首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human cytomegalovirus (HCMV) employs a variety of strategies to modify or evade the host immune response, and natural killer (NK) cells play a crucial role in controlling cytomegalovirus infections in mice and humans. Activation of NK cells through the receptor NKG2D/DAP10 leads to killing of NKG2D ligand-expressing cells. We have previously shown that HCMV is able to down-regulate the surface expression of some NKG2D ligands, ULBP1, ULBP2, and MICB via the viral glycoprotein UL16. Here, we show that the viral gene product UL142 is able to down-regulate another NKG2D ligand, MICA, leading to protection from NK cytotoxicity. UL142 is not able to affect surface expression of all MICA alleles, however, which may reflect selective pressure on the host to thwart viral immune evasion, further supporting an important role for the MICA-NKG2D interaction in immune surveillance.  相似文献   

2.
Consistent with earlier analyses of human cytomegalovirus UL36 mRNA, we find that the UL36 protein is present throughout infection. In fact, it is delivered to the infected cell as a constituent of the virion. Curiously, much less UL36 protein accumulated in cells infected with the AD169 strain of human cytomegalovirus than in cells infected with the Towne or Toledo strain, and localization of the protein in cells infected with AD169 is strikingly different from that in cell infected with the Towne or Toledo strain. The variation in steady-state level of the proteins results from different stabilities of the proteins. The UL36 proteins from the three viral strains differ by several amino acid substitutions. However, this variability is not responsible for the different half-lives because the AD169 and Towne proteins, which exhibit very different half-lives within infected cells, exhibit the same half-life when introduced into uninfected cells by transfection with expression plasmids. We demonstrate that the UL36 protein is nonessential for growth in cultured cells, and we propose that the ability of the virus to replicate in the absence of UL36 function likely explains the striking strain-specific variation in the half-life and intracellular localization of the protein.  相似文献   

3.
刘枫  郑冰蓉  杨举伦  王力  陈玥  赵稳兴 《生物磁学》2011,(19):3621-3624
目的:建立人肿瘤细胞NKG2D配体基因(MICA、MICB、ULBP1、ULBP2、ULBP3)表达的实时荧光定量PCR(real-time fluorescence quantitativePCR)检测方法。方法:根据NCBI基因库中NKG2D配体基因序列,设计合成引物。用Trizo1法从培养的肿瘤细胞(BEC-7402、HeLa、MDA-MB-435、XWLC-05)中提取总RNA,逆转录成eDNA,建立实时荧光定量PCR检测NKG2D配体基因表达的方法,并检测NKG2D配体在肿瘤细胞株中的表达。结果:经过琼脂糖凝胶电泳、熔解曲线和标准曲线分析,用所设计的引物和SYBR GreenI能够特异扩增和定量检测NKG2D配体基因的表达。该方法成功检测4种肿瘤细胞NKG2D配体基因的表达。结论:建立了人NKG2D配体基因表达的实时荧光定量PCR检测方法,为进一步研究人NKG2D配体在肿瘤免疫中的作用提供了有效手段。  相似文献   

4.
目的:建立人肿瘤细胞NKG2D配体基因(MICA、MICB、ULBP1、ULBP2、ULBP3)表达的实时荧光定量PCR(real-timefluorescence quantitative PCR)检测方法。方法:根据NCBI基因库中NKG2D配体基因序列,设计合成引物。用Trizol法从培养的肿瘤细胞(BEC-7402、HeLa、MDA-MB-435、XWLC-05)中提取总RNA,逆转录成cDNA,建立实时荧光定量PCR检测NKG2D配体基因表达的方法,并检测NKG2D配体在肿瘤细胞株中的表达。结果:经过琼脂糖凝胶电泳、熔解曲线和标准曲线分析,用所设计的引物和SYBR Green I能够特异扩增和定量检测NKG2D配体基因的表达。该方法成功检测4种肿瘤细胞NKG2D配体基因的表达。结论:建立了人NKG2D配体基因表达的实时荧光定量PCR检测方法,为进一步研究人NKG2D配体在肿瘤免疫中的作用提供了有效手段。  相似文献   

