首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific binding of the anticoagulants heparin and antithrombin III to the blood clotting cascade factor human thrombin was recorded as a function of time with a Love-wave biosensor array consisting of five sensor elements. Two of the sensor elements were used as references. Three sensor elements were coated with RNA or DNA aptamers for specific binding of human thrombin. The affinity between the aptamers and thrombin, measured using the biosensor, was within the same range as the value of K(D) measured by filter binding experiments. Consecutive binding of the thrombin inhibitors heparin, antithrombin III or the heparin-antithrombin III complex to the immobilized thrombin molecules, and binding of a ternary complex of heparin, anithrombin III, and thrombin to aptamers was evaluated. The experiments showed attenuation of binding to thrombin due to heparin-antithrombin III complex formation. Binding of heparin activated the formation of the inhibitory complex of antithrombin III with thrombin about 2.7-fold. Binding of the DNA aptamer to exosite II appeared to inhibit heparin binding to exosite I.  相似文献   

2.
Aptamers are nucleic acid based molecular recognition elements with a high potential for the theranostics. Some of the aptamers are under development for therapeutic applications as promising antithrombotic agents; and G-quadruplex DNA aptamers, which directly inhibit the thrombin activity, are among them. RA-36, the 31-meric DNA aptamer, consists of two thrombin binding pharmacophores joined with the thymine linker. It has been shown earlier that RA-36 directly inhibits thrombin in the reaction of fibrinogen hydrolysis, and also it inhibits plasma and blood coagulation. Studies of both inhibitory and anticoagulation effects had indicated rather high species specificity of the aptamer. Further R&D of RA-36 requires exploring its efficiency in vivo. Therefore the development of a robust and adequate animal model for effective physiological studies of aptamers is in high current demand. This work is devoted to in vivo study of the antithrombotic effect of RA-36 aptamer. A murine model of thrombosis has been applied to reveal a lag and even prevention of thrombus formation when RA-36 was intravenous bolus injected in high doses of 1.4–7.1 µmol/kg (14–70 mg/kg). A comparative study of RA-36 aptamer and bivalirudin reveals that both direct thrombin inhibitors have similar antithrombotic effects for the murine model of thrombosis; though in vitro bivalirudin has anticoagulation activity several times higher compared to RA-36. The results indicate that both RA-36 aptamer and bivalirudin are direct thrombin inhibitors of different potency, but possible interactions of the thrombin-inhibitor complex with other components of blood coagulation cascade level the physiological effects for both inhibitors.  相似文献   

3.
Exosite 1 on thrombin mediates low affinity binding to sites on the NH2 termini of the alpha- and beta-chains of fibrin. A subpopulation of fibrin molecules (gammaA/gamma'-fibrin) has an alternate COOH terminus of the normal gamma-chain (gammaA/gammaA-fibrin) that binds thrombin with high affinity. To determine the roles of exosites 1 and 2 in the high affinity interaction of thrombin with gammaA/gamma'-fibrin, binding studies were done with thrombin variants and exosite 1- or 2-directed ligands. alpha-Thrombin bound gammaA/gamma'-fibrin via high and low affinity binding sites. A peptide analog of the COOH terminus of the gamma'-chain that binds alpha-thrombin via exosite 2 blocked the high affinity binding of alpha-thrombin to gammaA/gamma'-fibrin, suggesting that the interaction of alpha-thrombin with the gamma'-chain is exosite 2-mediated. In support of this concept, (a) gamma-thrombin, which lacks a functional exosite 1, bound to gammaA/gamma'-fibrin, but not to gammaA/gammaA-fibrin; (b) thrombin R93A/R97A/R101A, an exosite 2-defective variant, bound only to gammaA/gamma'-fibrin via low affinity sites; and (c) exosite 2-directed ligands reduced alpha-thrombin binding to gammaA/gamma'-fibrin. However, several lines of evidence indicate that exosite 1 contributes to the high affinity interaction of thrombin with gammaA/gamma'-fibrin. First, the affinity of gamma-thrombin for gammaA/gamma'-fibrin was lower than that of alpha-thrombin. Second, removal of a low affinity binding site on the beta-chain of gammaA/gamma'-fibrin reduced its affinity for alpha-thrombin. Third, exosite 1-directed ligands reduced alpha-thrombin binding to gammaA/gamma'-fibrin. Taken together, these data suggest that, although exosite 2 mediates the interaction of thrombin with the gamma'-chain of gammaA/gamma'-fibrin, simultaneous ligation of exosite 1 by low affinity binding sites is essential for the high affinity interaction of thrombin with gammaA/gamma'-fibrin.  相似文献   

