首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.

Background and Aims

Increasing evidence has suggested that hepatocellular carcinoma (HCC) might originate from a distinct subpopulation called cancer stem cells (CSCs), which are responsible for the limited efficacy of conventional therapies. We have previously demonstrated that granulin-epithelin precursor (GEP), a pluripotent growth factor, is upregulated in HCC but not in the adjacent non-tumor, and that GEP is a potential therapeutic target for HCC. Here, we characterized its expression pattern and stem cell properties in fetal and cancerous livers.

Methods

Protein expression of GEP in fetal and adult livers was examined in human and mouse models by immunohistochemical staining and flow cytometry. Liver cancer cell lines, isolated based on their GEP and/or ATP-dependent binding cassette (ABC) drug transporter ABCB5 expression, were evaluated for hepatic CSC properties in terms of colony formation, chemoresistance and tumorigenicity.

Results

We demonstrated that GEP was a hepatic oncofetal protein that expressed in the fetal livers, but not in the normal adult livers. Importantly, GEP+ fetal liver cells co-expressed the embryonic stem (ES) cell-related signaling molecules including β-catenin, Oct4, Nanog, Sox2 and DLK1, and also hepatic CSC-markers CD133, EpCAM and ABCB5. Phenotypic characterization in HCC clinical specimens and cell lines revealed that GEP+ cancer cells co-expressed these stem cell markers similarly as the GEP+ fetal liver cells. Furthermore, GEP was shown to regulate the expression of ES cell-related signaling molecules β-catenin, Oct4, Nanog, and Sox2. Isolated GEPhigh cancer cells showed enhanced colony formation ability and chemoresistance when compared with the GEPlow counterparts. Co-expression of GEP and ABCB5 better defined the CSC populations with enhanced tumorigenic ability in immunocompromised mice.

Conclusions

Our findings demonstrate that GEP is a hepatic oncofetal protein regulating ES cell-related signaling molecules. Co-expression of GEP and ABCB5 further enriches a subpopulation with enhanced CSC properties. The current data provide new insight into the therapeutic strategy.  相似文献   

4.

Background

Reprogramming human somatic cells to pluripotency represents a valuable resource for the development of in vitro based models for human disease and holds tremendous potential for deriving patient-specific pluripotent stem cells. Recently, mouse neural stem cells (NSCs) have been shown capable of reprogramming into a pluripotent state by forced expression of Oct3/4 and Klf4; however it has been unknown whether this same strategy could apply to human NSCs, which would result in more relevant pluripotent stem cells for modeling human disease.

Methodology and Principal Findings

Here, we show that OCT3/4 and KLF4 are indeed sufficient to induce pluripotency from human NSCs within a two week time frame and are molecularly indistinguishable from human ES cells. Furthermore, human NSC-derived pluripotent stem cells can differentiate into all three germ lineages both in vitro and in vivo.

Conclusions/Significance

We propose that human NSCs represent an attractive source of cells for producing human iPS cells since they only require two factors, obviating the need for c-MYC, for induction into pluripotency. Thus, in vitro human disease models could be generated from iPS cells derived from human NSCs.  相似文献   

5.
6.

Objectives

Kidney disease is emerging as a critical medical problem worldwide. Because of limited treatment options for the damaged kidney, stem cell treatment is becoming an alternative therapeutic approach. Of many possible human stem cell sources, pluripotent stem cells are most attractive due to their self-renewal and pluripotent capacity. However, little is known about the derivation of renal lineage cells from human pluripotent stem cells (hPSCs). In this study, we developed a novel protocol for differentiation of nephron progenitor cells (NPCs) from hPSCs in a serum- and feeder-free system.

Materials and Methods

We designed step-wise protocols for differentiation of human pluripotent stem cells toward primitive streak, intermediate mesoderm and NPCs by recapitulating normal nephrogenesis. Expression of key marker genes was examined by RT-PCR, real time RT-PCR and immunocytochemistry. Each experiment was independently performed three times to confirm its reproducibility.

Results

After modification of culture period and concentration of exogenous factors, hPSCs can differentiate into NPCs that markedly express specific marker genes such as SIX2, GDNF, HOXD11, WT1 and CITED1 in addition to OSR1, PAX2, SALL1 and EYA1. Moreover, NPCs possess the potential of bidirectional differentiation into both renal tubular epithelial cells and glomerular podocytes in defined culture conditions. In particular, approximately 70% of SYN-positive cells were obtained from hPSC-derived NPCs after podocytes induction. NPCs can also form in vitro tubule-like structures in three dimensional culture systems.

