receptor, and gH/gL were insufficient for the induction of hemifusion or lipid mixing in both cell-based and virus-based fusion assays. We found that gD, gB, and gH/gL are all required to observe lipid mixing. Further, we found that gB, gD, gL, and 824L gH are insufficient for lipid mixing. Our findings support the emerging view, based on gH/gL structure, that the gH/gL complex does not function as a fusion protein and does not insert into target membranes to initiate the process of fusion through a hemifusion intermediate. Our findings also further demonstrate that mutations in the CT of gH can have a dramatic effect on the ability of gH/gL to function in fusion.  相似文献   

8.
Human cytomegalovirus (HCMV) is a widely circulating pathogen that causes severe disease in immunocompromised patients and infected fetuses. By immortalizing memory B cells from HCMV-immune donors, we isolated a panel of human monoclonal antibodies that neutralized at extremely low concentrations (90% inhibitory concentration [IC90] values ranging from 5 to 200 pM) HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Antibodies against gB, gH, or gM/gN were also isolated and, albeit less potent, were able to neutralize infection of both endothelial-epithelial cells and fibroblasts. This study describes unusually potent neutralizing antibodies against HCMV that might be used for passive immunotherapy and identifies, through the use of such antibodies, novel antigenic targets in HCMV for the design of immunogens capable of eliciting previously unknown neutralizing antibody responses.Human cytomegalovirus (HCMV) is a member of the herpesvirus family which is widely distributed in the human population and can cause severe disease in immunocompromised patients and upon infection of the fetus. HCMV infection causes clinical disease in 75% of patients in the first year after transplantation (58), while primary maternal infection is a major cause of congenital birth defects including hearing loss and mental retardation (5, 33, 45). Because of the danger posed by this virus, development of an effective vaccine is considered of highest priority (51).HCMV infection requires initial interaction with the cell surface through binding to heparan sulfate proteoglycans (8) and possibly other surface receptors (12, 23, 64, 65). The virus displays a broad host cell range (24, 53), being able to infect several cell types such as endothelial cells, epithelial cells (including retinal cells), smooth muscle cells, fibroblasts, leukocytes, and dendritic cells (21, 37, 44, 54). Endothelial cell tropism has been regarded as a potential virulence factor that might influence the clinical course of infection (16, 55), whereas infection of leukocytes has been considered a mechanism of viral spread (17, 43, 44). Extensive propagation of HCMV laboratory strains in fibroblasts results in deletions or mutations of genes in the UL131A-128 locus (1, 18, 21, 36, 62, 63), which are associated with the loss of the ability to infect endothelial cells, epithelial cells, and leukocytes (15, 43, 55, 61). Consistent with this notion, mouse monoclonal antibodies (MAbs) to UL128 or UL130 block infection of epithelial and endothelial cells but not of fibroblasts (63). Recently, it has been shown that UL128, UL130, and UL131A assemble with gH and gL to form a five-protein complex (thereafter designated gH/gL/UL128-131A) that is an alternative to the previously described gCIII complex made of gH, gL, and gO (22, 28, 48, 63).In immunocompetent individuals T-cell and antibody responses efficiently control HCMV infection and reduce pathological consequences of maternal-fetal transmission (13, 67), although this is usually not sufficient to eradicate the virus. Albeit with controversial results, HCMV immunoglobulins (Igs) have been administered to transplant patients in association with immunosuppressive treatments for prophylaxis of HCMV disease (56, 57), and a recent report suggests that they may be effective in controlling congenital infection and preventing disease in newborns (32). These products are plasma derivatives with relatively low potency in vitro (46) and have to be administered by intravenous infusion at very high doses in order to deliver sufficient amounts of neutralizing antibodies (4, 9, 32, 56, 57, 66).The whole spectrum of antigens targeted by HCMV-neutralizing antibodies remains poorly characterized. Using specific immunoabsorption to recombinant antigens and neutralization assays using fibroblasts as model target cells, it was estimated that 40 to 70% of the serum neutralizing activity is directed against gB (6). Other studies described human neutralizing antibodies specific for gB, gH, or gM/gN viral glycoproteins (6, 14, 26, 29, 34, 41, 52, 60). Remarkably, we have recently shown that human sera exhibit a more-than-100-fold-higher potency in neutralizing infection of endothelial cells than infection of fibroblasts (20). Similarly, CMV hyperimmunoglobulins have on average 48-fold-higher neutralizing activities against epithelial cell entry than against fibroblast entry (10). However, epitopes that are targeted by the antibodies that comprise epithelial or endothelial cell-specific neutralizing activity of human immune sera remain unknown.In this study we report the isolation of a large panel of human monoclonal antibodies with extraordinarily high potency in neutralizing HCMV infection of endothelial and epithelial cells and myeloid cells. With the exception of a single antibody that recognized a conserved epitope of UL128, all other antibodies recognized conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex.  相似文献   

9.
