首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Nasopharyngeal carcinoma (NPC) is the most common malignant tumor of the head and neck region and is characterized by an increased risk of developing chemoresistance after treatment. The present study demonstrated that estrogen-related receptor α (ERRα) was upregulated in cisplatin- and fluorouracil-resistant NPC cells. In addition, ERRα knockdown or treatment of cells with the ERRα inverse agonist XCT-790 attenuated the chemoresistance of NPC cells. Mechanistically, the increased expression of ERRα in chemoresistant cells was associated with enhanced mRNA stability. Bioinformatics analysis for screening microRNAs (miRs) regulating the expression of ERRα revealed that miR-137 was downregulated in chemoresistant NPC cells. Additionally, transfection of cells with miR-137 mimics reduced ERRα mRNA stability and increased the chemosensitivity of NPC cells. Furthermore, ERRα knockdown reduced glucose consumption, and lactate and ATP production rates in chemoresistant cells. The aforementioned findings suggested that the miR-137/ERRα-mediated metabolic programming could be involved in the chemoresistance of NPC cells.  相似文献   

5.
6.
7.
The estrogen receptor-related receptor α (ERRα) is an orphan member of the nuclear receptor superfamily that has been shown to interfere with the estrogen-signaling pathway. In this report, we demonstrate that ERRα also cross-talks with signaling driven by other steroid hormones. Treatment of human prostatic cells with a specific ERRα inverse agonist reduces the expression of several androgen-responsive genes, in a manner that does not involve perturbation of androgen receptor expression or activity. Furthermore, ERRα activates the expression of androgen response elements (ARE)-containing promoters, such as that of the prostate cancer marker PSA, in an ARE-dependent manner. In addition, promoters containing a steroid response element can be activated by all members of the ERR orphan receptor subfamily, and this, even in the presence of antisteroid compounds.  相似文献   

8.
9.
We show for the first time that potent microRNA-433 (miR-433) inhibition of expression of the cAMP response element-binding protein CREB1 represses hepatocellular carcinoma (HCC) cell migration. We identified a miR-433 seed match region in human and mouse CREB1 3′-UTRs. Overexpression of miR-433 markedly decreased human CREB1 3′-UTR reporter activity, and the inhibitory effect of miR-433 was alleviated upon mutation of its binding site. Ectopic expression of miR-433 reduced CREB1 protein levels in a variety of human and mouse cancer cells, including HeLa, Hepa1, Huh7, and HepG2. Human CREB1 protein levels in highly invasive MHCC97H cells were diminished by expression of miR-433 but were induced by miR-433 antagomir (anti-miR-433). The expression of mouse CREB1 protein negatively correlated with miR-433 levels in nuclear receptor Shp−/− liver tissues and liver tumors compared with wild-type mice. miR-433 exhibited a significant repression of MHCC97H cell migration, which was reversed by anti-miR-433. Overexpressing miR-433 inhibited focus formation dramatically, demonstrating that miR-433 may exert a tumor suppressor function. Knockdown of CREB1 by siRNAs impeded MHCC97H cell migration and invasion and antagonized the effect of anti-miR-433. Interestingly, CREB1 siRNA decreased MHCC97H cell proliferation, which was not influenced by anti-miR-433. Overexpressing CREB1 decreased the inhibitory activity of miR-433. The CpG islands surrounding miR-433 were hypermethylated, and the DNA methylation agent 5′-aza-2′-deoxycytidine, but not the histone deacetylase inhibitor trichostatin A, drastically stimulated the expression of miR-433 and miR-127 in HCC cells. The latter is clustered with miR-433. The results reveal a critical role of miR-433 in mediating HCC cell migration via CREB1.  相似文献   