Conclusions

Our novel protocol for hPSCs differentiation into NPCs can be useful for producing alternative sources of cell replacement therapy and disease modeling for human kidney diseases.  相似文献   

7.
8.

Background

In vitro culture of spermatogonial stem cells (SSCs) is important for exploration of SSCs self-renewal, differentiation, and manipulation. There are several reports on rodent SSC cultures; however, data on SSC cultures in domestic animals are limited. To provide basic scientific information on canine SSC cultures, we report canine testes development, and the development of spermatogonia-derived colonies (SDCs) for in vitro cultures.

Methodology/Principal Findings

Testes from 2-, 3-, and 12-month-old beagles were used for histology, immunohistochemistry, in vitro culture, immunocytochemistry, and PCR. Protein gene product 9.5 (PGP9.5)-positive spermatogonia, both single and paired, were found to be abundant in the testes of 2-month-old beagles. stempro-34 and Dulbecco''s modified Eagle medium with 5% fetal bovine serum provided as useful substrates for culture of SDCs, and fibroblast growth factor (FGF) played a key role in colony formation. Colonies were positive for alkaline phosphatase and anti-PGP9.5 staining. The early spermatogonia and stem cell markers such as octamer binding protein 4 (Oct4), Nanog homeobox (Nanog), promyelocytic leukemia zinc finger (PLZF), PGP9.5, and GDNF family receptor alpha-1 (GFRα-1) were expressed in the colonies at higher levels than in the testis tissue.

Conclusions

Testes of the 2-month-old beagles had abundant single and paired spermatogonia, which can be used for derivation of SDCs, and FGF was important for colony formation.  相似文献   

9.
10.

Background

Under appropriate culture conditions, undifferentiated embryonic stem (ES) cells can undergo multiple self-renewal cycles without loss of pluripotency suggesting they must be equipped with specific defense mechanisms to ensure sufficient genetic stability during self-renewal expansion. The ATP binding cassette transporter ABCG2 is expressed in a wide variety of somatic and embryonic stem cells. However, whether it plays an important role in stem cell maintenance remains to be defined.

Methodology/Principal Findings

Here we provide evidence to show that an increase in the level of ABCG2 was observed accompanied by ES colony expansion and then were followed by decreases in the level of protoporphyrin IX (PPIX) indicating that ABCG2 plays a role in maintaining porphyrin homoeostasis. RNA-interference mediated inhibition of ABCG2 as well as functional blockage of ABCG2 transporter with fumitremorgin C (FTC), a specific and potent inhibitor of ABCG2, not only elevated the cellular level of PPIX, but also arrest the cell cycle and reduced expression of the pluripotent gene Nanog. Overexpression of ABCG2 in ES cells was able to counteract the increase of endogenous PPIX induced by treatment with 5-Aminolevulinic acid suggesting ABCG2 played a direct role in removal of PPIX from ES cells. We also found that excess PPIX in ES cells led to elevated levels of reactive oxygen species which in turn triggered DNA damage signals as indicated by increased levels of γH2AX and phosphorylated p53. The increased level of p53 reduced Nanog expression because RNA- interference mediated inhibition of p53 was able to prevent the downregulation of Nanog induced by FTC treatment.

Conclusions/Significance

The present work demonstrated that ABCG2 protects ES cells from PPIX accumulation during colony expansion, and that p53 and γH2AX acts as a downstream checkpoint of ABCG2-dependent defense machinery in order to maintain the self-renewal of ES cells.  相似文献   

11.

Background

Head and neck cancer (HNC) ranks the fourth leading malignancy and cancer death in male population in Taiwan. Despite recent therapeutic advances, the prognosis for HNC patients is still dismal. New strategies are urgently needed to improve the chemosensitization to conventional chemotherapeutic drugs and clinical responses of HNC patients. Studies have demonstrated that topical 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is being used in the treatment of various human premalignant and malignant lesions with some encouraging clinical outcomes. However, the molecular mechanisms of ALA-PDT in the therapeutic effect in HNC tumorigenesis and whether ALA-PDT as chemosensitizer for HNC treatment remain unclear. Accumulating data support cancer stem cells (CSCs) contributes chemo-resistance in HNC. Based on the previous studies, the purpose of the study is to investigate the effect of ALA-PDT on CSCs and chemosensitization property in HNC.