4.
Thrombin possesses two positively charged surface domains, termed exosites, that orient substrates and inhibitors for reaction with the enzyme. Because the exosites also allosterically modulate thrombin's activity, we set out to determine whether the structure or function of the exosites changes when thrombin forms complexes with antithrombin, heparin cofactor II, or alpha(1)-antitrypsin (M358R), serpins that utilize both, one, or neither of the exosites, respectively. Using a hirudin-derived peptide to probe the integrity of exosite 1, no binding was detected when thrombin was complexed with heparin cofactor II or alpha(1)-antitrypsin (M358R), and the peptide exhibited a 55-fold lower affinity for the thrombin-antithrombin complex than for thrombin. Bound peptide or HD-1, an exosite 1-binding DNA aptamer, was displaced from thrombin by each of the three serpins. Thrombin binding to fibrin also was abrogated when the enzyme was complexed with serpins. These data reveal that, regardless of the initial mode of interaction, the function of exosite 1 is lost when thrombin is complexed by serpins. In contrast, the integrity of exosite 2 is largely retained when thrombin is complexed by serpins, because interaction with heparin or an exosite 2-directed DNA aptamer was only modestly altered. The disorganization of exosite 1 that occurs when thrombin is complexed by serpins is consistent with results of protease sensitivity studies and crystallographic analysis of a homologous enzyme-serpin complex.  相似文献   

5.
Two aptamers that bind separately with exosite I or exosite II of thrombin were studied for better understanding of the binding effect of aptamers on thrombin. CD and intrinsic fluorescence spectra indicated that after binding with aptamers the secondary structure of thrombin seemed unchanged, but the whole conformation of thrombin changed. The binding of aptamers on thrombin also made the catalytic activity of thrombin toward the chromogenic substrate (β-Ala-Gly-Arg-p-nitroanilide diacetate) increased. The present study indicated that the allostery of the two exosites seemed to be independent.  相似文献   

6.
Activation of platelets by the serine protease thrombin is a critical event in haemostasis. This process involves the binding of thrombin to glycoprotein Ibα (GpIbα) and cleavage of protease-activated receptors (PARs). The N-terminal extracellular domain of GpIbα contains an acidic peptide stretch that has been identified as the main thrombin binding site, and both anion binding exosites of thrombin have been implicated in GpIbα binding, but it remains unclear how they are involved. This issue is of critical importance for the mechanism of platelet activation by thrombin. If both exosites bind to GpIbα, thrombin could potentially act as a platelet adhesion molecule or receptor dimerisation trigger. Alternatively, if only a single site is involved, GpIbα may serve as a cofactor for PAR-1 activation by thrombin. To determine the involvement of thrombin's two exosites in GpIbα binding, we employed the complementary methods of mutational analysis, binding studies, X-ray crystallography and NMR spectroscopy. Our results indicate that the peptide corresponding to the C-terminal portion of GpIbα and the entire extracellular domain bind exclusively to thrombin's exosite II. The interaction of thrombin with GpIbα thus serves to recruit thrombin activity to the platelet surface while leaving exosite I free for PAR-1 recognition.  相似文献   

7.
We selected DNA aptamers against insulin and developed an aptameric enzyme subunit (AES) for insulin sensing. The insulin-binding aptamers were identified from a single-strand DNA library which was expected to form various kinds of G-quartet structures. In vitro selection was carried out by means of aptamer blotting, which visualizes the oligonucleotides binding to the target protein at each round. After the 6th round of selection, insulin-binding aptamers were identified. These identified insulin-binding aptamers had a higher binding ability than the insulin-linked polymorphic region (ILPR) oligonucleotide, which can be called a "natural" insulin-binding DNA aptamer. The circular-dichroism (CD) spectrum measurement of the identified insulin-binding DNA aptamers indicated that the aptamers would fold into a G-quartet structure. We also developed an AES by connecting the best identified insulin-binding aptamer with the thrombin-inhibiting aptamer. Using this AES, we were able to detect insulin by measuring the thrombin enzymatic activity without bound/free separation.  相似文献   