Of the four required herpes simplex virus (HSV) entry glycoproteins, the precise role of gH-gL in fusion remains the most elusive. The heterodimer gH-gL has been proposed to mediate hemifusion after the interaction of another required glycoprotein, gD, with a receptor. To identify functional domains of HSV-1 gH, we generated 22 randomized linker-insertion mutants. Analyses of 22 gH mutants revealed that gH is relatively tolerant of insertion mutations, as 15 of 22 mutants permitted normal processing and transport of gH-gL to the cell surface. gH mutants that were not expressed well at the cell surface did not function in fusion or viral entry. The screening of gH mutants for function revealed the following: (i) for wild-type gH and some gH mutants, fusion with nectin-1-expressing target cells occurred more rapidly than with herpesvirus entry mediator (HVEM)-expressing target cells; (ii) some gH mutants reduced the rate of cell fusion without abrogating fusion completely, indicating that gH may play a role in governing the kinetics of fusion and may be responsible for a rate-limiting first stage in HSV-1 fusion; and (iii) only one gH mutant, located within the short cytoplasmic tail, completely abrogated function, indicating that the gH cytoplasmic tail is crucial for cell fusion and viral infectivity.Herpes simplex virus (HSV), an enveloped neurotropic virus, infects target cells via membrane fusion, a process executed by viral fusion proteins capable of inserting into target membranes. Unlike many enveloped viruses that induce fusion through the activity of a single viral fusion protein, HSV requires four glycoproteins, glycoprotein B (gB), glycoprotein D (gD), glycoprotein H (gH), and glycoprotein L (gL), to execute fusion (6, 40, 42). The focus of this study, gH, is expressed as a heterodimer with gL (gH-gL). HSV gH and gL rely on one another for proper folding, posttranslational processing, and transport to the cell and virion surface (5, 23, 35).A sequential model of entry is the prevailing working hypothesis of HSV entry (1-3, 28, 32, 41). Viral attachment is mediated by the binding of glycoprotein C (gC) or gB to cell surface glycosaminoglycans such as heparan sulfate (38). The subsequent fusion between the virion envelope and host cell membrane is thought to result from a series of concerted events. First, gD binds to one of its host cell receptors. These receptors include herpesvirus entry mediator (HVEM), a member of the tumor necrosis factor (TNF) receptor family; nectin-1 and nectin-2, cell adhesion molecules of the Ig superfamily; and heparan sulfate modified by specific 3-O-sulfotransferases (39).It was previously proposed that gD binding a receptor induces a conformational change that allows for interactions between gD, gB, and/or gH-gL (1, 2, 8, 10, 16, 25, 32). It is thought that while gD functions primarily in receptor binding, gB and gH-gL function as the core fusion machinery of HSV.Based on its crystal structure, gB has structural features typical of viral fusion proteins in general and is structurally similar to vesicular stomatitis virus (VSV) glycoprotein G, the fusion protein of VSV (22, 34). In addition to its resemblance to other viral fusogens, gB also binds its own receptor, paired immunoglobulin-like receptor (PILRalpha) (36, 37). Importantly, HSV gB does not successfully execute fusion in the absence of gD or gH-gL (41). Compared to the other required HSV entry glycoproteins, relatively little is known about the specific roles of gH-gL during fusion. The structure of gH-gL is unknown, although in silico analyses and studies of synthetic gH peptides suggested that gH also has fusogenic properties (12, 13, 17-20).gD, a gD receptor, and gH-gL have been shown to be sufficient for inducing hemifusion, the mixing of the proximal leaflets of the viral and host cell bilayers (41). Several lines of research suggest that the subsequent step in fusion is an interaction between gH-gL and gB, with the latter glycoprotein being required for a committed and expanding fusion pore (1-3, 16, 28, 41). However, it is still unclear whether the gB and gH-gL interaction requires that gD first bind a receptor (1, 3), indicating that another viable model of HSV entry may be nonsequential gD-gB-gH-gL complex formation.Several domains important for fusion within HSV gH have been discerned. The only function associated with the N-terminal domain of HSV gH, to date, is gL binding. Residues 377 to 397 within a predicted alpha-helix in the gH ectodomain are required for cell-cell fusion and complementation of a gH-null virus (18). The mutation of a predicted heptad repeat region spanning residues 443 to 471 abrogated cell-cell fusion (17). Insertion mutations within what has been termed the pretransmembrane region of gH have also been shown to abrogate fusion and viral entry (11). The glycine residue at position 812 within the predicted gH transmembrane domain was shown previously to be important for fusion (21). Finally, although the deletion of the final six residues of gH (residues 832 to 838), which are within its short cytoplasmic tail, has no effect on fusion, further deletions were shown to decrease polykaryocyte formation by a syncytial HSV strain (4, 43).We used a transposon-based comprehensive random linker-insertion mutagenesis strategy to generate a library of mutants spanning the entire length of HSV-1 gH, an 838-amino-acid type I membrane protein. A panel of 22 insertion mutants was generated, 15 of which were expressed at near-normal levels on the cell surface. Interestingly, some insertions reduced the rate of cell fusion rather than abrogating cell fusion activity altogether, suggesting that gH may have a role in governing the kinetics of fusion and may be responsible for a rate-limiting first stage in HSV-1 fusion. Additionally, one insertion mutation that completely abrogated cell fusion and viral infectivity is located within the gH cytoplasmic tail, indicating that the short C-terminal tail of gH is critical for cell fusion and entry mediated by HSV-1.  相似文献   

10.
11.
Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) are serine/threonine protein kinases and play critical roles in viral replication and pathogenicity in vivo. In the present study, we investigated differences in the biological properties of HSV-1 and HSV-2 Us3 protein kinases and demonstrated that HSV-2 Us3 did not have some of the HSV-1 Us3 kinase functions, including control of nuclear egress of nucleocapsids, localization of UL31 and UL34, and cell surface expression of viral envelope glycoprotein B. In agreement with the observations that HSV-2 Us3 was less important for these functions, the effect of HSV-2 Us3 kinase activity on virulence in mice following intracerebral inoculation was much lower than that of HSV-1 Us3. Furthermore, we showed that alanine substitution in HSV-2 Us3 at a site (aspartic acid at position 147) corresponding to one that can be autophosphorylated in HSV-1 Us3 abolished HSV-2 Us3 kinase activity. Thus, the regulatory and functional effects of Us3 kinase activity are different between HSV-1 and HSV-2.Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) are serine/threonine protein kinases with amino acid sequences that are conserved in the subfamily Alphaherpesvirinae (6, 24, 36). Based on studies showing that recombinant Us3 mutants of HSV-1 and HSV-2 have significantly impaired viral replication and virulence in mice models, it has been concluded that both HSV-1 and HSV-2 Us3 protein kinases play important roles in viral replication and pathogenicity in vivo (25, 33, 41). In contrast, HSV-1 and HSV-2 Us3 protein kinases are not essential for growth in tissue culture cells (33, 36). Thus, recombinant Us3 mutants grow as well as wild-type viruses in Vero cells, and the mutants exhibit modestly impaired replication in HEp-2 cells (33, 36, 39, 40). The possible functions of Us3 have been extensively studied and gradually elucidated for HSV-1 Us3, but much less is known about HSV-2 Us3. These functions include (i) blocking apoptosis (1, 22, 30, 31, 35); (ii) promoting nuclear egress of progeny nucleocapsids through the nuclear membrane (39, 40, 45); (iii) redistributing and phosphorylating nuclear membrane-associated viral nuclear egress factors UL31 and UL34 (14, 37, 38) and cellular proteins, including lamin A/C and emerin (21, 27, 28); (iv) controlling infected cell morphology (13, 31, 32); and (v) downregulating cell surface expression of viral envelope glycoprotein B (gB) (12).To determine the molecular mechanisms for a viral protein kinase''s effects in infected cells, the kinase''s physiological substrates and its phosphorylation sites must be identified. This can involve studies showing that the altered phenotypes observed in cells infected with a mutant virus lacking the protein kinase activity is also detected in cells infected with a mutant virus in which the substrate''s phosphorylation sites have been modified by mutations. Although more than 15 potential HSV Us3 substrates have been reported, HSV-1 Us3 phosphorylation of only three substrates (Us3 itself, gB, and UL31) has been demonstrated to be linked directly with Us3 functions in infected cells (12, 13, 29, 41) as follows. (i) Us3 has been reported to autophosphorylate serine at position 147 (Ser-147), and this phosphorylation augments Us3''s kinase activity in infected cells (13, 41). Even though only a small fraction of Us3 is autophosphorylated at Ser-147 in infected cells, alanine replacement of Ser-147 in Us3 significantly reduced HSV-1 replication in the mouse cornea and pathogenic