首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autotransporters (ATs) are the largest group of proteins secreted by Gram-negative bacteria and include many virulence factors from human pathogens. ATs are synthesized as large precursors with a C-terminal domain that is inserted in the outer membrane (OM) and is essential for the translocation of an N-terminal passenger domain to the extracellular milieu. Several mechanisms have been proposed for AT secretion. Self-translocation models suggest transport across a hydrophilic channel formed by an internal pore of the β-barrel or by the oligomerization of C-terminal domains. Alternatively, an assisted-translocation model suggests that transport employs a conserved machinery of the bacterial OM such as the Bam complex. In this work we have investigated AT secretion by carrying out a comparative study to analyze the conserved biochemical and functional features of different C-terminal domains selected from ATs of gammaproteobacteria, betaproteobacteria, alphaproteobacteria, and epsilonproteobacteria. Our results indicate that C-terminal domains having an N-terminal α-helix and a β-barrel constitute functional transport units for the translocation of peptides and immunoglobulin domains with disulfide bonds. In vivo and in vitro analyses show that multimerization is not a conserved feature in AT C-terminal domains. Furthermore, we demonstrate that the deletion of the conserved α-helix severely impairs β-barrel folding and OM insertion and thereby blocks passenger domain secretion. These observations suggest that the AT β-barrel without its α-helix cannot form a stable hydrophilic channel in the OM for protein translocation. The implications of our data for an understanding of AT secretion are discussed.The classical autotransporter (AT) family, also known as the type Va protein secretion system, represents the largest group of proteins secreted by Gram-negative bacteria and includes many virulence factors from important human pathogens (10, 17). Bacteria produce AT proteins as large polypeptide precursors, with their virulence activity (e.g., cytotoxins, adhesins, and proteases, etc.) present in a passenger domain flanked by an N-terminal signal peptide (sp) for Sec-dependent translocation across the bacterial inner membrane (IM) and a C-terminal domain of ∼30 to 40 kDa for insertion into the bacterial outer membrane (OM) (see Fig. 2A). A self-translocation model was originally proposed to explain the secretion mechanism of AT proteins across the OM, based mostly on data obtained with the IgA protease (IgAP) from Neisseria gonorrhoeae (43). In this model the C-terminal domain of ATs was supposed to fold in the OM as a β-barrel protein with an internal hydrophilic pore that could be used for the translocation of the passenger domain. The finding that the B subunit of cholera toxin (CtxB) should not have disulfide bonds for its secretion when fused as a heterologous passenger to the C-terminal domain of IgAP (30, 31) indirectly suggests passenger translocation in an unfolded conformation through a narrow channel expected for a β-barrel. Similar observations with the C-terminal domains of IcsA from Shigella flexneri (56) and AIDA-I from Escherichia coli (36) supported this model.Previous work done by our group challenged the original self-translocation model, since a 45-kDa C-terminal fragment of IgAP was shown to form oligomeric ring-shaped complexes with a central hydrophilic pore of ∼2 nm (63). In addition, this C-terminal fragment of IgAP was found to translocate folded immunoglobulin (Ig) domains with disulfide bonds to the bacterial surface, indicating that at least a ∼2-nm pore was being used for passenger secretion (61, 62). These data led us to propose a “multimeric” version of the self-translocation model in which the secretion of the passenger may occur through the central channel assembled by the oligomerization of the C-terminal domains in the OM. Studies with IcsA from S. flexneri (7, 46, 47, 64) and EspP from E. coli (53) also provided evidence indicating that native and heterologous passengers adopt folded or at least partially folded conformations in the periplasm before OM translocation. Conversely, a limited capacity for the translocation of folded native passengers with engineered disulfide bonds has been reported by studies with Hbp from E. coli (23) and pertactin from Bordetella pertussis (24). Crystallographic structures of the C-terminal domains of NalP from Neisseria meningitidis (41) and EspP from E. coli (2) revealed distinct β-barrel folding with 12 amphipathic β-strands and one N-terminal α-helix filling the central hydrophilic pore of the β-barrel. No indication of oligomerization was obtained with the crystallographic data. In addition, the putative protein-conducting channels of the EspP and NalP β-barrels (of ∼1 nm in diameter) were found to be closed due to the presence of the internal α-helix, which would impede the transport of passenger polypeptides (either folded