Methodology/Principal Finding

CSCs marker ALDH1 activity of HNC cells with ALA-PDT treatment as assessed by the Aldefluor assay flow cytometry analysis. Secondary Sphere-forming self-renewal, stemness markers expression, and invasiveness of HNC-CSCs with ALA-PDT treatment were presented. We observed that the treatment of ALA-PDT significantly down-regulated the ALDH1 activity and CD44 positivity of HNC-CSCs. Moreover, ALA-PDT reduced self-renewal property and stemness signatures expression (Oct4 and Nanog) in sphere-forming HNC-CSCs. ALA-PDT sensitized highly tumorigenic HNC-CSCs to conventional chemotherapies. Lastly, synergistic effect of ALA-PDT and Cisplatin treatment attenuated invasiveness/colongenicity property in HNC-CSCs.

Conclusion/Significance

Our results provide insights into the clinical prospect of ALA-PDT as a potential chemo-adjuvant therapy against head and neck cancer through eliminating CSCs property.  相似文献   

12.
13.
Chen SF  Chang YC  Nieh S  Liu CL  Yang CY  Lin YS 《PloS one》2012,7(2):e31864

Background

Cancer stem cells (CSCs) play an important role in tumor initiation, progression, and metastasis and are responsible for high therapeutic failure rates. Identification and characterization of CSC are crucial for facilitating the monitoring, therapy, or prevention of cancer. Great efforts have been paid to develop a more effective methodology. Nevertheless, the ideal model for CSC research is still evolving. In this study, we created a nonadhesive culture system to enrich CSCs from human oral squamous cell carcinoma cell lines with sphere formation and to characterize their CSC properties further.

Methods

A nonadhesive culture system was designed to generate spheres from the SAS and OECM-1 cell lines. A subsequent investigation of their CSC properties, including stemness, self-renewal, and chemo- and radioresistance in vitro, as well as tumor initiation capacity in vivo, was also performed.

Results

Spheres were formed cost-effectively and time-efficiently within 5 to 7 days. Moreover, we proved that these spheres expressed putative stem cell markers and exhibited chemoradiotherapeutic resistance, in addition to tumor-initiating and self-renewal capabilities.

Conclusions

Using this nonadhesive culture system, we successfully established a rapid and cost-effective model that exhibits the characteristics of CSCs and can be used in cancer research.  相似文献   

14.

Background

Mesenchymal stem cells (MSCs) have been considered as ideal cells for the treatment of a variety of diseases. However, aging and spontaneous differentiation of MSCs during culture expansion dampen their effectiveness. Previous studies suggest that ex vivo aging of MSCs is largely caused by epigenetic changes particularly a decline of histone H3 acetylation levels in promoter regions of pluripotent genes due to inappropriate growth environment.

Methodology/Principal Findings

In this study, we examined whether histone deacetylase inhibitor trichostatin A (TSA) could suppress the histone H3 deacetylation thus maintaining the primitive property of MSCs. We found that in regular adherent culture, human MSCs became flatter and larger upon successive passaging, while the expression of pluripotent genes such as Oct4, Sox2, Nanog, Rex-1, CD133 and TERT decreased markedly. Administration of low concentrations of TSA in culture significantly suppressed the morphological changes in MSCs otherwise occurred during culture expansion, increased their proliferation while retaining their cell contact growth inhibition property and multipotent differentiation ability. Moreover, TSA stabilized the expression of the above pluripotent genes and histone H3 acetylation levels in K9 and K14 in promoter regions of Oct4, Sox2 and TERT.

Conclusions/Significance

Our results suggest that TSA may serve as an effective culture additive to maintain the primitive feature of MSCs during culture expansion.  相似文献   

15.

Introduction

Since the concept of reprogramming mature somatic cells to generate induced pluripotent stem cells (iPSCs) was demonstrated in 2006, iPSCs have become a potential substitute for embryonic stem cells (ESCs) given their pluripotency and “stemness” characteristics, which resemble those of ESCs. We investigated to reprogram fibroblast-like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) to generate iPSCs using a 4-in-1 lentiviral vector system.

Methods

A 4-in-1 lentiviral vector containing Oct4, Sox2, Klf4, and c-Myc was transduced into RA and OA FLSs isolated from the synovia of two RA patients and two OA patients. Immunohistochemical staining and real-time PCR studies were performed to demonstrate the pluripotency of iPSCs. Chromosomal abnormalities were determined based on the karyotype. SCID-beige mice were injected with iPSCs and sacrificed to test for teratoma formation.