manifestations of herpes stroma keratitis and periocular skin disease in mice (41). These results indicated that Us3 kinase activity was, in part, regulated by autophosphorylation of Ser-147, and regulation of Us3 activity by autophosphorylation played a critical role in viral replication in vivo and HSV-1 pathogenesis. (ii) It has been reported that HSV-1 Us3 phosphorylates Thr-887 in the cytoplasmic tail of gB, and this phosphorylation downregulates the cell surface expression of gB (12). Us3 phosphorylation of gB at Thr-887 also has been proposed to be involved in the regulation of fusion of the nascent progeny virion envelope with the cell''s outer nuclear membrane, based on the observation that virions accumulated aberrantly in the perinuclear space in cells infected with mutant viruses carrying the amino acid substitution mutation T887A in gB and lacking the capacity to produce gH (45). The Us3 phosphorylation of gB at Thr-887 appeared to be critical for HSV-1 replication and pathogenesis in vivo, based on studies showing that the T887A substitution in the phosphorylation site in gB significantly reduced viral replication in the mouse cornea and pathogenic manifestations of herpes stroma keratitis and periocular skin disease in mice (Takahiko Imai, Ken Sagou, and Yasushi Kawaguchi, unpublished observations). (iii) It has been shown that Us3 phosphorylated some or all of the six serines in the UL31 N-terminal region, and this phosphorylation regulated the proper localization of UL31 and UL34 at the nuclear membrane and nuclear egress of nucleocapsids (29). Thus, the molecular basis of HSV-1 Us3 effects in infected cells have been gradually elucidated.However, the Us3 phosphorylation sites in Us3 itself and in gB are not conserved between HSV serotypes (12, 13). The amino acid residues in HSV-2 Us3 and gB corresponding to HSV-1 Us3 Ser-147 and gB Thr-887 are aspartic acid (Asp-147) and alanine (Ala-887), respectively. These results suggest that some HSV-1 Us3 functions, such as regulation of its own catalytic activity and control of gB expression on the cell surface, are not regulated by HSV-2 Us3 or are regulated in a manner(s) different from HSV-1 Us3. In agreement with this suggestion, there is a marked difference between HSV-1 and HSV-2 virulence in mice following intracerebral infection, with the HSV-1 Us3 null mutant being >104-fold less virulent than the parent wild-type virus (25), while the HSV-2 Us3 null mutant was only ∼10-fold less virulent (33). Although these results were from different reports and the mouse strains used in the studies were different, they indicate that some HSV-1 Us3 functions are different from those of HSV-2 Us3.Therefore, we investigated differences in the biological properties of HSV-1 and HSV-2 Us3 protein kinases. It was of particular interest to examine whether Asp-147 in HSV-2 Us3 is required for its own kinase activity, since it is well established that acidic amino acids such as Asp or glutamic acid sometimes mimic the negative charges produced by phosphorylation (29, 46). In the present study, using a genetic manipulation system of HSV-2 with our newly constructed HSV-2 bacterial artificial chromosome (BAC) clone, we have shown that HSV-2 Us3 exhibited marked differences from HSV-1 Us3 in its catalytic functions, including the regulation of UL31/UL34 localization, nuclear egress of nucleocapsids, cell surface expression of gB, and virulence in mice. We also found that Asp-147 in HSV-2 Us3 was critical for its kinase activity, raising a possibility that the activity of Us3 kinases was regulated differently in HSV-1 and HSV-2.  相似文献   

12.
Herpes simplex virus (HSV) entry into cells is triggered by the binding of envelope glycoprotein D (gD) to a specific receptor, such as nectin-1 or herpesvirus entry mediator (HVEM), resulting in activation of the fusion effectors gB and gH and virus penetration. Here we report the identification of a hyperactive gB allele, D285N/A549T, selected by repeat passage of a gD mutant virus defective for nectin-1 binding through cells that express a gD-binding-impaired mutant nectin-1. The gB allele in a wild-type virus background enabled the use of other nectins as virus entry receptors. In addition, combination of the mutant allele with an epidermal growth factor receptor (EGFR)-retargeted gD gene yielded dramatically increased EGFR-specific virus entry compared to retargeted virus carrying wild-type gB. Entry of the gB mutant virus into nectin-1-bearing cells was markedly accelerated compared to that of wild-type virus, suggesting that the gB mutations affect a rate-limiting step in entry. Our observations indicate that ineffective gD activation can be complemented by hypersensitization of a downstream component of the entry cascade to gD signaling.Entry of herpes simplex virus type 1 (HSV-1) into susceptible cells involves the coordinated activities of at least five viral envelope glycoproteins (9, 18, 33, 40). Virions initially bind to glycosaminoglycan (GAG) moieties of cell surface proteoglycans through glycoproteins B and C (gB and gC, respectively) (32, 51), facilitating the interaction of gD with one of its specific receptors, herpesvirus entry mediator (HVEM, or HveA), nectin-1 (HveC), or 3-O-sulfated heparan sulfate (24, 45, 50). Receptor binding is believed to result in a conformational change in gD, which in turn activates the fusion mechanism mediated by gB and the gH/gL heterodimer; fusion merges the virus envelope with the cell surface or endosomal membrane, resulting in capsid release into the cytoplasm (11, 23, 30, 37, 44, 47, 48). Prior to receptor binding, the N-terminal region of the gD ectodomain is folded back over the immunoglobulin (Ig)-like core domain in a position to engage the C-terminal effector region (pro-fusion domain), thereby keeping the effector domain in an inactive state (23, 37). Receptor binding disrupts this engagement and liberates the effector domain to activate gB and/or gH/gL. The crystal structure of the gB ectodomain shows unexpected homology to the postfusion form of glycoprotein G from vesicular stomatitis virus (VSV G), a well-characterized fusion protein (30), providing strong evidence that gB plays a major role in membrane fusion. In addition, gH displays structural hallmarks of fusion proteins (26, 27), and gB and gH each have fusogenic activity, as indicated by the finding that either alone is sufficient for membrane fusion during nuclear egress (20). However, gB and gH/gL are both required for complete fusion during virus entry, although gB is dispensable for hemifusion, an intermediate state (53).Results from biochemical and bimolecular-complementation assays have shown that gD binds individually to both gB and gH/gL, regardless of the presence of gD receptors (4, 5, 25), while complexes of gB and gH/gL assemble only in the presence of receptor-bound gD (4, 5). These observations suggested that receptor-dependent gD activation brings gB and gH/gL together for execution of the fusion event. However, based on new evidence that gB and gH/gL can also interact in the absence of gD, an alternative model has been proposed in which activated gD signals to preformed gB-gH/gL complexes (6). While these models are not mutually exclusive, the functional significance of the detected complexes remains to be firmly established (15). However, there is broad consensus that the gD-receptor interaction triggers the initiation of fusion by direct interaction with either or both gB and gH/gL, indicating that the quality of the gD-receptor interaction is key to the efficiency of HSV infection.Viruses have an intrinsic ability to evolve and adapt to changes in the environment, including the acquisition of an extended host range which can lead to epidemic infections (56). We previously described gain-of-function derivatives of a gD mutant virus, K26-gD:R222N/F223I, that was impaired in its ability to use nectin-1 as an entry receptor (54). Repeated passage of this virus through cells that express nectin-1 as the sole gD receptor yielded phenotypic revertants that had regained the ability to use nectin-1 for infection. This phenotype resulted from reversion or forward mutations at the parental mutant positions or from substitutions elsewhere in gD that likely affect the integrity of the discontinuous interface with nectin-1. Since these types of experiments can reveal novel factors or interactions that are important for virus entry, we performed a similar study at higher stringency in an attempt to avoid simple reversion mutations. The strategy was to use our previous gD:R222N/F223I mutant virus that is defective for entry via nectin-1 and ask if this virus could adapt to host cells expressing a mutant form of nectin-1 whose binding to wild-type gD is severely impaired. A specific goal of this effort was to find mutations in gD or other envelope glycoproteins that could enhance infection through atypical receptors, including cell-type-specific receptors that can be engaged by retargeted HSV vectors.Here we report the identification of a hyperactive gB double mutation, gB:D285N/A549T, referred to herein as gB:N/T, that allows virus entry in the absence of authentic gD receptors, enhances virus entry through unconventional receptors, including a targeted receptor, and appears to act by sensitizing gB to activation by gD, directly or indirectly via gH/gL, and increasing the rate of virus entry into different host cells. Our observations demonstrate that hyperactive gB can compensate for ineffective gD-receptor interactions in the process of HSV entry into cells.  相似文献   

13.
