首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemolymph glucose, alkaline phosphatase, lactic dehydrogenase, and creatine phosphokinase in Biomphalaria glabrata infected with Angiostrongylus costaricensis were significantly higher on day 27 postinfection (PI) than in uninfected snails. Hemolymph total calcium from infected snails was less on days 6, 12, and 27 PI than that from controls. Total hemolymph protein was similar for controls and infected animals during the entire study. Throughout the study the mean number of amoebocytes/mm3 hemolymph from infected snails was significantly less than that for controls. Mean total wet weights of digestive gland and foot muscle from infected and uninfected snails was similar throughout the study. Mean μg glycogen/mg wet weight of digestive gland from infected snails was significantly greater on days 24, 27, and 28 PI than that from controls. Mean μg glycogen/mg wet weight of foot muscle from infected snails was significantly reduced between days 12 and 28 PI from that of uninfected snails. It is suggested that hemolymph glucose and digestive gland glycogen in infected snails are augmented by glycogen breakdown in the foot muscle of parasitized animals. Elevations in hemolymph enzymes are due to tissue destruction by larvae emerging from the foot muscle of infected snails. Parasite-induced derangements in shell metabolism underlie observed changes in hemolymph calcium in infected snails.  相似文献   

2.
Long-distance migrants have developed diverse strategies to deal with the challenges imposed by their annual journeys. These are relatively well studied in some avian groups, such as passerines, shorebirds and raptors. In contrast, few studies have addressed the migratory behaviour of pelagic birds in the light of current theories of optimal migration. Using a dataset of 100 complete migratory tracks gathered along four years, we performed a detailed study on the migratory strategy of a pelagic trans-equatorial migrant, the Cory’s shearwater Calonectris diomedea. We analysed daily routines, stopover ecology and travel speed, as well as the influence of the moon on several behavioural patterns. Cory’s shearwaters adopted a “fly-and-forage” strategy when migrating, similarly to what has been observed in some raptors. However, by flying by dynamic soaring, shearwaters attained high overall migration speeds, and were able to travel thousands of kilometres without making major stopovers and, apparently, without a noticeable pre-migratory fattening period. Other major findings of this study include the ability to adapt daily schedules when crossing major ecological barriers, and the constant adjustment of migration speed implying higher rates of travel in the pre-breeding movement, with a final sprint to the nesting colony. The present study also highlights a preference of Cory’s shearwaters for starting travel at twilight and documents a strong relationship between their migratory activity and the moon phase.  相似文献   

3.
Zonal oscillations of Monodonta turbinata (Born) were monitored with an actographic device which precluded clustering behaviour. Unfed snails maintained their cyclic pattern of behaviour for up to 8 days under a light-dark cycle which simulated the natural one. Under constant conditions of light or dark, however, the snails ceased migration and occupied a zonal position typical of day and night, respectively. Experiments in diffuse light and with light from below the floor of the experimental tank showed that the downward migration of M. turbinata in the daytime depends on positive geotaxis combined with negative phototaxis whilst the upward migration at night depends on a negative geotaxis. This mechanism is similar to that described in other littoral molluscs. There was no evidence of an endogenous control of rhythmic zonal activity.  相似文献   

4.
Ecological release is often attributed to the rapid adaptive diversification of phenotypic traits. However, it is not well understood how natural selection changes its strength and direction through the process of ecological release. Herein, we demonstrated how shell colour of the Japanese land snail Euhadra peliomphala simodae has diversified via a shift in natural selection due to ecological release after migration from the mainland to an island. This snail''s shell colour diversified on the island due to disruptive selection after migration from the mainland. We used trail camera traps to identify the cause of natural selection on both the mainland and the island. We then conducted a mark–recapture experiment while collecting microhabitat use data. In total, we captured and marked around 1,700 snails on the mainland, some of which were preyed upon by an unknown predator. The trail camera traps showed that the predator is the large Japanese field mouse Apodemus speciosus, and the predatory frequency was higher on the mainland than on the island. However, this predation did not correlate with shell colour. Microhabitat use on the island was more extensive than on the mainland, with snails on the island using both ground and arboreal microhabitats. A Bayesian estimation showed that the stabilizing selection on shell colour came from factors other than predation. Our results suggest that the course of natural selection was modified due to ecological release after migration from the mainland, explaining one cause of the phenotypic diversification.  相似文献   

