首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cell-to-cell signalling in prokaryotes that leads to co-ordinated behaviour has been termed quorum sensing. This type of signalling can have profound impacts on microbial community structure and host-microbe interactions. The Gram-negative quorum-sensing systems were first discovered and extensively characterized in the marine Vibrios. Some components of the Vibrio systems are present in the classical genetic model organisms Escherichia coli and Salmonella enterica. Both organisms encode a signal receptor of the LuxR family, SdiA, but not a corresponding signal-generating enzyme. Instead, SdiA of Salmonella detects and responds to signals generated only by other microbial species. Conversely, E. coli and Salmonella encode the signal-generating component of a second system (a LuxS homologue that generates AI-2), but the sensory apparatus for AI-2 differs substantially from the Vibrio system. The only genes currently known to be regulated by AI-2 in Salmonella encode an active uptake and modification system for AI-2. Therefore, it is not yet clear whether Salmonella uses AI-2 as a signal molecule or whether AI-2 has some other function. In E. coli, the functions of both SdiA and AI-2 are unclear due to pleiotropy. Genetic strategies to identify novel signalling systems have been performed with E. coli and Providencia stuartii. Several putative signalling systems have been identified, one that uses indole as a signal and another that releases what appears to be a peptide. The latter system has homologues in E. coli and Salmonella, as well as other bacteria, plants and animals. In fact, the protease components from Providencia and Drosophila are functionally interchangeable.  相似文献   

4.
In this review we summarize recent genomic studies that shed light on the mechanism through which pathogenic Escherichia coli and Salmonella enterica have evolved. We show how acquisition of DNA at specific sites on the chromosome has contributed to increased genetic variation and virulence of these two genera of the Enterobacteriaceae.  相似文献   

5.
One of the strongest signals of adaptive molecular evolution of proteins is the occurrence of convergent hot spot mutations: repeated changes in the same amino acid positions. We performed a comparative genome-wide analysis of mutation-driven evolution of core (omnipresent) genes in 17 strains of Salmonella enterica subspecies I and 22 strains of Escherichia coli. More than 20% of core genes in both Salmonella and E. coli accumulated hot spot mutations, with a predominance of identical changes having recent evolutionary origin. There is a significant overlap in the functional categories of the adaptively evolving genes in both species, although mostly via separate molecular mechanisms. As a strong evidence of the link between adaptive mutations and virulence in Salmonella, two human-restricted serovars, Typhi and Paratyphi A, shared the highest number of genes with serovar-specific hot spot mutations. Many of the core genes affected by Typhi/Paratyphi A-specific mutations have known virulence functions. For each species, a list of nonrecombinant core genes (and the hot spot mutations therein) under positive selection is provided.  相似文献   

6.
7.
Availability of genome-wide gene expression datasets provides the opportunity to study gene expression across different organisms under a plethora of experimental conditions. In our previous work, we developed an algorithm called COMODO (COnserved MODules across Organisms) that identifies conserved expression modules between two species. In the present study, we expanded COMODO to detect the co-expression conservation across three organisms by adapting the statistics behind it. We applied COMODO to study expression conservation/divergence between Escherichia coli, Salmonella enterica, and Bacillus subtilis. We observed that some parts of the regulatory interaction networks were conserved between E. coli and S. enterica especially in the regulon of local regulators. However, such conservation was not observed between the regulatory interaction networks of B. subtilis and the two other species. We found co-expression conservation on a number of genes involved in quorum sensing, but almost no conservation for genes involved in pathogenicity across E. coli and S. enterica which could partially explain their different lifestyles. We concluded that despite their different lifestyles, no significant rewiring have occurred at the level of local regulons involved for instance, and notable conservation can be detected in signaling pathways and stress sensing in the phylogenetically close species S. enterica and E. coli. Moreover, conservation of local regulons seems to depend on the evolutionary time of divergence across species disappearing at larger distances as shown by the comparison with B. subtilis. Global regulons follow a different trend and show major rewiring even at the limited evolutionary distance that separates E. coli and S. enterica.  相似文献   

8.
The O-polysaccharide of Salmonella enterica O59 was studied using sugar analysis and 2D 1H and 13C NMR spectroscopy, and the following structure of the tetrasaccharide repeating unit was established:→2)-β-d-Galp-(1→3)-α-d-GlcpNAc-(1→4)-α-l-Rhap-(1→3)-β-d-GlcpNAc-(1→Accordingly, the O-antigen gene cluster of S. enterica O59 includes all genes necessary for the synthesis of this O-polysaccharide. Earlier, another structure has been reported for the O-polysaccharide of Salmonella arizonae (S. enterica IIIb) O59, which later was found to be identical to that of Citrobacter (Citrobacter braakii) O35 and, in this work, also to the O-polysaccharide of Escherichia coli O15.  相似文献   