10.
11.
12.
13.
14.
The vast majority of Mycobacterium tuberculosis (M. tuberculosis) infected individuals are protected from developing tuberculosis and T cells are centrally involved in this process. MicroRNAs (miRNA) regulate T-cell functions and are biomarker candidates of disease susceptibility and treatment efficacy in M. tuberculosis infection. We determined the expression profile of 29 selected miRNAs in CD4+ T cells from tuberculosis patients and contacts with latent M. tuberculosis infection (LTBI). These analyses showed lower expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4+ T cells from tuberculosis patients. Whole blood miRNA candidate analyses verified decreased expression of miR-26a, miR-29a, and miR-142-3p in children with tuberculosis as compared to healthy children with LTBI. Despite marked variances between individual donor samples, trends of increased miRNA candidate expression during treatment and recovery were observed. Functional in vitro analysis identified increased miR-21 and decreased miR-26a expression after re-stimulation of T cells. In vitro polarized Interleukin-17 positive T-cell clones showed activation-dependent miR-29a up-regulation. In order to characterize the role of miR-29a (a described suppressor of Interferon-γ in tuberculosis), we analyzed M. tuberculosis specific Interferon-γ expressing T cells in children with tuberculosis and healthy contacts but detected no correlation between miR-29a and Interferon-γ expression. Suppression of miR-29a in primary human T cells by antagomirs indicated no effect on Interferon-γ expression after in vitro activation. Finally, classification of miRNA targets revealed only a moderate overlap between the candidates. This may reflect differential roles of miR-21, miR-26a, miR-29a, and miR-142-3p in T-cell immunity against M. tuberculosis infection and disease.  相似文献   

15.
16.
microRNA-142 (miR-142) is an important regulator of many biological processes and associated signaling pathways during embryonic development, homeostasis and disease. The miR-142 hairpin gives rise to the “guide strand” miR-142-3p and the sister "passenger" strand miR-142-5p. miR-142-3p has been shown to play critical, non-redundant functions in the development of the hematopoietic lineage. We have recently reported that miR-142-3p is critical for the control of Wnt signaling in the mesenchyme of the developing lung. miR-142-5p has been proposed to control adaptive growth in cardiomyocytes postnatally and its increase is associated with extensive apoptosis and cardiac dysfunction in a murine heart failure model. Using homologous recombination, we now report the generation and validation of miR-142-null mice. miR-142-null mice show a significant decrease in th expression levels of both the 3p and 5p isoforms. The expression of Bzrap1, a gene immediately flanking miR-142 is not altered while the expression of a long non-coding RNA embedded within the miR-142 gene is decreased. miR-142-null newborn pups appear normal and are normally represented indicating absence of embryonic lethality. At embryonic day 18.5, miR-142-null lungs display increased Wnt signaling associated with the up-regulation of Apc and p300, two previously reported targets of miR-142-3p and -5p, respectively. Adult miR-142-null animals display impaired hematopoietic lineage formation identical to previously reported miR-142 gene trap knockdown mice. We report, for the first time, the homologous recombination-based miR-142-null mice that will be useful for the scientific community working on the diverse biological functions of miR-142.  相似文献   

17.
Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα), a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB) and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis.  相似文献   

18.
We designed DNA substrates to study intrachromosomal recombination in mammalian chromosomes. Each substrate contains a thymidine kinase (tk) gene fused to a neomycin resistance (neo) gene. The fusion gene is disrupted by an oligonucleotide containing the 18-bp recognition site for endonuclease I-SceI. Substrates also contain a “donor” tk sequence that displays 1% or 19% sequence divergence relative to the tk portion of the fusion gene. Each donor serves as a potential recombination partner for the fusion gene. After stably transfecting substrates into mammalian cell lines, we investigated spontaneous recombination and double-strand break (DSB)-induced recombination following I-SceI expression. No recombination events between sequences with 19% divergence were recovered. Strikingly, even though no selection for accurate repair was imposed, accurate conservative homologous recombination was the predominant DSB repair event recovered from rodent and human cell lines transfected with the substrate containing sequences displaying 1% divergence. Our work is the first unequivocal demonstration that homologous recombination can serve as a major DSB repair pathway in mammalian chromosomes. We also found that Msh2 can modulate homologous recombination in that Msh2 deficiency promoted discontinuity and increased length of gene conversion tracts and brought about a severalfold increase in the overall frequency of DSB-induced recombination.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号