5.
As wild populations decline, ex situ propagation provides a potential bank of genetic diversity and a hedge against extinction. These programs are unlikely to succeed if captive populations do not recover from the severe bottleneck imposed when they are founded with a limited number of individuals from remnant populations. In small captive populations allelic richness may be lost due to genetic drift, leading to a decline in fitness. Wild populations of the Hawaiian tree snail Achatinella lila, a hermaphroditic snail with a long life history, have declined precipitously due to introduced predators and other human impacts. A captive population initially thrived after its founding with seven snails, exceeding 600 captive individuals in 2009, but drastically declined in the last five years. Measures of fitness were examined from 2,018 captive snails that died between 1998 and 2012, and compared with genotypic data for six microsatellite loci from a subset of these deceased snails (N = 335), as well as live captive snails (N = 198) and wild snails (N = 92). Surprisingly, the inbreeding coefficient (Fis) declined over time in the captive population, and is now approaching values observed in the 2013 wild population, despite a significant decrease in allelic richness. However, adult annual survival and fecundity significantly declined in the second generation. These measures of fitness were positively correlated with heterozygosity. Snails with higher measures of heterozygosity had more offspring, and third generation offspring with higher measures of heterozygosity were more likely to reach maturity. These results highlight the importance of maintaining genetic diversity in captive populations, particularly those initiated with a small number of individuals from wild remnant populations. Genetic rescue may allow for an increase in genetic diversity in the captive population, as measures of heterozygosity and rarified allelic richness were higher in wild tree snails.  相似文献   

6.
Echinostoma mekongi was reported as a new species in 2020 based on specimens collected from humans in Kratie and Takeo Province, Cambodia. In the present study, its metacercarial stage has been discovered in Filopaludina martensi cambodjensis snails purchased from a local market nearby the Tonle Sap Lake, Pursat Province, Cambodia. The metacercariae were fed orally to an experimental hamster, and adult flukes were recovered at day 20 post-infection. They were morphologically examined using light and scanning electron microscopes and molecularly analyzed by sequencing of their mitochondrial cox1 and nad1 genes. A total of 115 metacercariae (1–8 per snail) were detected in 60 (60.0%) out of 100 Filopaludina snails examined. The metacercariae were round, 174 μm in average diameter (163–190 μm in range), having a thin cyst wall, a head collar armed with 37 collar spines, and characteristic excretory granules. The adult flukes were elongated, ventrally curved, 7.3 (6.4–8.2)×1.4 (1.1–1.7) mm in size, and equipped with 37 collar spines on the head collar (dorsal spines in 2 alternating rows), being consistent with E. mekongi. In phylogenetic analyses, the adult flukes showed 99.0–100% homology based on cox1 sequences and 98.9–99.7% homology based on nad1 sequences with E. mekongi. The results evidenced that F. martensi cambodjensis snails act as the second intermediate host of E. mekongi, and hamsters can be used as a suitable experimental definitive host. As local people favor to eat undercooked snails, these snails seem to be an important source of human infection with E. mekongi in Cambodia.  相似文献   

7.
Schistosoma mansoni is mediated through the intermediate host Biomphalaria arabica which lives in Saudi Arabia. Molecular characterization and identification of this intermediate host are important for epidemiological studies of schistosomiasis. The present work aimed to determine the molecular variations among the populations of B. arabica found in Southern part of Saudi Arabia, and to develop species-specific primers for identification of these snails as a first step in the development of multiplex PCR for simultaneously identifying the snails and diagnosing its infections in a single step. Five populations of Saudi B. arabica snails were collected from freshwater bodies. Three populations were collected from Asser and two populations were collected from AL-Baha. Genomic DNA was extracted from snails and was amplified using five different RAPD–PCR primers. The banding patterns of amplified materials by primers P1 and P5 were identical in all populations. However, the rest primers displayed intra-specific differences among populations with variable degrees. Largest sizes of RAPD–PCR products were cloned into TA cloning vector as a preparatory step for DNA sequence analysis. After sequencing, similarity searches of obtained DNA sequences revealed that there are no similar sequences submitted to genebank data bases and its associated banks. The results obtained will be helpful in the development of simultaneous identification of B. arabica snails and diagnosis of S. mansoni infection within it in a single step by an implementation of multiplex PCR.  相似文献   