8.
Aptamer-based drugs represent an attractive approach in pharmacological therapy. The most studied aptamer, thrombin binding aptamer (TBA), folds into a well-defined quadruplex structure and binds to its target with good specificity and affinity. Modified aptamers with improved biophysical properties could constitute a new class of therapeutic aptamers. In this study we show that the modified thrombin binding aptamer (mTBA), 3′GGT5′-5′TGGTGTGGTTGG3′, which also folds into a quadruplex structure, is more stable than its unmodified counterpart and shows a higher thrombin affinity. The stability of the modified aptamer was investigated using differential scanning calorimetry, and the energetics of mTBA and TBA binding to thrombin was characterized by means of isothermal titration calorimetry (ITC). ITC data revealed that TBA/thrombin and mTBA/thrombin binding stoichiometry is 1:2 for both interactions. Structural models of the two complexes of thrombin with TBA and with mTBA were also obtained and subjected to molecular dynamics simulations in explicit water. Analysis of the models led to an improvement of the understanding of the aptamer-thrombin recognition at a molecular level.  相似文献   

9.
Elevated levels of heterodimeric gamma(A)/gamma' fibrinogen 2 have been associated with an increased incidence of coronary artery disease, whereas a lowered content of gamma' chains is associated with an increased risk of venous thrombosis. Both situations may be related to the unique features of thrombin binding to variant gamma' chains. The gamma' peptide is an anionic fragment that binds thrombin with high affinity without interfering directly with substrate binding. Here we report the crystal structure of thrombin bound to the gamma' peptide, solved at 2.4 A resolution. The complex reveals extensive interactions between thrombin and the gamma' peptide mediated by electrostatic contacts with residues of exosite II and hydrophobic interactions with a pocket in close proximity to the Na(+) binding site. In its binding mode, the gamma' peptide completely overlaps with heparin bound to exosite II. These findings are consistent with functional data and broaden our understanding of how thrombin interacts with fibrinogen at the molecular level.  相似文献   

10.
Aptamers, an emerging class of therapeutics, are DNA or RNA molecules that are selected to bind molecular targets that range from small organic compounds to large proteins. All of the determined structures of aptamers in complex with small molecule targets show that aptamers cage such ligands. In structures of aptamers in complex with proteins that naturally bind nucleic acid, the aptamers occupy the nucleic acid binding site and often mimic the natural interactions. Here we present a crystal structure of an RNA aptamer bound to human thrombin, a protein that does not naturally bind nucleic acid, at 1.9 A resolution. The aptamer, which adheres to thrombin at the binding site for heparin, presents an extended molecular surface that is complementary to the protein. Protein recognition involves the stacking of single-stranded adenine bases at the core of the tertiary fold with arginine side chains. These results exemplify how RNA aptamers can fold into intricate conformations that allow them to interact closely with extended surfaces on non-RNA binding proteins.  相似文献   

11.
Using DNA aptamers selectively recognizing anion-binding exosites 1 and 2 of thrombin as a model, it has been demonstrated that their conjugation by a poly-(dT)-linker (ranging from 5 to 65 nucleotides (nt) in length) to produce aptamer heterodimeric constructs results into affinity enhancement. At the linker lengths ranged from 35 to 55 nt the apparent dissociation constants (K Dapp) measured using the optical biosensor Biacore-3000 for complexes of thrombin with the heterodimeric constructs reached minimum values (K Dapp) = 0.2–0.4 nM), which were approximately 30-fold less than for the complexes with the initial aptamers. A photoaptamer heterodimeric construct was designed connecting photoaptamer and aptamer sequences with the poly-(dT)-linker of 35 nt long. The photoaptamer used could form photo-induced cross-links with the exosite 2 of thrombin and the aptamer could bind to the exosite 1. The (K Dapp value for the photoaptamer construct was approximately 40-fold less than that for the primary photoaptamer (5.3 and 190 nM, respectively). Upon exposure of the equimolar mixtures of thrombin with the photoaptamer construct to the UV radiation at 308 nm the equal yield of the crosslinked complexes was observed at concentrations, which were lower by two orders of magnitude than in the case of the primary photoaptamer. It was found that concurrently with crosslinking to thrombin a photo-induced inactivation of the photoaptamer occurs presumably due to formation of the intermolecular crosslinking.  相似文献   