Results

After 14 days of transduction using the 4-in-1 lentiviral vector, RA FLSs and OA FLSs were transformed into spherical shapes that resembled embryonic stem cell colonies. Colonies were picked and cultivated on matrigel plates to produce iPSC lines. Real-time PCR of RA and OA iPSCs detected positive markers of pluripotency. Immunohistochemical staining tests with Nanog, Oct4, Sox2, Tra-1-80, Tra-1-60, and SSEA-4 were also positive. Teratomas that comprised three compartments of ectoderm, mesoderm, and endoderm were formed at the injection sites of iPSCs. Established iPSCs were shown to be compatible by karyotyping. Finally, we confirmed that the patient-derived iPSCs were able to differentiate into osteoblast, which was shown by an osteoimage mineralization assay.

Conclusion

FLSs derived from RA and OA could be cell resources for iPSC reprogramming. Disease- and patient-specific iPSCs have the potential to be applied in clinical settings as source materials for molecular diagnosis and regenerative therapy.  相似文献   

16.

Background

Cancer stem cells (CSCs) can proliferate and self-renew extensively due to their ability to express anti-apoptotic and drug resistant proteins, thus sustaining tumor growth. Therefore, the strategy to eradicate CSCs might have significant clinical implications. The objectives of this study were to examine the molecular mechanisms by which resveratrol inhibits stem cell characteristics of pancreatic CSCs derived from human primary tumors and KrasG12D transgenic mice.

Methodology/Principal Findings

Human pancreatic CSCs (CD133+CD44+CD24+ESA+) are highly tumorigenic and form subcutaneous tumors in NOD/SCID mice. Human pancreatic CSCs expressing high levels of CD133, CD24, CD44, ESA, and aldehyde dehydrogenase also express significantly more Nanog, Oct-4, Notch1, MDR1 and ABCG2 than normal pancreatic tissues and primary pancreatic cancer cells. Similarly, CSCs from KrasG12D mice express significantly higher levels of Nanog and Oct-4 than pancreatic tissues from Pdx-Cre mice. Resveratrol inhibits the growth (size and weight) and development (PanIN lesions) of pancreatic cancer in KrasG12D mice. Resveratrol inhibits the self-renewal capacity of pancreatic CSCs derived from human primary tumors and KrasG12D mice. Resveratrol induces apoptosis by activating capase-3/7 and inhibiting the expression of Bcl-2 and XIAP in human CSCs. Resveratrol inhibits pluripotency maintaining factors (Nanog, Sox-2, c-Myc and Oct-4) and drug resistance gene ABCG2 in CSCs. Inhibition of Nanog by shRNA enhances the inhibitory effects of resveratrol on self-renewal capacity of CSCs. Finally, resveratrol inhibits CSC''s migration and invasion and markers of epithelial-mesenchymal transition (Zeb-1, Slug and Snail).

Conclusions/Significance

These data suggest that resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. In conclusion, resveratrol can be used for the management of pancreatic cancer.  相似文献   

17.
18.
19.

Background

Given the usefulness of rats as an experimental system, an efficient method for generating rat induced pluripotent stem (iPS) cells would provide researchers with a powerful tool for studying human physiology and disease. Here, we report direct reprogramming of rat neural precursor (NP) cells and rat embryonic fibroblasts (REF) into iPS cells by retroviral transduction using either three (Oct3/4, Sox2, and Klf4), four (Oct3/4, Sox2, Klf4, and c-Myc), or five (Oct3/4, Sox2, Klf4, c-Myc, and Nanog) genes.

Methodology and Principal Findings

iPS cells were generated from both NP and REF using only three (Oct3/4, Sox2, and Klf4) genes without c-Myc. Two factors were found to be critical for efficient derivation and maintenance of rat iPS cells: the use of rat instead of mouse feeders, and the use of small molecules specifically inhibiting mitogen-activated protein kinase and glycogen synthase kinase 3 pathways. In contrast, introduction of embryonic stem cell (ESC) extracts induced partial reprogramming, but failed to generate iPS cells. However, when combined with retroviral transduction, this method generated iPS cells with significantly higher efficiency. Morphology, gene expression, and epigenetic status confirmed that these rat iPS cells exhibited ESC-like properties, including the ability to differentiate into all three germ layers both in vitro and in teratomas. In particular, we found that these rat iPS cells could differentiate to midbrain-like dopamine neurons with a high efficiency.

Conclusions/Significance

Given the usefulness of rats as an experimental system, our optimized method would be useful for generating rat iPS cells from diverse tissues and provide researchers with a powerful tool for studying human physiology and disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号