The UL24 family of proteins is widely conserved among herpesviruses. We demonstrated previously that UL24 of herpes simplex virus 1 (HSV-1) is important for the dispersal of nucleolin from nucleolar foci throughout the nuclei of infected cells. Furthermore, the N-terminal portion of UL24 localizes to nuclei and can disperse nucleolin in the absence of any other viral proteins. In this study, we tested the hypothesis that highly conserved residues in UL24 are important for the ability of the protein to modify the nuclear distribution of nucleolin. We constructed a panel of substitution mutations in UL24 and tested their effects on nucleolin staining patterns. We found that modified UL24 proteins exhibited a range of subcellular distributions. Mutations associated with a wild-type localization pattern for UL24 correlated with high levels of nucleolin dispersal. Interestingly, mutations targeting two regions, namely, within the first homology domain and overlapping or near the previously identified PD-(D/E)XK endonuclease motif, caused the most altered UL24 localization pattern and the most drastic reduction in its ability to disperse nucleolin. Viral mutants corresponding to the substitutions G121A and E99A/K101A both exhibited a syncytial plaque phenotype at 39°C. vUL24-E99A/K101A replicated to lower titers than did vUL24-G121A or KOS. Furthermore, the E99A/K101A mutation caused the greatest impairment of HSV-1-induced dispersal of nucleolin. Our results identified residues in UL24 that are critical for the ability of UL24 to alter nucleoli and further support the notion that the endonuclease motif is important for the function of UL24 during infection.The UL24 protein is conserved throughout the Herpesviridae family, and to the best of our knowledge, a UL24 homolog has been identified in all Herpesvirales genomes sequenced to date with the exception of the channel catfish virus (9, 10, 19). UL24 of herpes simplex virus 1 (HSV-1) is required for efficient virus replication both in vitro and in vivo and for reactivation from latency in a mouse model of ocular infection (18). UL24 is one of the few HSV-1 genes, along with gB, gK, and UL20, in which mutations have been identified that cause the formation of syncytial plaques (2, 7, 34, 36, 39). The UL24-associated syncytial phenotype is only partially penetrant at 37°C but is fully penetrant at 39°C. Indications are that gK and UL20 have an inhibitory effect on the formation of syncytia (1), while certain mutations in gB entrain an uncontrolled fusogenic activity (11, 13, 15).UL24 is a highly basic protein of 269 amino acids that is expressed with leaky-late kinetics (31). Five homology domains (HDs), which consist of stretches of amino acids with a high percentage of identity between homologs, are present in the UL24 open reading frame (ORF) (19). In addition, a PD-(D/E)XK endonuclease motif has been identified that falls within the HDs (20); however, a role for this motif has yet to be demonstrated. In infected cells, UL24 is detected in the nucleus and the cytoplasm and transiently localizes to nucleoli (23). In the absence of other viral proteins, UL24 accumulates in the Golgi apparatus and in the nucleus, where it usually exhibits a diffuse staining pattern, but in a minority of cells it is detected in nucleoli (3).During infection, the formation of the viral replication compartments in the nucleus and the action of several viral proteins result in a remodeling of the nucleus. Chromatin is marginalized (29, 40), promyelocytic leukemia bodies are dispersed (26, 27), and the nuclear lamina is disrupted (33, 37). HSV-1 infection also affects the nucleolus, a prominent nuclear substructure implicated in the synthesis of rRNA, cell cycle regulation, and nucleocytoplasmic shuttling (5). Nucleoli become elongated following infection, and the synthesis of mature rRNA is reduced (4, 38, 42). Several HSV-1 proteins have been shown to localize to, or associate with, the nucleolus (12). The viral protein VP22 associates with the nucleolus and with dispersed nucleolin in HSV-1-infected cells (22), and RL1, US11, and ICP0 have also been shown to localize to nucleoli (24, 30, 35). Previously we showed that nucleolin is dispersed throughout the nucleus upon HSV-1 infection and that UL24 is involved in this nuclear modification (23). We further found that the N-terminal portion of UL24 is sufficient to induce the redistribution of nucleolin in the absence of other viral proteins (3).In this study, we sought to test the hypothesis that the endonuclease motif, which is made up of some of the most highly conserved residues in UL24, is important for the dispersal of nucleolin. A panel of substitution mutations in UL24 was generated, and the impact on the function of UL24 was assessed.  相似文献   

14.