9.
The neutral theory of molecular evolution predicts that variation within species is inversely related to the strength of purifying selection, but the strength of purifying selection itself must be related to physical constraints imposed by protein folding and function. In this paper, we analyzed five enzymes for which polymorphic sequence variation within Escherichia coli and/or Salmonella enterica was available, along with a protein structure. Single and multivariate logistic regression models are presented that evaluate amino acid size, physicochemical properties, solvent accessibility, and secondary structure as predictors of polymorphism. A model that contains a positive coefficient of association between polymorphism and solvent accessibility and separate intercepts for each secondary-structure element is sufficient to explain the observed variation in polymorphism between sites. The model predicts an increase in the probability of amino acid polymorphism with increasing solvent accessibility for each protein regardless of physicochemical properties, secondary-structure element, or size of the amino acid. This result, when compared with the distribution of synonymous polymorphism, which shows no association with solvent accessibility, suggests a strong decrease in purifying selection with increasing solvent accessibility.  相似文献   

10.
Multiple sequencing of genomes belonging to a bacterial species allows one to analyze and compare statistics and dynamics of the gene complements of species, their pan-genomes. Here, we analyzed multiple genomes of Escherichia coli, Shigella spp., and Salmonella enterica. We demonstrate that the distribution of the number of genomes harboring a gene is well approximated by a sum of two power functions, describing frequent genes (present in many strains) and rare genes (present in few strains). The virtual absence of Shigella-specific genes not present in E. coli genomes confirms previous observations that Shigella is not an independent genus. While the pan-genome size is increasing with each new strain, the number of genes present in a fixed fraction of strains stabilizes quickly. For instance, slightly fewer than 4,000 genes are present in at least half of any group of E. coli genomes. Comparison of S. enterica and E. coli pan-genomes revealed the existence of a common periphery, that is, genes present in some but not all strains of both species. Analysis of phylogenetic trees demonstrates that rare genes from the periphery likely evolve under horizontal transfer, whereas frequent periphery genes may have been inherited from the periphery genome of the common ancestor.  相似文献   

11.
The O-antigen is a part of the lipopolysaccharide molecule present in the outer membrane of Gram-negative bacteria, and is essential for the full function of the microorganisms. Salmonella enterica and Escherichia coli are taxonomically closely related species. In this study, the O-antigen structures of S. enterica O16 and O38 and E. coli O11 were determined. Salmonella enterica O38 and E. coli O21 were found to have identical O-antigen structures, whereas S. enterica O16 and E. coli O11 had closely related structures, differing only in the presence of a lateral glucose residue and O-acetylation of a mannose residue in the former. The O-antigen gene clusters of S. enterica O16 and O38 and E. coli O11 were sequenced and analyzed together with that of E. coli O21 retrieved from the GenBank. Each S. enterica/E. coli pair was found to contain the same set of genes organized in the same manner and to share 56-78% overall DNA identity. These data suggest that the O-antigen gene clusters of each pair studied originated from a common ancestor. Thus, it has become evident that in the past, the degree of relatedness between the O-antigens of S. enterica and E. coli was underestimated.  相似文献   

12.
The Caulobacter crescentus DNA adenine methyltransferase CcrM and its homologs in the alpha-Proteobacteria are essential for viability. CcrM is 34% identical to the yhdJ gene products of Escherichia coli and Salmonella enterica. This study provides evidence that the E. coli yhdJ gene encodes a DNA adenine methyltransferase. In contrast to an earlier report, however, we show that yhdJ is not an essential gene in either E. coli or S. enterica.  相似文献   

13.
AIMS: The objective of this study was to evaluate the inhibitory activity of several natural organic compounds alone or in combination with nisin against Escherichia coli and Salmonella Typhimurium. METHODS AND RESULTS: The minimum inhibitory concentration (MIC) of five natural organic compounds were determined, and the effect of their combinations with nisin was evaluated by the checkerboard assay using the Bioscreen C. As expected, nisin by itself showed no inhibition against either of the Gram-negative bacteria. Thymol was found to be the most effective with the lowest MIC values of 1.0 and 1.2 mmol 1-1 against Salm. Typhimurium and E. coli, respectively. After thymol, the antimicrobial order of the natural organic compounds was carvacrol > eugenol > cinnamic acid > diacetyl. However, the combination of nisin with the natural organic compounds did not result in the enhancement of their antimicrobial activities. On the contrary, combination of nisin with diacetyl against Salm. Typhimurium resulted in an antagonism of diacetyl activity. CONCLUSIONS: While the individual natural organic compounds showed inhibitory activity against the two Gram-negatives, their combinations with nisin showed no improvement of antimicrobial activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the potential of the natural organic compounds to control E. coli and Salm. Typhimurium.  相似文献   