8.
Exposure of Biomphalaria glabrata infected with Schistosoma mansoni to 14C-glucose results in a greater uptake of original total snail label by the parasitized digestive gland-gonad, site of the developing daughter sporocysts and cercariae, than by the digestive gland-gonad of control animals. As a consequence of this greater uptake by the infected digestive gland-gonad, the albumen gland and remainder of the carcass of parasitized snails receive less label than do those areas in normal snails. Emergence of cercariae from the snail and daughter sporocyst mass account for a diversion of 12.6% of original total label from the infected snail itself. This diversion of label from the snail to the parasite may explain carbohydrate depletion in parasitized snails.  相似文献   

9.
Exogenous pyrogens, isolated from viruses, bacteria and fungi, are widely used in research on fever in endotherms. The present study investigates the use of viral pyrogen poly (I:C) for inducing the symptoms of so-called behavioral fever in ectothermic animals Planorbarius corneus (Mollusca: Gastropoda). The observations of thermoregulatory behavior of the snails placed in the temperature gradient showed that the snails which were injected with 750 ng g−1 polyinosinic-polycytidylic acid-poly (I:C), after remaining latent for more than 24 h, moved to warmer areas (with the temperature around 30 °C) and stayed there until the end of the experiment. Transferred to the culture, they lived for a period similar to that of the control snails. Our observations indicate that P. corneus snails can exhibit a symptoms of fever response to poly (I:C) and could be used as model animals in the research on behavioral fever in invertebrates.  相似文献   

10.
Post-breeding migration in land-based marine animals is thought to offset seasonal deterioration in foraging or other important environmental conditions at the breeding site. However the inter-breeding distribution of such animals may reflect not only their optimal habitat, but more subtle influences on an individual’s migration path, including such factors as the intrinsic influence of each locality’s paleoenvironment, thereby influencing animals’ wintering distribution. In this study we investigated the influence of the regional marine environment on the migration patterns of a poorly known, but important seabird group. We studied the inter-breeding migration patterns in three species of Eudyptes penguins (E. chrysolophus, E. filholi and E. moseleyi), the main marine prey consumers amongst the World’s seabirds. Using ultra-miniaturized logging devices (light-based geolocators) and satellite tags, we tracked 87 migrating individuals originating from 4 sites in the southern Indian Ocean (Marion, Crozet, Kerguelen and Amsterdam Islands) and modelled their wintering habitat using the MADIFA niche modelling technique. For each site, sympatric species followed a similar compass bearing during migration with consistent species-specific latitudinal shifts. Within each species, individuals breeding on different islands showed contrasting migration patterns but similar winter habitat preferences driven by sea-surface temperatures. Our results show that inter-breeding migration patterns in sibling penguin species depend primarily on the site of origin and secondly on the species. Such site-specific migration bearings, together with similar wintering habitat used by parapatrics, support the hypothesis that migration behaviour is affected by the intrinsic characteristics of each site. The paleo-oceanographic conditions (primarily, sea-surface temperatures) when the populations first colonized each of these sites may have been an important determinant of subsequent migration patterns. Based on previous chronological schemes of taxonomic radiation and geographical expansion of the genus Eudyptes, we propose a simple scenario to depict the chronological onset of contrasting migration patterns within this penguin group.  相似文献   