UL31 and UL34 of herpes simplex virus type 1 form a complex necessary for nucleocapsid budding at the inner nuclear membrane (INM). Previous examination by immunogold electron microscopy and electron tomography showed that pUL31, pUL34, and glycoproteins D and M are recruited to perinuclear virions and densely staining regions of the INM where nucleocapsids bud into the perinuclear space. We now show by quantitative immunogold electron microscopy coupled with analysis of variance that gD-specific immunoreactivity is significantly reduced at both the INM and outer nuclear membrane (ONM) of cells infected with a UL34 null virus. While the amount of gM associated with the nuclear membrane (NM) was only slightly (P = 0.027) reduced in cells infected with the UL34 null virus, enrichment of gM in the INM at the expense of that in the ONM was greatly dependent on UL34 (P < 0.0001). pUL34 also interacted directly or indirectly with immature forms of gD (species expected to reside in the endoplasmic reticulum or nuclear membrane) in lysates of infected cells and with the cytosolic tail of gD fused to glutathione S-transferase in rabbit reticulocyte lysates, suggesting a role for the pUL34/gD interaction in recruiting gD to the NM. The effects of UL34 on gD and gM localization were not a consequence of decreased total expression of gD and gM, as determined by flow cytometry. Separately, pUL31 was dispensable for targeting gD and gM to the two leaflets of the NM but was required for (i) the proper INM-versus-ONM ratio of gD and gM in infected cells and (ii) the presence of electron-dense regions in the INM, representing nucleocapsid budding sites. We conclude that in addition to their roles in nucleocapsid envelopment and lamina alteration, UL31 and UL34 play separate but related roles in recruiting appropriate components to nucleocapsid budding sites at the INM.Herpesvirus virions comprise a nucleocapsid containing genomic viral DNA, a proteinaceous tegument layer surrounding the nucleocapsid, and a virion envelope surrounding the tegument. The envelope of extracellular herpes simplex virus (HSV) virions contains glycoproteins gB, gC, gD, gE, gI, gG, gH, gK, gL, and gM (23, 51).As viewed by electron microscopy, nascent virions form as the nucleocapsid buds through densely staining regions of the nuclear membrane (NM) (21, 41). Electron tomograms of HSV perinuclear virions compared to those of extracellular virions infer that the former contain glycoproteins of considerably less glycosylation and a relatively sparse tegument layer compared to their counterparts in mature extracellular virions (6). The lower levels of glycosylation in HSV perinuclear virions are consistent with the fact that the lumen of the perinuclear space is continuous with that of the endoplasmic reticulum. Thus, the polysaccharide moieties of virion glycoproteins become fully processed as virions access Golgi enzymes during their egress to the extracellular space. Although the full proteome of the nascent perinuclear virion is unknown, immunogold studies have shown that they contain at least pUL31, pUL34, pUS3, gB, gC, gD, gH, gM, and the VP16 and pUL11 tegument proteins in addition to the proteins that comprise the viral capsid (4, 5, 15, 25, 37, 40, 47, 50, 55).The UL31 and UL34 gene products of HSV-1 (pUL31 and pUL34, respectively) form a complex that localizes at the inner and outer NMs (INM and ONM, respectively) of infected cells (40). Both proteins are essential for nucleocapsid envelopment at the INM and become incorporated into nascent virions when nucleocapsids bud through the INM into the perinuclear space (39, 40, 42). The proteins and their essential role in nucleocapsid envelopment are conserved in all herpesvirus subfamilies (14, 20, 32, 45). pUL31 of HSV-1 is a mostly hydrophobic phosphoprotein that is held in close approximation to the nucleoplasmic face of the INM by interaction with pUL34, an integral membrane protein of type II orientation (33, 40, 46, 56). The first 248 amino acids of pUL34 are predicted to reside in the nucleoplasm or cytoplasm, depending on whether the protein localizes in the INM or ONM, respectively. This is followed by an approximately 22-amino acid transmembrane domain with up to 5 amino acids residing in the perinuclear space or lumen of the endoplasmic reticulum.In the most prominent model of herpesvirion egress, the envelope of the perinuclear virion fuses with the ONM, releasing the deenveloped nucleocapsid into the cytoplasm, where it subsequently buds into cytoplasmic membranous organelles such as the Golgi or trans-Golgi network (34, 49). This model is supported by the observation that pUL31 and pUL34 are located in the perinuclear virion but not extracellular virions (18, 40). Thus, these proteins are lost from the virion upon fusion of the virion envelope with the ONM. Also supporting this egress model is the observation that deletion of both gB and gH causes virions to accumulate aberrantly in the perinuclear space (15). The involvement of gH and gB is potentially satisfying because these proteins comprise essential components of the machinery that mediates fusion of the virion envelope with the plasma or endosomal membranes during the initiation of infection (9, 12, 16, 44, 52). Moreover, expression of a combination of gB, gD, gH, and gL is sufficient to mediate fusion of cell membranes, whereas coexpression with gM or gK inhibits this fusion (3, 8, 11). Although the mechanism of fusion is unclear, gD is known to bind viral receptors on cell surfaces, and the structure of gB indicates features reminiscent of other viral fusion proteins (24, 35, 48). gD has been shown to interact with gB and gH at least transiently, suggesting that these interactions may be important for the fusion reaction (1, 2). Thus, fusion between the nascent and mature virion envelopes with target membranes may share mechanistic similarities.On the other hand, it is likely that the two fusion events are mechanistically distinct because (i) single deletion of either gH or gB precludes viral entry and cell/cell fusion but does not cause nascent virions to accumulate in the perinuclear space (9, 16, 31, 43) and (ii) the activity of a viral kinase encoded by US3 is dispensable for entry but believed to promote fusion of the perinuclear virion and ONM (28, 40). Moreover, the lack of glycoproteins from the pseudorabies virus perinuclear virion suggests that fusion is mediated by an entirely different mechanism in this system (26).The current study focuses on how glycoproteins are incorporated into the nascent virion. We show that optimal recruitment of gD to both leaflets of the NM and gM to the INM requires pUL34 and pUL31. We also show that immature gD interacts with pUL34, suggesting a mechanism by which pUL34 might recruit gD to the NM.  相似文献   

15.