14.
Based on its genome sequence, the pathway of beta-oxidative fatty acid degradation in Salmonella enterica serovar Typhimurium LT2 has been thought to be identical to the well-characterized Escherichia coli K-12 system. We report that wild-type strains of S. enterica grow on decanoic acid, whereas wild-type E. coli strains cannot. Mutant strains (carrying fadR) of both organisms in which the genes of fatty acid degradation (fad) are expressed constitutively are readily isolated. The S. enterica fadR strains grow more rapidly than the wild-type strains on decanoic acid and also grow well on octanoic and hexanoic acids (which do not support growth of wild-type strains). By contrast, E. coli fadR strains grow well on decanoic acid but grow only exceedingly slowly on octanoic acid and fail to grow at all on hexanoic acid. The two wild-type organisms also differed in the ability to grow on oleic acid when FadR was overexpressed. Under these superrepression conditions, E. coli failed to grow, whereas S. enterica grew well. Exchange of the wild-type fadR genes between the two organisms showed this to be a property of S. enterica rather than of the FadR proteins per se. This difference in growth was attributed to S. enterica having higher cytosolic levels of the inducing ligands, long-chain acyl coenzyme As (acyl-CoAs). The most striking results were the differences in the compositions of CoA metabolites of strains grown with octanoic acid or oleic acid. S. enterica cleanly converted all of the acid to acetyl-CoA, whereas E. coli accumulated high levels of intermediate-chain-length products. Exchange of homologous genes between the two organisms showed that the S. enterica FadE and FadBA enzymes were responsible for the greater efficiency of beta-oxidation relative to that of E. coli.  相似文献   

15.
Microcin 24 is an antimicrobial peptide secreted by uropathogenic Escherichia coli. Secretion of microcin 24 provides an antibacterial defense mechanism for E. coli. In a plasmid-based system using transformed Salmonella enterica, we found that resistance to microcin 24 could be seen in concert with a multiple-antibiotic resistance phenotype. This multidrug-resistant phenotype appeared when Salmonella was exposed to an E. coli strain expressing microcin 24. Therefore, it appears that multidrug-resistant Salmonella can arise as a result of an insult from other pathogenic bacteria.  相似文献   

16.
We developed a synthetic RNA approach to identify growth inhibition sequences by cloning random 24-nucleotide (nt) sequences into an arabinose-inducible expression vector. This vector expressed a small RNA (sRNA) of ∼140 nt containing a 24 nt random sequence insert. After transforming Escherichia coli with the vector, 10 out of 954 transformants showed strong growth defect phenotypes and two clones caused cell lysis. We then examined growth inhibition phenotypes in the Salmonella Typhimurium LT2 strain using the twelve sRNAs that exerted an inhibitory effect on E. coli growth. Three of these clones showed strong growth inhibition phenotypes in S. Typhimurium LT2. The most effective sRNA contained the same insert (N1) in both bacteria. The 24 nt random sequence insert of N1 was abundant in guanine residues (ten out of 24 nt), and other random sequences causing growth defects were also highly enriched for guanine (G) nucleotides. We, therefore, generated clones that express sRNAs containing a stretch of 16 to 24 continuous guanine sequences (poly-G16, -G18, -G20, -G22, and -G24). All of these clones induced growth inhibition in both liquid and agar plate media and the poly-G20 clone showed the strongest effect in E. coli. These results demonstrate that our sRNA expression system can be used to identify nucleotide sequences that are potential candidates for oligonucleotide antimicrobial drugs.  相似文献   

17.
Microcin 24 is an antimicrobial peptide secreted by uropathogenic Escherichia coli. Secretion of microcin 24 provides an antibacterial defense mechanism for E. coli. In a plasmid-based system using transformed Salmonella enterica, we found that resistance to microcin 24 could be seen in concert with a multiple-antibiotic resistance phenotype. This multidrug-resistant phenotype appeared when Salmonella was exposed to an E. coli strain expressing microcin 24. Therefore, it appears that multidrug-resistant Salmonella can arise as a result of an insult from other pathogenic bacteria.  相似文献   

18.
Specific concerns have been raised that third-generation cephalosporin-resistant (3GCr) Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr) E. coli, 3GCr Salmonella enterica, and nalidixic acid-resistant (NALr) S. enterica may be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n = 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCr Salmonella was detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALr S. enterica was detected on only one hide. 3GCr E. coli and COTr E. coli were detected on 100.0% of hides during processing. Concentrations of 3GCr E. coli and COTr E. coli on hides were correlated with pre-evisceration carcass contamination. 3GCr E. coli and COTr E. coli were each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenic E. coli (ExPEC) virulence-associated markers. Only two COTr E. coli isolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.  相似文献   

19.
During their colonization of plants, human enteric pathogens, such as Salmonella enterica, are known to benefit from interactions with phytopathogens. At least in part, benefits derived by Salmonella from the association with a soft rot caused by Pectobacterium carotovorum were shown to be dependent on Salmonella KdgR, a regulator of genes involved in the uptake and utilization of carbon sources derived from the degradation of plant polymers. A SalmonellakdgR mutant was more fit in soft rots but not in the lesions caused by Xanthomonas spp. and Pseudomonas spp. Bioinformatic, phenotypic, and gene expression analyses demonstrated that the KdgR regulon included genes involved in uptake and metabolism of molecules resulting from pectin degradation as well as those central to the utilization of a number of other carbon sources. Mutant analyses indicated that the Entner-Doudoroff pathway, in part controlled by KdgR, was critical for the persistence within soft rots and likely was responsible for the kdgR phenotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号