12.
Aptamers are structured oligonucleotides that recognize molecular targets and can function as direct protein inhibitors. The best-known example is the thrombin-binding aptamer, TBA, a single-stranded 15-mer DNA that inhibits the activity of thrombin, the key enzyme of coagulation cascade. TBA folds as a G-quadruplex structure, as proved by its NMR structure. The X-ray structure of the complex between TBA and human α-thrombin was solved at 2.9-Å resolution, but did not provide details of the aptamer conformation and the interactions with the protein molecule. TBA is rapidly processed by nucleases. To improve the properties of TBA, a number of modified analogs have been produced. In particular, a modified TBA containing a 5′-5′ polarity inversion site, mTBA, has higher stability and higher affinity toward thrombin with respect to TBA, although it has a lower inhibitory activity. We present the crystal structure of the thrombin–mTBA complex at 2.15-Å resolution; the resulting model eventually provides a clear picture of thrombin–aptamers interaction, and also highlights the structural bases of the different properties of TBA and mTBA. Our findings open the way for a rational design of modified aptamers with improved potency as anticoagulant drugs.  相似文献   

13.
以凝血酶适体(aptamer)为例,利用适体和核酸外切酶特性,通过定量PCR扩增建立一种高灵敏的蛋白质检测方法.首先合成3段寡核苷酸序列即凝血酶适体探针,上游连接子和下游连接子.将适体探针与凝血酶温育结合后,再加入核酸外切酶I降解未能结合的探针.接着将保护下来的探针与连接子杂交、连接和对连接产物进行定量PCR .分别建立连接产物标准品浓度与Ct 值的标准曲线和凝血酶浓度与连接产物浓度的标准曲线,通过定量PCR对凝血酶进行定量.结果显示,基于适体的外切酶保护凝血酶检测方法灵敏度较高,连接产物标准品浓度的对数值和Ct 值之间的方程为y =- 2 95x + 33 6 5 (R2 =0. 990 ,P <0 .0 1) ;凝血酶浓度和连接产物浓度对数值之间的方程为y =0 94x - 0 . 2 9(R2 =0 . 998,P <0 . 0 1) ,还对可能影响检测的有关参数举行了探讨.  相似文献   

14.
A new class of divalent thrombin inhibitors is described that contains an α-keto-amide transition-state mimetic linking an active site binding group and a group that binds to the fibrinogen-binding exosite. The X-ray crystallographic structure of the most potent member of this new class, CVS995, shows many features in common with other divalent thrombin inhibitors and clearly defines the transition-state-like binding of the α-keto-amide group. The structure of the active site part of the inhibitor shows a network of water molecules connecting both the side-chain and backbone atoms of thrombin and the inhibitor. Direct peptide analogues of the new transition-state-containing divalent thrombin inhibitors were compared using in vitro assays of thrombin inhibition. There was no direct correlation between the binding constants of the peptides and their α-keto-amide counterparts. The most potent cv-keto-amide inhibitor, CVS995, with a Ki = 1 pM, did not correspond to the most potent divalent peptide and contained a single amino acid deletion in the exosite binding region with respect to the equivalent region of the natural thrombin inhibitor hirudin. The interaction energies of the active site, transition state, and exosite binding regions of these new divalent thrombin inhibitors are not additive.  相似文献   

15.
Phe-pro-arg-chloromethyl ketone-inhibited alpha-thrombin [FPR alpha-thr] retains its fibrinogen recognition site (exosite 1), augments fibrin/fibrinogen [fibrin(ogen)] polymerization, and increases the incorporation of fibrin into clots. There are two 'low-affinity' thrombin-binding sites in each central E domain of fibrin, plus a non-substrate 'high affinity' gamma' chain thrombin-binding site on heterodimeric 'fibrin(ogen) 2' molecules (gamma(A), gamma'). 'Fibrin(ogen) 1' (gamma(A), gamma(A)) containing only low-affinity thrombin-binding sites, showed concentration-dependent FPR alpha-thr enhancement of polymerization, thus indicating that low-affinity sites are sufficient for enhancing polymerization. FPR gamma-thr, whose exosite 1 is non-functional, did not enhance polymerization of either fibrin(ogen)s 1 or 2 and DNA aptamer HD-1, which binds specifically to exosite 1, blocked FPR alpha-thr enhanced polymerization of both types of fibrin(ogen) (1>2). These results showed that exosite 1 is the critical element in thrombin that mediates enhanced fibrin polymerization. Des B beta 1-42 fibrin(ogen) 1, containing defective 'low-affinity' binding sites, was subdued in its FPR alpha-thr-mediated reactivity, whereas des B beta 1-42 fibrin(ogen) 2 (gamma(A), gamma') was more reactive. Thus, the gamma' chain thrombin-binding site contributes to enhanced FPR alpha-thr mediated polymerization and acts through a site on thrombin that is different from exosite 1, possibly exosite 2. Overall, the results suggest that during fibrin clot formation, catalytically-inactivated FPR alpha-thr molecules form non-covalently linked thrombin dimers, which serve to enhance fibrin polymerization by bridging between fibrin(ogen) molecules, mainly through their low affinity sites.  相似文献   