5.
6.
Human cytomegalovirus (HCMV) virions are structurally complex, and the mechanisms by which they are assembled are poorly understood, especially with respect to the cytoplasmic phase of assembly, during which the majority of the tegument is acquired and final envelopment occurs. These processes occur at a unique cytoplasmic structure called the assembly complex, which is formed through a reorganization of the cellular secretory apparatus. The HCMV tegument protein UL99 (pp28) is essential for viral replication at the stage of secondary envelopment. We previously demonstrated that UL99 interacts with the essential tegument protein UL94 in infected cells as well as in the absence of other viral proteins. Here we show that UL94 and UL99 alter each other's localization and that UL99 stabilizes UL94 in a binding-dependent manner. We have mapped the interaction between UL94 and UL99 to identify the amino acids of each protein that are required for their interaction. Mutation of these amino acids in the context of the viral genome demonstrates that HCMV is completely defective for replication in the absence of the interaction between UL94 and UL99. Further, we demonstrate that in the absence of their interaction, both UL94 and UL99 exhibit aberrant localization and do not accumulate at the assembly complex during infection. Taken together, our data suggest that the interaction between UL94 and UL99 is essential for the proper localization of each protein to the assembly complex and thus for the production of infectious virus.  相似文献   

7.
目的用5-氟尿嘧啶(5-fluorouracil,5-FU)处理HeLa细胞,检测其NKG2D配体MICA的表达及其对NK92细胞杀伤敏感性的变化。方法不同浓度的5-Fu处理HeLa细胞,在不同时间点用半定量PCR及流式细胞术检测HeLa细胞表面的NKG2D配体MICA在RNA及蛋白水平的表达变化情况,用MTT法检测NKG2D抗体封闭NK92细胞的NKG2D受体前后,NK92细胞对HeLa细胞的杀伤作用。结果不同浓度的5.Fu作用于HeLa细胞后,半定量RT—PCR结果显示MICA表达随5-Fu作用浓度增加逐渐增高。而且40μg/ml5.Fu作用于HeLa细胞后随着作用时间的延长(0、8、16、24h)MICA表达增加,流式细胞术检测结果表明,MICA表达的增加主要依赖于未凋亡细胞的MICA表达。在40μg/ml5-FU作用24h,效靶比为2.5:1,5:1,10:1,20:1时都检测到NK92细胞对HeLa细胞的杀伤增强,杀伤作用可部分被NKG2D抗体抑制。结论5-FU能够上调HeLa细胞表面NKG2D配体MICA的表达,增强HeLa细胞对NK92细胞的敏感性,提示化疗联合NK细胞免疫治疗宫颈癌可产生协同作用,提高治疗效果。  相似文献   

8.
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disorder of unknown etiology. IPF is likely the result of complex interrelationships between environmental and host factors, although the genetic risk factors are presently uncertain. Because we have found that some MHC polymorphisms confer susceptibility to IPF, in the present study we aimed to evaluate the role of the MHC class I chain-related gene A (MICA) in the risk of developing the disease. MICA molecular typing was done by reference strand mediated conformation analysis in a cohort of 80 IPF patients and 201 controls. In addition, the lung cellular source of the protein was examined by immunohistochemistry, the expression of the MICA receptor NKG2D in lung cells by flow cytometry and soluble MICA by ELISA. A significant increase of MICA*001 was observed in the IPF cohort (OR = 2.91, 95% CI = 1.04–8.25; pC = 0.03). Likewise, the frequency of the MICA*001/*00201 genotype was significantly increased in patients with IPF compared with the healthy controls (OR = 4.72, 95% CI = 1.15–22.51; pC = 0.01). Strong immunoreactive MICA staining was localized in alveolar epithelial cells and fibroblasts from IPF lungs while control lungs were negative. Soluble MICA was detected in 35% of IPF patients compared with 12% of control subjects (P = 0.0007). The expression of NKG2D was significantly decreased in γδ T cells and natural killer cells obtained from IPF lungs. These findings indicate that MICA polymorphisms and abnormal expression of the MICA receptor NKG2D might contribute to IPF susceptibility.  相似文献   