Glycoprotein B (gB), the most conserved protein in the family Herpesviridae, is essential for the fusion of viral and cellular membranes. Information about varicella-zoster virus (VZV) gB is limited, but homology modeling showed that the structure of VZV gB was similar to that of herpes simplex virus (HSV) gB, including the putative fusion loops. In contrast to HSV gB, VZV gB had a furin recognition motif ([R]-X-[KR]-R-|-X, where | indicates the position at which the polypeptide is cleaved) at residues 491 to 494, thought to be required for gB cleavage into two polypeptides. To investigate their contribution, the putative primary fusion loop or the furin recognition motif was mutated in expression constructs and in the context of the VZV genome. Substitutions in the primary loop, W180G and Y185G, plus the deletion mutation Δ491RSRR494 and point mutation 491GSGG494 in the furin recognition motif did not affect gB expression or cellular localization in transfected cells. Infectious VZV was recovered from parental Oka (pOka)-bacterial artificial chromosomes that had either the Δ491RSRR494 or 491GSGG494 mutation but not the point mutations W180G and Y185G, demonstrating that residues in the primary loop of gB were essential but gB cleavage was not required for VZV replication in vitro. Virion morphology, protein localization, plaque size, and replication were unaffected for the pOka-gBΔ491RSRR494 or pOka-gB491GSGG494 virus compared to pOka in vitro. However, deletion of the furin recognition motif caused attenuation of VZV replication in human skin xenografts in vivo. This is the first evidence that cleavage of a herpesvirus fusion protein contributes to viral pathogenesis in vivo, as seen for fusion proteins in other virus families.Varicella-zoster virus (VZV), an alphaherpesvirus, causes chicken pox (varicella) as a primary infection and shingles (zoster) upon reactivation from infected ganglia in humans (reviewed in reference 16). Although not yet investigated in VZV, herpesvirus entry requires fusion of the virus envelope with cell membranes governed by viral glycoprotein B (gB) and gH/gL, which are conserved across the family Herpesviridae (12, 27, 57). gB is the most conserved glycoprotein, with its function as a fusion protein well documented for several of the herpesviruses (10, 19, 38, 48, 51, 52).Open reading frame 31 (ORF31) codes for the 931 amino acids of VZV gB (18, 37). The successive N- and O-linked glycosylation plus the sialation and sulfation of VZV gB yields a mature protein with a molecular mass of approximately 140 kDa (45). Upon maturation, gB is cleaved, presumably by cellular proteases, into two polypeptides of 66 and 68 kDa. Intracellular trafficking of gB was shown to be dependent upon amino acid motifs in the cytoplasmic domain (24-26). In transfection studies, gB was transported to the cellular surface where it was endocytosed and localized to the trans-Golgi, where envelopment of viral particles is thought to occur.The structures of gB in the two human alphaherpesviruses, VZV and herpes simplex virus type 1 (HSV-1), are likely to be very similar as they have 49% amino acid identity (reviewed in reference 16). The ectodomain of HSV-1 gB was shown to form a spike that consisted of trimers with the structural homology to gG of vesicular stomatitis virus (28). Heldwein et al. (28) proposed that HSV-1 gB is a class II fusion protein based on homology to VSV G. The herpesvirus gB monomer was divided into five domains, I to V. Domain I consisted of a continuous amino acid sequence that folded into a pleckstrin homology-like domain, while domain II was comprised of two discontinuous segments, which also had a pleckstrin homology-like domain. A loop region exposed to the exterior of gB connected domain II with domain III. Domain III was comprised of three discontinuous segments and connected to the external loop by a long α helix that ended in a central coiled coil. Domain IV crowned gB and was connected to domain V, which stretched from the top to the bottom of the gB monomer, forming the core of the trimer making contacts with the two other subunits. The structural homology and lack of furin cleavage suggest that the herpesvirus gB and VSV G proteins have undergone convergent evolution.Although not proven experimentally, VZV gB is likely to be cleaved by the subtilisin-like proprotein convertase furin as the glycoprotein has a furin recognition motif [R]-X-[KR]-R-|-X (where | indicates the position at which the polypeptide is cleaved) (29). The [R]-X-[KR]-R-|-X motif is conserved in gBs for all of the herpesvirus families (5, 9, 21, 36, 40, 53, 63, 64). This site has been shown to be dispensable for the replication of human cytomegalovirus (HCMV), bovine herpesvirus type 1 (BHV-1), and pseudorabies virus (PRV) in vitro (32, 49, 58). Furin site mutants for BHV-1 and PRV show an altered phenotype in vitro, but effects were not examined in vivo. HSV-1 gB is not cleaved and lacks the [R]-X-[KR]-R-|-X motif at the canonical site, which is of interest because HSV-1 is genetically the most closely related human herpesvirus to VZV.Domain I of HSV gB showed structural conservation of putative fusion loops similar to those found in domain IV of the VSV G protein (28). Despite the lack of conserved amino acids within these loops, the hydrophobicity of the residues appears to be conserved for the Herpesviridae (4). Substitution of hydrophobic residues in Epstein-Barr virus gB and linker insertion mutagenesis close to the putative fusion loops of HSV-1 gB abrogated fusion based on in vitro transfection studies (4, 22, 34). However, the effect of substitutions in these putative fusion loops on viral replication has not been characterized. Since the development of fusion assays for VZV has proven elusive, the effect of substitutions in the putative fusion loop using viral mutagenesis to make recombinant viruses provides an alternative approach for identifying functional residues in VZV gB.In contrast to HSV-1, VZV is a human-restricted pathogen (reviewed in reference 16). To study the pathogenesis of VZV in vivo, well-established human xenograft models have been developed using SCID mice (6, 7, 13, 14, 41, 44, 54, 65). Lesions formed by VZV in the skin are similar to those seen in human subjects following primary infection (15, 43). The relevance of the model was demonstrated by studies with the varicella vaccine virus (vOka) that exhibited decreased growth in skin xenografts in vivo but does not cause disease in the healthy human host. In contrast, the vaccine virus and its parent strain, parental Oka (pOka), have indistinguishable replication kinetics in vitro (15, 43).The present study was designed to investigate the effects of structure-based targeted mutations in VZV gB on viral replication in cultured cells and in human skin xenografts in the SCIDhu mouse model. This was performed in the context of infectious virus recovered using the self-excisable bacterial artificial chromosome (BAC) containing the genome of a clinical isolate, Oka (62). The roles of the conserved residues W180 (gB-W180G) and Y185 (gB-Y185G) in the putative fusion loop were evaluated using glycine substitution, and the role of the furin recognition motif (491RSRR494) was assessed by a complete deletion of the furin motif (gBΔ491RSRR494) or a substitution of the arginine residues with glycine (gB491GSGG494) to conserve the carbon backbone.  相似文献   

16.