or unfolded) through the reported structures. Thus, an alternative model was proposed for the assisted translocation of ATs (3, 41), in which the protein-conducting channel for secretion across the OM would be provided by the conserved Bam complex. The Bam complex is required for the insertion of β-barrel proteins (32), and the depletion of its essential component BamA (formerly YaeT in E. coli and Omp85 in Neisseria) prevents the insertion of several ATs in the OM (i.e., IcsA and SepA from S. flexneri, AIDA-I and Hbp from E. coli, and BrkA from B. pertussis) (21, 50). BamA was reported to form hydrophilic pores in lipid membranes in vitro (54) and to cross-link in vivo with the passenger domain of a slow-secretion mutant of EspP (19), which supports a role for BamA in translocation.Despite the above-described progress made in our understanding of ATs, their actual molecular mechanism of secretion remains uncertain. This is partially because the reported information is based on studies with different model AT proteins and nonhomogenous experimental approaches used by different laboratories, which sometimes produce data that are difficult to compare or may be conflicting. Here, we report a comparative study to determine conserved biochemical and functional properties found in AT C-terminal domains. Following a uniform experimental approach for six AT C-terminal domains selected from the gammaproteobacteria, betaproteobacteria, alphaproteobacteria, and epsilonproteobacteria, we have investigated their capacities for the secretion of peptides and globular domains, their pore formation and oligomerization properties, and their requirement for an N-terminal α-helix for AT function and C-terminal domain stability. Our results shed light on the secretion mechanism of ATs from the conserved structural features found in their C-terminal domains.  相似文献   

2.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

3.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

4.
A bioinformatic analysis of nearly 400 genomes indicates that the overwhelming majority of bacteria possess homologs of the Escherichia coli proteins FtsL, FtsB, and FtsQ, three proteins essential for cell division in that bacterium. These three bitopic membrane proteins form a subcomplex in vivo, independent of the other cell division proteins. Here we analyze the domains of E. coli FtsL that are involved in the interaction with other cell division proteins and important for the assembly of the divisome. We show that FtsL, as we have found previously with FtsB, packs an enormous amount of information in its sequence for interactions with proteins upstream and downstream in the assembly pathway. Given their size, it is likely that the sole function of the complex of these two proteins is to act as a scaffold for divisome assembly.The division of an Escherichia coli cell into two daughter cells requires a complex of proteins, the divisome, to coordinate the constriction of the three layers of the Gram-negative cell envelope. In E. coli, there are 10 proteins known to be essential for cell division; in the absence of any one of these proteins, cells continue to elongate and to replicate and segregate their chromosomes but fail to divide (29). Numerous additional nonessential proteins have been identified that localize to midcell and assist in cell division (7-9, 20, 25, 34, 56, 59).A localization dependency pathway has been determined for the 10 essential division proteins (FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN), suggesting that the divisome assembles in a hierarchical manner (29). Based on this pathway, a given protein depends on the presence of all upstream proteins (to the left) for its localization and that protein is then required for the localization of the downstream division proteins (to the right). While the localization dependency pathway of cell division proteins suggests that a sequence of interactions is necessary for divisome formation, recent work using a variety of techniques reveals that a more complex web of interactions among these proteins is necessary for a functionally stable complex (6, 10, 19, 23, 24, 30-32, 40). While numerous interactions have been identified between division proteins, further work is needed to define which domains are involved and which interactions are necessary for assembly of the divisome.One subcomplex of the divisome, composed of the bitopic membrane proteins FtsB, FtsL, and FtsQ, appears to be the bridge between the predominantly cytoplasmic cell division proteins and the predominantly periplasmic cell division proteins (10). FtsB, FtsL, and FtsQ share a similar topology: short amino-terminal cytoplasmic domains and larger carboxy-terminal periplasmic domains. This tripartite complex can be divided further into a subcomplex of FtsB and FtsL, which forms in the absence of FtsQ and interacts with the downstream division proteins FtsW and FtsI in the absence of FtsQ (30). The presence of an FtsB/FtsL/FtsQ subcomplex appears to