9.
During the replication of human cytomegalovirus (HCMV) genome, the viral DNA polymerase subunit UL44 plays a key role, as by binding both DNA and the polymerase catalytic subunit it confers processivity to the holoenzyme. However, several lines of evidence suggest that UL44 might have additional roles during virus life cycle. To shed light on this, we searched for cellular partners of UL44 by yeast two-hybrid screenings. Intriguingly, we discovered the interaction of UL44 with Ubc9, an enzyme involved in the covalent conjugation of SUMO (Small Ubiquitin-related MOdifier) to cellular and viral proteins. We found that UL44 can be extensively sumoylated not only in a cell-free system and in transfected cells, but also in HCMV-infected cells, in which about 50% of the protein resulted to be modified at late times post-infection, when viral genome replication is accomplished. Mass spectrometry studies revealed that UL44 possesses multiple SUMO target sites, located throughout the protein. Remarkably, we observed that binding of UL44 to DNA greatly stimulates its sumoylation both in vitro and in vivo. In addition, we showed that overexpression of SUMO alters the intranuclear distribution of UL44 in HCMV-infected cells, and enhances both virus production and DNA replication, arguing for an important role for sumoylation in HCMV life cycle and UL44 function(s). These data report for the first time the sumoylation of a viral processivity factor and show that there is a functional interplay between the HCMV UL44 protein and the cellular sumoylation system.  相似文献   

10.
11.
12.
Earlier studies have revealed that human cytomegalovirus rapidly inhibits the growth of fibroblasts, blocking cell cycle progression at multiple points, including the G1-to-S-phase transition. The present study demonstrates that the UL69 protein, a virus-encoded constituent of the virion, is able to arrest cell cycle progression when introduced into uninfected cells. Expression of the UL69 protein causes U2 OS cells and primary human fibroblasts to accumulate within the G1 compartment of the cell cycle, and serum fails to induce the progression of quiescent human fibroblasts into the S phase when the protein is present. Therefore, the UL69 protein is at least partially responsible for the cell cycle block that is instituted after infection of permissive cells with human cytomegalovirus.  相似文献   

13.
Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.  相似文献   

14.
15.
Reciprocal interactions between NK cells and dendritic cells have been shown to influence activation of NK cells, maturation, or lysis of dendritic cells and subsequent adaptive immune responses. However, little is known about the crosstalk between monocytes and NK cells and the receptors involved in this interaction. We report in this study that human monocytes, upon TLR triggering, up-regulate MHC class I-Related Chain (MIC) A, but not other ligands for the activating immunoreceptor NKG2D like MICB or UL-16 binding proteins 1-3. MICA expression was associated with CD80, MHC class I and MHC class II up-regulation, secretion of proinflammatory cytokines, and apoptosis inhibition, but was not accompanied by release of MIC molecules in soluble form. TLR-induced MICA on the monocyte cell surface was detected by autologous NK cells as revealed by NKG2D down-regulation. Although MICA expression did not render monocytes susceptible for NK cell cytotoxicity, LPS-treated monocytes stimulated IFN-gamma production of activated NK cells which was substantially dependent on MICA-NKG2D interaction. No enhanced NK cell proliferation or cytotoxicity against third-party target cells was observed after stimulation of NK cells with LPS-activated monocytes. Our data indicate that MICA-NKG2D interaction constitutes a mechanism by which monocytes and NK cells as an early source of IFN-gamma may communicate directly during an innate immune response to infections in humans.  相似文献   