11.
The relationships between producers (e.g., macrophytes, phytoplankton and epiphytic algae) and snails play an important role in maintaining the function and stability of shallow ecosystems. Complex relationships exist among macrophytes, epiphytic algae, phytoplankton, and snails. We studied the effects of snail communities (consisting of Radix swinhoei, Hippeutis cantori, Bellamya aeruginosa, and Parafossarulus striatulus) on the biomass of phytoplankton and epiphytic algae as well as on the growth of three species of submerged macrophytes (Hydrilla verticillata, Vallisneria natans, and one exotic submerged plant, Elodea nuttallii) in a 90‐day outdoor mesocosm experiment conducted on the shore of subtropical Lake Liangzihu, China. A structural equation model showed that the snail communities affected the submerged macrophytes by grazing phytoplankton and epiphytic algae (reduction in phytoplankton Chl‐a and epiphytic algal abundance), enhancing the biomass of submerged macrophytes. Highly branched macrophytes with high surfaces and morphologies and many microhabitats supported the most snails and epiphytic algae (the biomass of the snail communities and epiphytic algae on Hverticillata was greater than that on Vnatans), and snails preferred to feed on native plants. Competition drove the snails to change their grazing preferences to achieve coexistence.  相似文献   

12.
Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.×bohemica) in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16–48% reduction in snail species numbers, and 29–90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities.  相似文献   

13.
The present study was designed to investigate histochemically the detection of carbohydrate and protein in the normally feeding snails and after 15 and 30 days of starvation. Generally, abundant carbohydrate and protein materials were detected in the component cells of the digestive gland of normally feeding snails. The results of this investigation revealed a pronounced decline of carbohydrates in the digestive gland cells of Monacha cartusiana snails after starvation. Severe decline in carbohydrate content was observed especially after 30 days of starvation. Moreover, protein inclusions have exhibited a week stainability in the digestive gland cells of these snails as a consequence of starvation.  相似文献   

14.
Migratory shorebirds have many unique life history characteristics, such as long‐distance travel between breeding sites, stopover sites, and wintering sites. The physiological challenges for migrant energy requirement and immunity may affect their gut microbiome community. Here, we reviewed the specific features (e.g., relatively high proportion of Corynebacterium and Fusobacterium) in the gut microbiome of 18 migratory shorebirds, and the factors (e.g., diet, migration, environment, and phylogeny) affecting the gut microbiome. We discussed possible future studies of the gut microbiome in migratory shorebirds, including the composition and function of the spatial‐temporal gut microbiome, and the potential contributions made by the gut microbiome to energy requirement during migration.  相似文献   

15.
As they leave the blood stream and travel to lymph nodes or sites of inflammation, T lymphocytes are captured by the endothelium and migrate along the vascular wall to permissive sites of transmigration. These processes take place under the influence of hemodynamic shear stress; therefore, we investigated how migrational speed and directionality are influenced by variations in shear stress. We examined human effector T lymphocytes on intercellular adhesion molecule 1 (ICAM-1)-coated surfaces under the influence of shear stresses from 2 to 60 dyn.cm−2. T lymphocytes were shown to respond to shear stress application by a rapid (30 s) and fully reversible orientation of their migration against the fluid flow without a change in migration speed. Primary T lymphocytes migrating on ICAM-1 in the presence of uniformly applied SDF-1α were also found to migrate against the direction of shear flow. In sharp contrast, neutrophils migrating in the presence of uniformly applied fMLP and leukemic HSB2 T lymphocytes migrating on ICAM-1 alone oriented their migration downstream, with the direction of fluid flow. Our findings suggest that, in addition to biochemical cues, shear stress is a contributing factor to leukocyte migration directionality.  相似文献   