be evolutionarily conserved, as there is evidence that the homologs of FtsB, FtsL, and FtsQ in the Gram-positive bacteria Bacillus subtilis and Streptococcus pneumoniae also assemble into complexes (18, 52, 55).The assembly of the FtsB/FtsL/FtsQ complex is important for the stabilization and localization of one or more of its component proteins in both E. coli and B. subtilis (11, 16, 18, 33). In E. coli, FtsB and FtsL are codependent for their stabilization and for localization to midcell, while FtsQ does not require either FtsB or FtsL for its stabilization or localization to midcell (11, 33). Both FtsL and FtsB require FtsQ for localization to midcell, and in the absence of FtsQ the levels of full-length FtsB are significantly reduced (11, 33). The observed reduction in full-length FtsB levels that occurs in the absence of FtsQ or FtsL results from the degradation of the FtsB C terminus (33). However, the C-terminally degraded FtsB generated upon depletion of FtsQ can still interact with and stabilize FtsL (33).While a portion of the FtsB C terminus is dispensable for interaction with FtsL and for the recruitment of the downstream division proteins FtsW and FtsI, it is required for interaction with FtsQ (33). Correspondingly, the FtsQ C terminus also appears to be important for interaction with FtsB and FtsL (32, 61). The interaction between FtsB and FtsL appears to be mediated by the predicted coiled-coil motifs within the periplasmic domains of the two proteins, although only the membrane-proximal half of the FtsB coiled coil is necessary for interaction with FtsL (10, 32, 33). Additionally, the transmembrane domains of FtsB and FtsL are important for their interaction with each other, while the cytoplasmic domain of FtsL is not necessary for interaction with FtsB, which has only a short 3-amino-acid cytoplasmic domain (10, 33).In this study, we focused on the interaction domains of FtsL. We find that, as with FtsB, the C terminus of FtsL is required for the interaction of FtsQ with the FtsB/FtsL subcomplex while the cytoplasmic domain of FtsL is involved in recruitment of the downstream division proteins. Finally, we provide a comprehensive analysis of the presence of FtsB, FtsL, and FtsQ homologs among bacteria and find that the proteins of this complex are likely more widely distributed among bacteria than was previously thought.  相似文献   

5.
Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.Humic substances can play an important role in the reduction of Fe(III), and possibly other metals, in sedimentary environments (6, 34). Diverse dissimilatory Fe(III)-reducing microorganisms (3, 5, 7, 9, 11, 19-22, 25) can transfer electrons onto the quinone moieties of humic substances (38) or the model compound anthraquinone-2,6-disulfonate (AQDS). Reduced humic substances or AQDS abiotically reduces Fe(III) to Fe(II), regenerating the quinone. Electron shuttling in this manner can greatly increase the rate of electron transfer to insoluble Fe(III) oxides, presumably because soluble quinone-containing molecules are more accessible for microbial reduction than insoluble Fe(III) oxides (19, 22). Thus, catalytic amounts of humic substances have the potential to dramatically influence rates of Fe(III) reduction in soils and sediments and can promote more rapid degradation of organic contaminants coupled to Fe(III) reduction (1, 2, 4, 10, 24).To our knowledge, the mechanisms by which Fe(III)-reducing microorganisms transfer electrons to humic substances have not been investigated previously for any microorganism. However, reduction of AQDS has been studied using Shewanella oneidensis (17, 40). Disruption of the gene for MtrB, an outer membrane protein required for proper localization of outer membrane cytochromes (31), inhibited reduction of AQDS, as did disruption of the gene for the outer membrane c-type cytochrome, MtrC (17). However, in each case inhibition was incomplete, and it was suggested that there was a possibility of some periplasmic reduction (17), which would be consistent with the ability of AQDS to enter the cell (40).The mechanisms for electron transfer to humic substances in Geobacter species are of interest because molecular studies have frequently demonstrated that Geobacter species are the predominant Fe(III)-reducing microorganisms in sedimentary environments in which Fe(III) reduction is an important process (references 20, 32, and 42 and references therein). Geobacter sulfurreducens has routinely been used for investigations of the physiology of Geobacter species because of the availability of its genome sequence (29), a genetic system (8), and a genome-scale metabolic model (26) has made it possible to take a systems biology approach to understanding the growth of this organism in sedimentary environments (23).  相似文献   

6.
7.
8.
9.
10.
11.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

12.
13.
14.
15.
16.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

17.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

18.