16.
17.
18.
The amino-terminal 290 residues of UL44, the presumed processivity factor of human cytomegalovirus DNA polymerase, possess all of the established biochemical activities of the full-length protein, while the carboxy-terminal 143 residues contain a nuclear localization signal (NLS). We found that although the amino-terminal domain was sufficient for origin-dependent synthesis in a transient-transfection assay, the carboxy-terminal segment was crucial for virus replication and for the formation of DNA replication compartments in infected cells, even when this segment was replaced with a simian virus 40 NLS that ensured nuclear localization. Our results suggest a role for this segment in viral DNA synthesis.Human cytomegalovirus (HCMV) encodes a DNA polymerase which is composed of two subunits, UL54, the catalytic subunit, and UL44, an accessory protein (8, 12, 21). UL44 can be divided into two regions, a 290-residue amino (N)-terminal domain and a 143-residue carboxy (C)-terminal segment. The overall fold of the N-terminal domain is markedly similar to that of processivity factors such as herpes simplex virus type 1 (HSV-1) UL42 and eukaryotic proliferating cell nuclear antigen (6, 22, 41), which function to tether catalytic subunits to DNA to ensure long-chain DNA synthesis. In vitro, the N-terminal domain of UL44 is sufficient for all of the established biochemical activities of full-length UL44, including dimerization, binding to double-stranded DNA, interaction with UL54, and stimulation of long-chain DNA synthesis, consistent with a role as a processivity factor (4, 5, 8, 11, 23, 24, 39). In contrast, little is known about the functions of the C-terminal segment of UL44 other than its having been reported from transfection experiments to be important for downregulation of transactivation of a non-HCMV promoter (7) and to contain a nuclear localization signal (NLS) (3). Neither the importance of this NLS nor the role of the entire C-terminal segment has been investigated in HCMV-infected cells.We first examined whether the N-terminal domain is sufficient to support DNA synthesis from HCMV oriLyt in cells using a previously described cotransfection-replication assay (27, 28). A DpnI-resistant fragment, indicative of oriLyt-dependent DNA synthesis, was detected in the presence of wild-type (WT) UL44 (pSI-UL44) (34) and in the presence of the UL44 N-terminal domain (pSI-UL44ΔC290), but not in the presence of UL44-F121A (6, 34), a mutant form previously shown not to support oriLyt-dependent DNA synthesis (34) (Fig. (Fig.1A).1A). Thus, the N-terminal domain alone is sufficient to support oriLyt-dependent DNA synthesis in a transient-transfection assay.Open in a separate windowFIG. 1.Effects of UL44 C-terminal truncations in various assays. (A) HFF cells were cotransfected with the pSP50 plasmid (containing the oriLyt DNA replication origin), a plasmid expressing WT or mutant UL44 (as indicated at the top of the panel), and plasmids expressing all of the other essential HCMV DNA replication proteins. At 5 days posttransfection, total DNA was extracted and cleaved with DpnI to digest unreplicated DNA and a Southern blot assay was performed to detect replicated pSP50. An arrow indicates DpnI-resistant, newly synthesized pSP50 fragments. (B) FLAG-tagged constructs analyzed in panel C are cartooned as horizontal bars. The names of the constructs are above the bars. The lengths of the constructs in amino acids are indicated by the scale at the bottom of the panel. The positions of residues required but not necessarily sufficient for features of the constructs are designated by shading, as indicated at the bottom of the panel. (C) Vero cells were transfected with plasmids expressing WT UL44 (parts a to c), FLAG-UL44 (parts d to f), FLAG-UL44-290stop (parts g to i), or FLAG-UL44-290NLSstop (parts j to l). At 48 h posttransfection, cells were fixed and stained with 4′,6-diamidino-2-phenylindole (DAPI) to visualize the nucleus (blue) (parts a, d, g, and j) and by IF with anti-UL44 (part b) or anti-FLAG (parts e, h, and k) and a secondary antibody conjugated with Alexa 488 (green). Parts c, f, i, and l are merged from images in the left and middle columns. Magnification: ×1,000. (D) Replication kinetics of rescued viruses. Rescued derivatives of UL44 mutant viruses (UL44-290stop-R and UL44-290NLSstop-R) or WT AD169 viruses were used to infect HFF cells at an MOI of 1 PFU/cell. The supernatants from infected cells were collected every 24 h, and viral titers were determined by plaque assays on HFF cells.These results were somewhat unexpected, as the C-terminal segment contains a functional NLS identified in transfection assays (3). We therefore assayed the intracellular localization of WT and mutant UL44 following transient transfection using pcDNA3-derived expression plasmids. Since the anti-UL44 antibodies that we have tested do not recognize the N-terminal domain of UL44, we constructed UL44 genes to encode N-terminally FLAG-tagged full-length UL44 (FLAG-UL44) or a FLAG-tagged N-terminal domain, the latter by inserting three in-frame tandem stop codons after codon 290 (FLAG-UL44-290stop, Fig. Fig.1B).1B). We also constructed a mutant form encoding a FLAG-tagged N-terminal domain, followed by the simian virus 40 (SV40) T-antigen NLS (15-17), followed by three tandem stop codons (FLAG-UL44-290NLSstop, Fig. Fig.1B).1B). Vero cells were transfected with each construct using Lipofectamine 2000, fixed with 4% formaldehyde at 48 h posttransfection, and assayed by indirect immunofluorescence (IF) using anti-UL44 (Virusys) or anti-FLAG antibody (Sigma). We observed mostly nuclear localization of WT UL44 or FLAG-UL44 with either diffuse or more localized intranuclear distribution (Fig. (Fig.1C,1C, parts a to c and d to f, respectively) and some occasional perinuclear staining, which may be due to protein overexpression. In cells expressing FLAG-UL44-290NLSstop, we observed mostly diffuse nuclear localization with little to no perinuclear staining (Fig. (Fig.1C,1C, parts j to l). In cells expressing FLAG-UL44-290stop, we observed mostly cytoplasmic staining, but with some cells exhibiting some nuclear staining (Fig. (Fig.1C,1C, parts g to i), which may explain the ability of truncated UL44 to support oriLyt-dependent DNA replication in a transient-transfection assay (Fig. (Fig.1A1A).We next investigated whether the C-terminal segment of UL44 is necessary for viral replication. We reasoned that we could investigate whether any requirement for this segment could be due to a requirement for an NLS by testing whether the SV40 NLS could substitute for the loss of the UL44 C terminus. We therefore constructed HCMV UL44 mutant viruses by introducing the UL44-290stop and UL44-290NLSstop mutations into a WT AD169 bacterial artificial chromosome (BAC) using two-step red-mediated recombination as previously described (35, 38). We also constructed the same mutants with a FLAG epitope at the N terminus of UL44 (BAC-FLAG-UL44-290stop and BAC-FLAG-UL44-290NLSstop) to monitor UL44 expression, and we constructed rescued derivatives of the mutant BACs by replacing the mutated sequences with WT UL44 sequences, as described previously (35). We introduced BACs into human foreskin fibroblast (HFF) cells using electroporation (35, 38). In several experiments using at least two independent clones for each mutant, cells electroporated with any of the mutant BACs did not exhibit any cytopathic effect (CPE) within 21 days. In contrast, within 7 to 10 days, cells electroporated with the WT AD169 BAC, a BAC expressing WT UL44 with an N-terminal FLAG tag [AD169-BACF44 (35)], or any of the rescued derivatives began displaying a CPE and yielded infectious virus. The rescued derivatives of the nontagged mutants displayed replication kinetics similar to those of the WT virus following infection at a multiplicity of infection (MOI) of 1 PFU/cell (Fig. (Fig.1D).1D). The rescued derivatives of the FLAG-tagged mutants also replicated to WT levels (data not shown). Thus, the replication defects of the mutants were due to the introduced mutations that result in truncated UL44 either with or without the SV40 NLS. We therefore conclude that the C-terminal segment of UL44 is required for viral replication.To investigate the stage of viral replication at which the UL44 C-terminal segment is important, we first assayed the subcellular localization of immediate-early proteins IE1 and