The gD, gB, and gH/gL glycoprotein quartet constitutes the basic apparatus for herpes simplex virus (HSV) entry into the cell and fusion. gD serves as a receptor binding glycoprotein and trigger of fusion. The conserved gB and gH/gL execute fusion. Central to understanding HSV entry/fusion has become the dissection of how the four glycoproteins engage in cross talk. While the independent interactions of gD with gB and gD with gH/gL have been documented, less is known of the interaction of gB with gH/gL. So far, this interaction has been detected only in the presence of gD by means of a split green fluorescent protein complementation assay. Here, we show that gB interacts with gH/gL in the absence of gD. The gB-gH/gL complex was best detected with a form of gB in which the endocytosis and phosphorylation motif have been deleted; this form of gB persists in the membranes of the exocytic pathway and is not endocytosed. The gB-gH/gL interaction was detected both in whole transfected cells by means of a split yellow fluorescent protein complementation assay and, biochemically, by a pull-down assay. Results with a panel of chimeric forms of gB, in which portions of the glycoprotein bracketed by consecutive cysteines were replaced with the corresponding portions from human herpesvirus 8 gB, favor the view that gB carries multiple sites for interaction with gH/gL, and one of these sites is located in the pleckstrin-like domain 1 carrying the bipartite fusion loop.Entry of herpes simplex virus (HSV) into the cell requires a multipartite apparatus made of a quartet of viral glycoproteins, gD, gB, and the heterodimer gH/gL, and a multistep process that culminates in the fusion of the virion envelope with cell membranes (5, 6, 10, 25, 36, 41). gD serves as the receptor-binding glycoprotein, able to interact with alternative receptors, nectin1, herpesvirus entry mediator (HVEM) and, in some cells, modified heparan sulfate (9, 13, 30, 39). It can also be engineered to accept heterologous ligands able to interact with selected receptors present on tumor cells and thus represents a tool to redirect HSV tropism (21, 28, 29, 42). The heterodimer gH/gL and gB execute fusion and constitute the conserved fusion apparatus across the Herpesviridae family. gB structure in the postfusion conformation shows a trimer with a central coiled coil (19). gH shows elements typical of type 1 fusion glycoproteins, in particular, helices able to interact with membranes, and two heptad repeats potentially able to form a coiled coil (12, 15-18). The discovery that a soluble form of gD enables entry of gD-null virions revealed that gD serves the additional function of triggering fusion and led to the view that the major roles of gD are to sense that virus has reached a receptor-positive cell and to signal to gB and gH/gL that fusion is to be executed (8). Biochemical and structural analyses showed that the C-terminal region of the gD ectodomain, containing the profusion domain required for fusion but not for receptor binding, can undergo major conformational changes (11, 24). Specifically, it binds the gD core and masks or hinders the receptor binding sites, conferring upon the molecule a closed, auto-inhibited conformation (24). Alternatively, it may unfold, conferring upon gD an open conformation. It was proposed that the C terminus of gD unfolds from gD core at receptor binding and recruits gH/gL and gB to a quaternary complex. A key feature of the model was that complexes among the glycoprotein quartet were not preformed, but, rather, they would assemble at the onset of or at fusion execution.Central to understanding HSV entry/fusion has become the dissection of the interactions that occur among the members of the glycoprotein quartet and their significance to the process. A first evidence of a gD-gH/gL interaction was provided in coimmunoprecipitation studies (35). Interactions between gD and gH/gL and between gD and gB were subsequently detected by split green fluorescence protein (GFP) complementation assays, implying that gD can recruit gB and gH/gL independently of one another, a result that argues against a stepwise recruitment of the glycoproteins to gD. In agreement with the proposed model, the interaction between gH/gL and gB was detected in the presence of transfected or soluble gD (1, 2). However, further studies highlighted levels of complexity not foreseen in the initial model. Thus, pull-down analyses showed that the interaction sites in gD with gB and with gH/gL lie in part outside the C-terminal portion of the gD ectodomain, that resting virions contain small amounts of gD in complex with gB and with gH/gL prior to encountering cells, and that de novo gD-gB complexes were not detected at virus entry into the cell (14).A major objective of current studies was to analyze the interaction of gB with gH/gL. We documented the interaction by two independent assays, i.e., by a complementation assay of split yellow fluorescent protein Venus (herein indicated as YFP) (31) in whole cells and, biochemically, by a pull-down assay. The latter was applied recently in our laboratory and is based on the ability of One-Strep-tagged proteins (e.g., gH) to specifically absorb to Strep-Tactin resin and thus retain any protein in complex (14). To preliminarily search for gB regions critical for the interaction with gH/gL, we engineered chimeric forms of HSV-1 and human herpesvirus 8 (HHV-8) gB in which the cysteines were preserved. While none of the chimeras was completely defective in the interaction, the interactions in the chimeras carrying substitutions in the pleckstrin-like domain 1—the domain that carries the bipartite fusion loops—were hampered. Altogether, the results underscore the ability of gB to interact with gH/gL in the absence of gD and favor the view that sites in gB for interaction with gH/gL involve multiple contacts, one of which is located in the domain that carries the fusion loops.  相似文献   

17.
Herpesviruses minimally require the envelope proteins gB and gH/gL for virus entry and cell-cell fusion; herpes simplex virus (HSV) additionally requires the receptor-binding protein gD. Although gB is a class III fusion protein, gH/gL does not resemble any documented viral fusion protein at a structural level. Based on those data, we proposed that gH/gL does not function as a cofusogen with gB but instead regulates the fusogenic activity of gB. Here, we present data to support that hypothesis. First, receptor-positive B78H1-C10 cells expressing gH/gL fused with receptor-negative B78H1 cells expressing gB and gD (fusion in trans). Second, fusion occurred when gH/gL-expressing C10 cells preexposed to soluble gD were subsequently cocultured with gB-expressing B78 cells. In contrast, prior exposure of gB-expressing C10 cells to soluble gD did not promote subsequent fusion with gH/gL-expressing B78 cells. These data suggest that fusion involves activation of gH/gL by receptor-bound gD. Most importantly, soluble gH/gL triggered a low level of fusion of C10 cells expressing gD and gB; a much higher level was achieved when gB-expressing C10 cells were exposed to a combination of soluble gH/gL and gD. These data clearly show that gB acts as the HSV fusogen following activation by gD and gH/gL. We suggest the following steps leading to fusion: (i) conformational changes to gD upon receptor binding, (ii) alteration of gH/gL by receptor-activated gD, and (iii) upregulation of the fusogenic potential of gB following its interaction with activated gH/gL. The third step may be common to other herpesviruses.Herpesviruses enter cells by fusing their envelopes with host cell membranes either by direct fusion at the plasma membrane or by pH-dependent or -independent endocytosis, depending on the target cell (27, 29, 39). Although the entry pathways of other enveloped viruses are similarly diverse (8), all systems for which molecular details have been obtained rely on a single fusion protein (43); herpesviruses are unique in their use of gB and the gH/gL heterodimer as their core fusion machinery (17, 37). Some herpesviruses employ additional receptor-binding glycoproteins, e.g., herpex simplex virus (HSV) gD, and others require gH/gL-associated proteins, e.g., UL128-131 of cytomegalovirus (CMV) (34) or gp42 of Epstein-Barr virus (EBV) (42). This complexity has made it difficult to unravel the mechanism of herpesvirus entry.Ultrastructural and biochemical studies have shown that for HSV entry, binding of gD to one of its receptors, either HVEM or nectin-1 (36), activates the downstream events that drive gB- and gH/gL-dependent fusion (17). The structure of the gB ectodomain (18) bears striking structural homology to the postfusion form of the single fusion protein G of vesicular stomatitis virus (VSV) (33). However, unlike the other class III viral fusion proteins, VSV G and baculovirus gp64 (5), gB requires gH/gL to function in virus-cell and cell-cell fusion (17). A number of investigations support the concept that gH/gL might also be fusogenic (13, 41). Some have suggested that a multiprotein complex comprised of gD, gH/gL, and gB might be assembled to cause fusion (14). Using bimolecular complementation (BiMC), we and others showed that interactions can occur between half enhanced yellow fluorescent protein (EYFP)-tagged gB (e.g., gBn) and tagged gD (e.g., gDc) or between tagged gD and tagged gH (1, 3). However, because these occur in the absence of one of the other essential components, e.g., a receptor, we could not assess their functional significance. Importantly, gH/gL and gB interact with each other only in response to receptor binding by gD (1-3, 12). We subsequently showed that this interaction precedes fusion and is required for it to occur (2). Thus, we were able to conclude that gH/gL must interact with gB, whether transiently or stably, in order for fusion to occur. Whether gD was indeed involved in a multiprotein complex was not clear, nor was the role of gH/gL in promoting fusion initiated by gD-receptor binding. The lack of structural data for gH/gL left its potential role as a fusogen unresolved.However, in 2010, the structure of gH/gL of HSV-2 was solved in collaboration with Chowdary et al. (12). Structurally, gH/gL does not resemble any known viral fusogen, thereby forcing a reconsideration of its function in promoting virus-cell and cell-cell fusion. We hypothesized that gH/gL does not likely act as a cofusogen with gB but rather regulates fusion by gB (12).In this report, we argue that as a regulator of fusion, gH/gL might not have to be in the same membrane as gB in order to regulate its activity, i.e., gH/gL on one cell might promote fusion of gB expressed by another cell, as long as gD and a gD receptor are also present. In support of this, it was recently shown that gH/gL and gB of human cytomegalovirus (HCMV) can cause cell-cell fusion when expressed by distinct cells (in trans) (41). We present evidence that HSV gB and gH/gL can cause cell-cell fusion when they are expressed in trans, a process that requires both gD and a gD receptor. Although the efficiency of fusion in trans is low compared with that of fusion when gB and gH/gL are in cis (as they would be when in the virus), separation of these proteins onto two different cells enabled us to dissect the order in which each protein acts along the pathway to fusion. Moreover, we found that a combination of soluble gD (not membrane bound) and soluble gH/gL (also not membrane bound) could trigger fusion of receptor-bearing cells that had been transfected with the gene for gB. Our data show that gD, gH/gL, and gB act in a series of steps whereby gD is first activated by binding its cell receptor. Previous studies showed that receptor binding causes gD to undergo conformational changes (17). Based on the data in this paper, we propose that these changes then enable gD to activate gH/gL into a form that in turn binds to and activates the fusogenic activity of gB. Although we do not know whether any of these reactions result in the formation of a stable complex, our data suggest that gB is the sole HSV fusogen and that gD and gH/gL act to upregulate cell-cell fusion and most likely virus-cell fusion, leading to HSV entry.  相似文献   

18.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

19.