Tripartite efflux pumps found in Gram-negative bacteria are involved in antibiotic resistance and toxic-protein secretion. In this study, we show, using site-directed mutational analyses, that the conserved residues located in the tip region of the α-hairpin of the membrane fusion protein (MFP) AcrA play an essential role in the action of the tripartite efflux pump AcrAB-TolC. In addition, we provide in vivo functional data showing that both the length and the amino acid sequence of the α-hairpin of AcrA can be flexible for the formation of a functional AcrAB-TolC pump. Genetic-complementation experiments further indicated functional interrelationships between the AcrA hairpin tip region and the TolC aperture tip region. Our findings may offer a molecular basis for understanding the multidrug resistance of pathogenic bacteria.The tripartite efflux pumps that are found in Gram-negative bacteria have been implicated in their intrinsic resistance to diverse antibiotics, as well as their secretion of protein toxins (10, 12, 24, 31). The bacterial efflux pump is typically assembled from three essential components: an inner membrane transporter (IMT), an outer membrane factor (OMF), and a periplasmic membrane fusion protein (MFP) (10, 12, 24, 31). The IMT provides energy for transporters, like the resistance nodulation cell division (RND) type and the ATP-binding cassette (ABC) type (18). The OMF connects to the IMT in the periplasm, providing a continuous conduit to the external medium. This conduit uses the central channel, which is opened only when in complex with other components (11, 18). The third essential component of the pump is the MFP, which is an adapter protein for the direct interaction between the IMT and OMF in the periplasm (32). The MFP consists of four linearly arranged domains: the membrane-proximal (MP) domain, the β-barrel domain, the lipoyl domain, and the α-hairpin domain (1, 6, 16, 22, 30). The MFP α-hairpin domain is known to interact with OMF, while the other domains are related to interaction with the IMT (15, 22).The Escherichia coli AcrAB-TolC pump, comprised of RND-type IMT-AcrB, MFP-AcrA, and OMF-TolC, is the major contributor to the multidrug resistance phenotype of the bacteria (7, 8, 25). The AcrAB-TolC pump, together with its homolog, the Pseudomonas aeruginosa MexAB-OprM pump (7, 13), has primarily been studied in order to elucidate the molecular mechanisms underlying the actions of the tripartite efflux pumps. Whereas the crystal structures of these proteins have revealed that RND-type IMTs (AcrB and MexB) and OMFs (TolC and OprM) are homotrimeric in their functional states (1, 6, 11, 16, 22, 30), the oligomeric state of MFP remains a topic of debate, despite the presence of crystal structures (3, 5, 17, 18, 22, 27, 30).MacAB-TolC, which was identified as a macrolide-specific extrusion pump (9), has also been implicated in E. coli enterotoxin secretion (29). While MFP-MacA shares high sequence similarity with AcrA and MexA, IMT-MacB is a homodimeric ABC transporter that uses ATP hydrolysis as the driving force (9, 14). MacA forms hexamers, and the funnel-like hexameric structure of MacA is physiologically relevant for the formation of a functional MacAB-TolC pump (30). Although the α-hairpins from AcrA and MacA are commonly involved in the interaction with TolC (30, 32), the interaction mode between AcrA and TolC remains to be elucidated. In this study, we provide experimental evidence showing that the conserved amino acid residues in the AcrA hairpin tip region is important for the action of the AcrAB-TolC efflux pump and is functionally related to the TolC aperture tip region.  相似文献   

19.
ChvE is a chromosomally encoded protein in Agrobacterium tumefaciens that mediates a sugar-induced increase in virulence (vir) gene expression through the activities of the VirA/VirG two-component system and has also been suggested to be involved in sugar utilization. The ChvE protein has homology to several bacterial periplasmic sugar-binding proteins, such as the ribose-binding protein and the galactose/glucose-binding protein of Escherichia coli. In this study, we provide direct evidence that ChvE specifically binds the vir gene-inducing sugar d-glucose with high affinity. Furthermore, ChvE mutations resulting in altered vir gene expression phenotypes have been isolated and characterized. Three distinct categories of mutants have been identified. Strains expressing the first class are defective in both virulence and d-glucose utilization as a result of mutations to residues lining the sugar-binding cleft. Strains expressing a second class of mutants are not adversely affected in sugar binding but are defective in virulence, presumably due to impaired interactions with the sensor kinase VirA. A subset of this second class of mutants includes variants of ChvE that also result in defective sugar utilization. We propose that these mutations affect not only interactions with VirA but also interactions with a sugar transport system. Examination of a homology model of ChvE shows that the mutated residues associated with the latter two phenotypes lie in two overlapping solvent-exposed sites adjacent to the sugar-binding cleft where conformational changes associated with the binding of sugar might have a maximal effect on ChvE''s interactions with its distinct protein partners.Virulent strains of Agrobacterium tumefaciens contain the tumor-inducing (Ti) plasmid that carries virulence (vir) operons. Products of vir operons