IE2 and FLAG-UL44 in cells electroporated with BAC DNA expressing the FLAG-tagged WT or the two mutant UL44s using IF at 2 days postelectroporation. IE1/IE2 could be detected diffusely distributed in nuclei of cells electroporated with all three BACs (Fig. 2b, f, and j). In cells electroporated with AD169-BACF44 or BAC-FLAG-UL44-290NLSstop, FLAG-UL44 was localized largely within the nucleus (Fig. 2c and k, respectively). In contrast, in cells electroporated with BAC-FLAG-UL44-290stop, the FLAG epitope was mainly localized diffusely in the cytoplasm, with only a small amount diffusely distributed in the nucleus (Fig. (Fig.2g).2g). These data indicate that IE proteins expressed from mutant BACs are properly localized and suggest that without its C-terminal segment, which includes the NLS identified in transfection assays (3), UL44 cannot efficiently localize to the nucleus in HCMV-infected cells. However, addition of the SV40 NLS was sufficient to efficiently localize the N-terminal domain of UL44 to the nucleus. Thus, the requirement for the C-terminal segment of UL44 for viral replication is not due solely to its NLS.Open in a separate windowFIG. 2.Localization of IE1/IE2 and FLAG-UL44 proteins in electroporated cells. HFF cells were electroporated with AD169-BACF44 (panels a to d), BAC-UL44-290stop (panels e to h), or BAC-FLAG-UL44-290NLSstop (panels i to l). At 48 h posttransfection, cells were fixed and probed with anti-IE1/2 (Virusys) or anti-FLAG (Sigma). Secondary antibodies coupled to fluorophores were used for visualization of IE1/2 (anti-mouse Alexa 594; panels b, f, and j) and FLAG (anti-rabbit Alexa 488; panels c, g, and k) antibodies. DAPI was used to counterstain the nucleus (panels a, e, and i). Panels d, h, and l are merged images of the panels in the other columns. Magnification: ×1,000.We next investigated if the block in viral replication due to the loss of the C-terminal segment could be attributed to a defect in viral DNA synthesis. Cells were electroporated with AD169-BACF44 or BAC-FLAG-UL44-290NLSstop, and viral DNA accumulation was assayed by quantitative real-time PCR at various times postelectroporation (Fig. (Fig.3)3) as previously described (32, 35). In HFFs electroporated with AD169-BACF44, viral DNA began to accumulate above the input levels by 8 days postelectroporation and increased over time, with as much as a 350-fold increase over the input DNA level by 18 days postelectroporation. In contrast, levels of viral DNA in cells electroporated with BAC-UL44-290NLSstop did not increase above input levels, even by 18 days postelectroporation. These data are consistent with the notion that the UL44 C-terminal segment is required for viral DNA synthesis, although we caution that the assay did not detect DNA synthesis from AD169-BACF44 until day 8, when viral spread had likely occurred (see below).Open in a separate windowFIG. 3.Quantification of viral DNA accumulation in electroporated cells. HFF cells were electroporated with AD169-BACF44 or BAC-FLAG-UL44-290NLSstop, and total DNA was harvested on the days postelectroporation indicated. Viral DNA accumulation was assessed by real-time PCR by assessing levels of the UL83 gene and normalizing to levels of the cellular β-actin gene (32). The data are presented as the fold increase in normalized viral DNA levels over the amount of input DNA (day 1).We also analyzed the localization patterns of UL44 and UL57, the viral single-stranded DNA binding protein, which is a marker for viral DNA replication compartments (1, 2, 18, 26, 29). At 8 days postelectroporation with AD169-BACF44, UL57 and FLAG-UL44 largely colocalized within a single large intranuclear structure that likely represents a fully formed replication compartment, with some cells containing multiple smaller globular structures within the nucleus that likely represent earlier stages of replication compartments (1, 2, 29) (Fig. 4a to d). Neighboring cells also stained for UL57 and FLAG-UL44, indicative of viral spread. In contrast, in cells electroporated with BAC-FLAG-UL44-290NLSstop, UL57 (Fig. (Fig.4f)4f) was found in either punctate or small globular structures. This pattern of UL57 staining resembled that observed at very early stages