16.
Protein phosphorylation patterns were investigated in whole tissues and subcellular fractions of active and aestivatingOtala lactea (Müller) (Pulmonata, Helicidae). Measurement of overall protein phosphorylation showed that incorporation of32P increased until the second day after injection and remained constant for the remaining 4 days of the time course. Comparison of tissues from aestivating and active snails on day 3 showed a decreased protein phosphorylation in aestivating snails (44% of active). No differences in total and protein-associated radioactivity for foot, mantle or haemolymph were observed. Subcellular fractionation of the hepatopancreas localized the changes to plasma membrane, microsomal, and cytosolic fractions: values for aestivating animals were reduced to 71, 37 and 58% of the corresponding active values. Separation of the individual subcellular fractions on isoelectric focusing columns revealed differences in the phosphate incorporation patterns. Plasma membrane from aestivating animal hepatopancreas had a lower overall level of incorporation and fewer radioactive peaks in the pH 7–10 region than did the plasma membrane fraction from active animals. SDS-PAGE analysis of plasma membrane fractions from active and aestivating snails showed a relative decrease in phosphorylation between 60–80 kDa and 30–40 kDa. IEF analysis of cytosolic proteins from aestivating snail hepatopancreas also showed peaks of radioactivity that were apparently shifted by 0.3 pH units toward higher pI values. Increased phosphate incorporation was observed at a peak that corresponded to the pI value for pyruvate kinase in aestivating snails but definite assignment of peaks was not possible. SDS-PAGE analysis of cytosolic proteins showed an aestivation-related decrease in relative protein phosphorylation between 30–35 kDa and 40–45 kDa. A relative increase in phosphorylation during aestivation was observed for proteins between 16–22 kDa. Overall, the data indicate that snails dramatically alter their protein phosphorylation pattern in hepatopancreas during aestivation. (Mol Cell Biochem143: 7–13, 1995)Abbreviations CY cytosol - dpm radioactive disintegrations per minute - IEF isoelectrofocusing - GP glycogen phosphorylase - MC microsomes - MT mitochondria - PAGE polyacrylamide gel electrophoresis - PKF phosphofructokinase - PK pyruvate kinase - PM plasma membrane - SDS sodium dodecyl sulphate  相似文献   

17.
Ehrlichia DNA was identified by nested PCR in operculate snails (Pleuroceridae: Juga spp.) collected from stream water in a northern California pasture in which Potomac horse fever (PHF) is enzootic. Sequencing of PCR-amplified DNA from a suite of genes (the 16S rRNA, groESL heat shock operon, 51-kDa major antigen genes) indicated that the source organism closely resembled Ehrlichia risticii, the causative agent of PHF. The minimum percentage of Juga spp. harboring the organism in the population studied was 3.5% (2 of 57 snails). No ehrlichia DNA was found in tissues of 123 lymnaeid, physid, and planorbid snails collected at the same site. These data suggest that pleurocerid stream snails may play a role in the life cycle of E. risticii in northern California.  相似文献   

18.
19.
The intertidal gastropod, Tegula funebralis (A. Adams) exhibits a shore-level size gradient with mean shell size increasing in a down-shore direction. Snails transferred to zones where they do not usually occur migrated back towards their original zone, thus re-establishing a size gradient and implying differential movement among size classes. Both large (≥2.1 cm shell width) and small (≤ 1.77 cm) snails were photonegative on a horizontal surface and geonegative in the laboratory; there were no statistical differences between size classes. Light, however, inhibited upward, or caused downward, movement of large snails on vertical surfaces. Small snails were unaffected, ranging higher on illuminated vertical surfaces than large snails. Both sizes exhibited similar distributions in the dark. In an experimental chamber providing both emersed and immersed surfaces, T. funebralis established vertical size gradients when the chamber was illuminated from above. It is suggested that light is an important factor in the formation and maintenance of Tegula's shore-level size gradient.In response to water-borne chemicals derived from the sea star Pisaster ochraceus (Brandt), large snails moved up vertical surfaces in greater proportion than small. In response to contact with the predator, large snails moved away faster than small and individuals collected from crevices in the field moved away slower than those collected from open rock faces. Although predation may select for a size gradient in Tegulafunebralis, it is unlikely that responses to predatory sea stars directly and proximally cause or maintain them over the short term.  相似文献   

20.
Acquired resistance to Schistosoma mansoni PR-I strain has been induced in Biomphalaria glabrata 442132 strain by infecting the snails with irradiated homologous miracidia. Present and previous results support the hypothesis that acquired resistance to trematodes in snails is an enhancement of the host's natural resistance to the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号