are involved in infecting wound sites of dicotyledonous plants and initiating tumor formation. The expression of vir genes in A. tumefaciens is activated by plant-released signals, namely, phenolic derivatives, acidic pH, and monosaccharides (for a review, see reference 6), via the combined activities of the periplasmic protein ChvE and the VirA/VirG two-component regulatory system. Upon perception of these plant signals, autophosphorylated VirA, a transmembrane histidine kinase, transfers a phosphoryl group to VirG, a response regulator, and then the phosphorylated VirG activates the expression of vir genes by binding vir boxes in their promoters (8, 19, 24, 31, 52).Perception and transduction of the sugar signals is crucial to the virulence of A. tumefaciens: strains lacking ChvE, a chromosomally encoded putative sugar-binding protein, are significantly less virulent than wild-type strains (17, 18). Previous studies have shown that, in fact, sugar signaling is neither sufficient for nor absolutely required for vir gene expression. Rather, sugars vastly increase both the sensitivity of VirA to phenol derivatives, such as acetosyringone (AS), and the maximal levels of vir gene expression observed at saturating levels of such compounds (for a review, see reference 26). The periplasmic domain of VirA is required for transduction of the sugar and pH signals (7, 8, 16, 41), whereas the so-called “linker” domain, located in the cytoplasm between the second transmembrane domain and the kinase domain, is required for perception and transduction of the phenolic signals (8, 46, 47).A working model for the ChvE/sugar/VirA signaling pathway suggests that monosaccharide-bound ChvE interacts with the periplasmic domain of VirA to relieve periplasmic repression, resulting in maximal sensitivity of VirA to phenolic signals (7, 11, 32, 41). However, limited evidence has been presented to reveal how ChvE recognizes monosaccharides and how it interacts with the periplasmic domain of VirA. Shimoda et al. (41) identified a mutant chvE allele [chvE(T211M)] that is able to suppress a sugar-insensitive virA allele [virA(E210V)], thereby restoring the sugar-sensing ability. The suppressing effect of chvE(T211M) was then proposed to be the result of the specific restoration of the capacity of VirAE210V to bind ChvET211M. However, ChvET211M also activated wild-type VirA in the absence of sugars (32), suggesting that this mutant may not be a site-specific suppressor of VirAE210V. Based on a homology model of ChvE, a recent study (16) does predict, though, that the residue T211 is located on the surface of the ChvE protein, consistent with the model that T211 is in a position to interact with the periplasmic domain of VirA.Based on sequence similarity, ChvE is a member of the periplasmic sugar-binding protein (PSBP) family. The structures of some PSBPs, including two ChvE homologues in Escherichia coli, ribose-binding protein (RBP) and glucose/galactose-binding protein (GBP), have been solved. The family of PSBPs shares very similar structural features, and each of them contains two similar but distinct globular domains connected by a flexible hinge (38). A sugar-binding site is located at the cleft between the two domains. PSBPs play an important role in active sugar transport, and some of them also serve as an initial receptor for sugar chemotaxis (45). A wealth of evidence has demonstrated that some specialized regions located on the surfaces of PSBPs are important for transport and chemotactic functions. In the case of RBP, four distinct regions spanning the N-terminal and C-terminal domains are involved in interaction with its permease (a transport partner), its chemotransducer (a chemotactic partner), or both (5, 15). In GBP, one residue was identified as being specifically involved in chemotaxis but not transport (36, 49). For maltose-binding protein (MBP), which is also a member of the PSBP family, two well-defined regions located on each domain of the protein are involved in interaction with its chemotransducer (54). These regions partially overlap with the regions involved in interaction with its permease (25, 54). Structural analysis indicates that both domains of MBP have direct interactions with its transport partners (35).ChvE also appears to be a highly versatile protein: not only does it play an important role in virulence, but as in the case of the PSPBs described above, it has been indicated to be a primary receptor for transport of and chemotaxis toward some sugars (7). This raises important biological/biochemical questions. How can ChvE interact with three presumably different periplasmic components of systems that are respectively involved in virulence, sugar utilization, and chemotaxis? How are the interactions of ChvE with these periplasmic components structurally segregated: do the interactions occur on the same or different regions of ChvE? To address these issues, we employed genetic and biophysical approaches to identify the residues of ChvE involved in sugar utilization versus the residues involved in virulence. The residues of both groups were mapped onto a homology model of ChvE based on a high-resolution crystal structure of E. coli GBP (PDB ID, 2ipn). Our results identify an extended surface spanning both the N-terminal and C-terminal domains of ChvE that is essential for interacting with VirA and that partially overlaps the surface responsible for the interaction of ChvE with a putative ABC sugar transport protein.  相似文献   

20.
Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by >1,000-fold. [3H]palmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence.Streptococcus sanguinis is a member of the viridans group of streptococci and is a primary colonizer of teeth (8). The viridans species and, in particular, S. sanguinis (15, 18) are a leading cause of infective endocarditis, a serious infection of the valves or lining of the heart (48). Damage to the heart resulting from rheumatic fever or certain congenital heart defects dramatically increases the risk of developing endocarditis (48, 71). The damage is thought to result in the formation of sterile cardiac “vegetations” composed of platelets and fibrin (48) that can be colonized by certain bacteria during periods of bacteremia. This view is supported by animal studies in which formation of sterile vegetation by cardiac catheterization is required for the efficient establishment of streptococcal endocarditis (17). Prevention of infective endocarditis currently relies upon prophylactic administration of antibiotics prior to dental or other surgical procedures that are likely to produce bacteremia. The growing realization that oral bacteria such as S. sanguinis can enter the bloodstream through routine daily activities such as eating has led the American Heart Association (71) and others (57) to question the value of using antibiotic prophylaxis for dental procedures. Clearly, a better understanding of the bacterial virulence factors that contribute to endocarditis could lead to better preventive measures, such as a vaccine that could potentially afford continuous protection to high-risk patients (71).In a previous study, we used the signature-tagged mutagenesis (STM) technique to search for endocarditis virulence factors of S. sanguinis in a rabbit model (53). This study identified a number of housekeeping enzymes that contribute to endocarditis. Because these proteins are not likely to be surface localized, they hold little promise as vaccine candidates. One class of streptococcal surface proteins that is rich in both virulence factors (4, 7, 25, 33, 38, 60) and promising vaccine candidates (6, 39, 42, 51, 70) is the lipoproteins. Lipoprotein activities that have been suggested to contribute to streptococcal virulence include adhesion (4, 7, 63), posttranslational modification (25, 29, 51), and ATP-binding cassette (ABC)-mediated transport (33, 52, 60). In the last instance, lipoproteins anchored to the cell membrane by their lipid tails appear to serve the same transport function as the periplasmic substrate-binding proteins of gram-negative bacteria (66). STM studies performed with Streptococcus pneumoniae (26, 41, 55) and Streptococcus agalactiae (34) have identified multiple lipoprotein mutants among collections of reduced virulence mutants. In an attempt to determine the cumulative contribution of streptococcal lipoproteins to virulence, some investigators have created mutations in the lgt or lspA genes, encoding lipoprotein-processing enzymes (12, 25, 27, 36). The lgt gene encodes prolipoprotein diacylglyceryl transferase, which catalyzes the transfer of a diacylglycerol lipid unit to a cysteine in the conserved N-terminal “lipobox” of lipoproteins, while lspA encodes the signal peptidase II enzyme that cleaves the signal peptide of the prolipoprotein just prior to the conserved cysteine (59, 65). While mutation of these genes has been shown to be lethal in gram-negative bacteria (21, 73), many gram-positive bacterial species have been shown to tolerate such mutations, often with only minor effects on growth (3, 12, 13, 25, 27, 36, 54). Some of these studies indicated a deleterious effect on the virulence of the lgt (25, 54) or lspA (36) mutation, but others found no effect (12) or an enhancement of virulence (27). It is clear from these and other studies (3, 13) that neither the loss of acylation due to lgt inactivation nor the loss of signal peptidase II-mediated cleavage completely eliminates lipoprotein function, necessitating alternative approaches for assessing the global contribution of lipoproteins to virulence.We have used bioinformatic approaches to identify every putative lipoprotein encoded by S. sanguinis strain SK36. To determine the contribution of these lipoproteins to the endocarditis virulence of S. sanguinis, we have systematically mutagenized each of these genes, as well as the lgt and lspA genes, and evaluated these mutants for virulence by using STM in an animal model. Selected mutants were further examined for virulence in competitive index (CI) assays. A strain with a disrupted ssaB gene, which encodes a putative metal transport protein, was found to exhibit a profound defect in virulence that was far greater than that of any other strain tested, including the lgt or lspA mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号