of viral DNA synthesis in HCMV-infected cells, but the structures were larger and less numerous than those observed in HCMV-infected cells in the presence of a viral DNA polymerase inhibitor (2, 29). Staining for FLAG-UL44 was nuclear and largely diffuse, with some areas of more concentrated staining (Fig. (Fig.4g),4g), which could also be observed in some cells at day 2 postelectroporation (Fig. (Fig.3k).3k). This pattern of UL44 localization was generally similar to that observed in HCMV-infected cells at very early stages of infection or when HCMV DNA synthesis is blocked and also similar to the pattern in cells transfected with a UL84 null mutant BAC (2, 29, 33, 40). Importantly, little colocalization of UL57 and UL44 was observed, with areas of concentration of UL57 or UL44 occupying separate regions in the nuclei of these cells (Fig. (Fig.4h).4h). We are unaware of any other examples of this pattern of localization of these proteins in HCMV-infected cells and suggest that it may be a result of the loss of the UL44 C-terminal segment. These results indicate that this segment is important for efficient formation of viral DNA replication compartments, again consistent with a requirement for this portion of UL44 for viral DNA synthesis.Open in a separate windowFIG. 4.Localization of UL57 and FLAG-UL44 proteins in electroporated cells. HFF cells were electroporated with AD169-BACF44 (panels a to d) or BAC-FLAG-UL44-290NLSstop (panels e to h). At 8 days posttransfection, cells were fixed and then stained with antibodies specific for UL57 (Virusys) or FLAG (Sigma), followed by a secondary antibody coupled to fluorophores to detect UL57 (anti-mouse Alexa 594; panels b and f) and FLAG (anti-rabbit Alexa 488; panels c and g) antibodies. DAPI stain was used to counterstain the nucleus (panels a and e). Panels d and h are merged images of the panels in the other columns. White arrows identify punctate UL57 staining. Yellow arrows identify areas of concentration of FLAG-UL44 staining. Magnification: ×1,000.Our results, taken together, argue for a role for the C-terminal segment of UL44 in HCMV-infected cells in efficient nuclear localization of UL44 and a role in viral DNA synthesis beyond its role in nuclear localization. It is possible that this segment interacts with host or viral proteins involved in DNA replication. Of the various proteins reported to interact with UL44 (10, 19, 30, 31, 35-37), interesting candidates include the host protein nucleolin, which has been shown to associate with UL44 and be important for viral DNA synthesis (35), and the viral UL112-113 proteins, which in transfection assays were shown to recruit UL44 to early sites of DNA replication (2, 29, 33). After this paper was submitted, Kim and Ahn reported that the C-terminal segment of UL44 is necessary for interaction with a UL112-113 protein and, similar to our findings, crucial for viral replication (19). However, contrary to our findings, they reported that this segment was not necessary for efficient nuclear localization of UL44 (19). It may well be that the C-terminal segment of UL44 also has some other role later in viral replication, perhaps in gene expression, as has been suggested (7, 13, 14).A virus with a deletion of the C-terminal 150 amino acids of the HSV-1 polymerase accessory subunit UL42 displays no obvious defect in replication (9). Thus, it appears that HSV-1 and HCMV exhibit different requirements for the C-terminal segments of their respective accessory proteins. This and many other differences between these functionally and structurally orthologous proteins (5, 6, 20, 24, 25) suggest considerable selection for different features during evolution.  相似文献   

19.
外部引导序列(EGSs)是mRNA靶序列互补并引导RNaseP切割的小RNA片段。我们设计与人巨细胞病毒HCMV(Human Cytomegalovirus)UL54基因mRNA序列互补的EGSs,将其与大肠杆菌来源RNaseP催化核心M1RNA构建成M1GS核酶。通过对UL54基因亚克降片转录产物体外切割研究,证实该核酶具备对UL54 mRNA片段的特异切割能力,可以发展成为一种抗病毒试剂。  相似文献   

20.
RNase P核酶对人巨细胞病毒UL54基因mRNA体外切割作用   总被引:2,自引:0,他引:2  
外部引导序列(EGSs)是mRNA靶序列互补并引导RNase P切割的小RNA片段.我们设计与人巨细胞病毒HCMV(Human Cytomegalovirus) UL54基因mRNA序列互补的EGSs,将其与大肠杆菌来源RNase P催化核心M1 RNA构建成M1GS核酶.通过对UL54基因亚克隆片转录产物体外切割研究,证实该核酶具备对UL54 mRNA片段的特异切割能力,可以发展成为一种抗病毒试剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号