20.
Transneuronal spread of pseudorabies virus (PRV) is a multistep process that requires several virally encoded proteins. Previous studies have shown that PRV glycoprotein B (gB), a component of the viral fusion machinery, is required for the transmission of infection to postsynaptic, second-order neurons. We sought to identify the gB-mediated step in viral transmission. We determined that gB is not required for the sorting of virions into axons of infected neurons, anterograde transport, or the release of virions from the axon. trans or cis expression of gB on the cell surface was not sufficient for transneuronal spread of the virus; instead, efficient incorporation of gB into virions was required. Additionally, neuron-to-cell spread of PRV most likely does not proceed through syncytial connections. We conclude that, upon gB-independent release of virions at the site of neuron-cell contacts, the virion-incorporated gB/gH/gL fusion complex mediates entry into the axonally contacted cell by fusion of the closely apposed membranes.Alphaherpesviruses, which constitute a subfamily of the family Herpesviridae, include the human pathogens herpes simplex virus (HSV) and varicella-zoster virus and the swine pathogen pseudorabies virus (PRV). These closely related pantropic, neuroinvasive viruses establish latency in the peripheral nervous systems of their natural hosts. During the normal course of infection, periodic viral reactivation leads to recurrent epithelial lesions (38). Although rare in the natural host, transneuronal spread of the virus from the peripheral to the central nervous system (CNS) results in death or debilitating disease, such as encephalitis or keratitis (50). Nonnatural hosts infected with PRV almost invariably experience viral spread to the CNS and succumb to infection (36).Transneuronal spread of alphaherpesviruses is an incompletely understood multistep process that requires the concerted action of viral and cellular proteins. Following replication in the soma of an infected neuron, viral progeny may spread in the retrograde direction to the presynaptic cell or anterogradely to the postsynaptic cell. During anterograde spread of PRV, virus particles are sorted from the neuronal soma into the cognate axon. Upon entering the axonal compartment, virions are transported in a microtubule-dependent manner toward the synaptically connected cell (41). Recent in vitro evidence suggests that boutons en passant and axon termini serve as sites for PRV spread from the axon (13). Additionally, in vivo experiments demonstrate that the transneuronal spread of alphaherpesviruses is remarkably specific, occurring only between synaptically connected cells (15). This property has made alphaherpesviruses invaluable as neural circuit tracers in studies that aim to map the synaptic architecture of the CNS (14). However, the mechanisms that confer such specificity on the spread of infection are not well understood.The study of mechanisms underlying PRV trafficking revealed that the virally encoded membrane proteins Us9, glycoprotein E (gE), and gI are required for the efficient sorting of virions from an infected neuronal cell body into its cognate axon (6, 26, 29, 44, 49). Therefore, in the absence of any of these proteins, infection cannot be transmitted efficiently from a presynaptic to a postsynaptic cell (3, 23). Another viral membrane protein required for the transneuronal spread of PRV is gB (2, 21). Along with gH and gL, this 913-amino-acid type I viral membrane protein is part of the viral fusion machinery, and it is essential for infection by free virions and for cell-to-cell spread in epithelial cultures (25, 35, 37). gB is the most highly conserved glycoprotein in the family Herpesviridae. X-ray crystallography of the HSV type 1 (HSV-1) gB ectodomain revealed a trimeric structure with a high degree of homology to fusion protein G of vesicular stomatitis virus (22). By homology to vesicular stomatitis virus fusion protein G, the ectodomain of gB is predicted to contain fusion loops; indeed, mutation of these regions in HSV-1 gB inhibits its fusion function (20). Mutagenesis of the gB cytoplasmic tail in HSV-1 and PRV revealed its role in the regulation of the fusion function, virion incorporation of gB, and interactions with cellular adaptor proteins (16, 32, 34, 48; summarized in reference 39). Tyrosine motif-mediated interaction of PRV gB with adaptor protein 2 leads to its clathrin-dependent internalization (48). In polarized epithelial cells, gB is targeted to the basolateral surface, presumably via interactions of its cytoplasmic tail with adaptor protein 1B. The basolateral sorting of gB is hypothesized to enhance the efficiency of direct cell-to-cell spread of the virus (16).While its requirement for transneuronal spread is known, the function that gB performs in this process has not been identified. The block in the transmission of gB-null PRV infection from a neuron to an axonally contacted cell may occur during viral trafficking in the neuron, egress from the axon, or entry into the postsynaptic cell. We investigated whether gB participates in the axonal targeting of newly synthesized virions. Our imaging data revealed that gB is not required for axonal sorting of PRV, placing gB function downstream of Us9, gE, and gI. Further experiments showed that gB is not required for virion egress from the infected neuron and that neuron-to-cell spread of PRV does not proceed through syncytia. Importantly, incorporation of gB into virions was required for efficient spread of infection. We conclude that PRV virions are released from axons in a gB-independent manner and enter the postsynaptic cell at synaptic contacts by gB-mediated fusion of the closely apposed viral and cellular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号