16.
The coagulation cascade is a series of sequential reactions of limited proteolysis of protein factors resulting in generation of thrombin. Thrombin mediates both positive and negative feedback in regulating this cascade by taking part in activation of several factors. Some thrombin inhibitors, by affecting positive feedback, inhibit generation of thrombin itself. In the current study, we used two thrombin inhibitors: argatroban, a low molecular weight reversible competitive inhibitor that binds to the active site, and bivalirudin, a bivalent oligopeptide that blocks the active site and binding center of protein substrates (exosite I). Appearance rate and total amount of thrombin were measured in a thrombin generation assay (TGA) using a fluorescent substrate. We found that argatroban slows the appearance of thrombin and lowers its amount. Bivalirudin also slows appearance of thrombin, but it does not decrease its amount, perhaps because the region being bound to the active site undergoes hydrolysis so that the inhibitor stops binding to thrombin. Many reactions of the coagulation cascade proceed on the surface of phospholipid micelles (PLMs). In the case of argatroban, PLMs do not affect the results of the TGA, whereas for bivalirudin they lower its inhibitory activity. It seems that PLMs stabilize protein complexes (wherein thrombin exosite I is hindered) mediating positive feedback in the coagulation cascade, e.g. complexes of thrombin with factor V and VIII.  相似文献   

17.
RNA aptamers are being developed as inhibitors of macromolecular and cellular function, diagnostic tools, and potential therapeutics. Our understanding of the physical nature of this emerging class of nucleic acid–protein complexes is limited; few atomic resolution structures have been reported for aptamers bound to their protein target. Guided by chemical mapping, we systematically minimized an RNA aptamer (Lys1) selected against hen egg white lysozyme. The resultant 59-nucleotide compact aptamer (Lys1.2minE) retains nanomolar binding affinity and the ability to inhibit lysozyme''s catalytic activity. Our 2.0-Å crystal structure of the aptamer–protein complex reveals a helical stem stabilizing two loops to form a protein binding platform that binds lysozyme distal to the catalytic cleft. This structure along with complementary solution analyses illuminate a novel protein–nucleic acid interface; (1) only 410 Å2 of solvent accessible surface are buried by aptamer binding; (2) an unusually small fraction (∼18%) of the RNA-protein interaction is electrostatic, consistent with the limited protein phosphate backbone contacts observed in the structure; (3) a single Na+ stabilizes the loops that constitute the protein-binding platform, and consistent with this observation, Lys1.2minE–lysozyme complex formation takes up rather than displaces cations at low ionic strength; (4) Lys1.2minE inhibits catalysis of large cell wall substrates but not catalysis of small model substrates; and (5) the helical stem of Lys1.2minE can be shortened to four base pairs (Lys1.2minF) without compromising binding affinity, yielding a 45-nucleotide aptamer whose structure may be an adaptable protein binding platform.  相似文献   

18.
Riboswitches are RNA molecules that regulate gene expression using conformation change, affected by binding of small molecule ligands. Although a number of ligand‐bound aptamer complex structures have been solved, it is important to know ligand‐free conformations of the aptamers in order to understand the mechanism of specific binding by ligands. In this paper, we use dynamics simulations on a series of models to characterize the ligand‐free and ligand‐bound aptamer domain of the c‐di‐GMP class I (GEMM‐I) riboswitch. The results revealed that the ligand‐free aptamer has a stable state with a folded P2 and P3 helix, an unfolded P1 helix and open binding pocket. The first Mg ions binding to the aptamer is structurally favorable for the successive c‐di‐GMP binding. The P1 helix forms when c‐di‐GMP is successive bound. Three key junctions J1/2, J2/3 and J1/3 in the GEMM‐I riboswitch contributing to the formation of P1 helix have been found. The binding of the c‐di‐GMP ligand to the GEMM‐I riboswitch induces the riboswitch's regulation through the direct allosteric communication network in GEMM‐I riboswitch from the c‐di‐GMP binding sites in the J1/2 and J1/3 junctions to the P1 helix, the indirect ones from those in the J2/3 and P2 communicating to P1 helix via the J1/2 and J1/3 media.  相似文献   

19.
20.
Treuheit NA  Beach MA  Komives EA 《Biochemistry》2011,50(21):4590-4596
Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号