首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
microRNAs (miRNAs) are a class of small RNAs (sRNAs) of ~21 nucleotides (nt) in length processed from foldback hairpins by DICER-LIKE1 (DCL1) or DCL4. They regulate the expression of target mRNAs by base pairing through RNA-induced silencing complex (RISC). In the RISC, ARGONAUTE1 (AGO1) is the key protein that cleaves miRNA targets at position ten of a miRNA:target duplex. The authenticity of many annotated rice miRNA hairpins is under debate because of their homology to repeat sequences. Some of them, like miR1884b, have been removed from the current release of miRBase based on incomplete information. In this study, we investigated the association of transposable element (TE)-derived miRNAs with typical miRNA pathways (DCL1/4- and AGO1-dependent) using publicly available deep sequencing datasets. Seven miRNA hairpins with 13 unique sRNAs were specifically enriched in AGO1 immunoprecipitation samples and relatively reduced in DCL1/4 knockdown genotypes. Interestingly, these species are ~21-nt long, instead of 24-nt as annotated in miRBase and the literature. Their expression profiles meet current criteria for functional annotation of miRNAs. In addition, diagnostic cleavage tags were found in degradome datasets for predicted target mRNAs. Most of these miRNA hairpins share significant homology with miniature inverted-repeat transposable elements, one type of abundant DNA transposons in rice. Finally, the root-specific production of a 24-nt miRNA-like sRNA was confirmed by RNA blot for a novel EST that maps to the 3′-UTR of a candidate pseudogene showing extensive sequence homology to miR1884b hairpin. Our data are consistent with the hypothesis that TEs can serve as a driving force for the evolution of some MIRNAs, where co-opting of DICER-LIKE1/4 processing and integration into AGO1 could exapt transcribed TE-associated hairpins into typical miRNA pathways.  相似文献   

2.
3.
4.
microRNAs (miRNAs) are important noncoding small RNAs that regulate mRNAs in eukaryotes. However, under which circumstances different miRNAs/miRNA families exhibit different evolutionary trajectories in plants remains unclear. In this study, we sequenced the small RNAs and degradome from a basal eudicot, sacred lotus (Nelumbo nucifera or lotus), to identify miRNAs and their targets. Combining with public miRNAs, we predicted 57 pre‐eudicot miRNA families from different evolutionary stages. We found that miRNA families featuring older age, higher copy and target number tend to show lower propensity for miRNA family loss (PGL) and stronger signature of purifying selection during divergence of temperate and tropical lotus. Further analyses of lotus genome revealed that there is an association between loss of miRNA families in descendent plants and in duplicated genomes. Gene dosage balance is crucial in maintaining those preferentially retained MIRNA duplicates by imposing stronger purifying selection. However, these factors and selection influencing miRNA family evolution are not applicable to the putative MIRNA‐likes. Additionally, the MIRNAs participating in lotus pollen–pistil interaction, a conserved process in angiosperms, also have a strong signature of purifying selection. Functionally, sequence divergence in MIRNAs escalates expression divergence of their target genes between temperate and tropical lotus during rhizome and leaf growth. Overall, our study unravels several important factors and selection that determine the miRNA family distribution in plants and duplicated genomes, and provides evidence for functional impact of MIRNA sequence evolution.  相似文献   

5.
Conserved plant microRNAs (miRNAs) modulate important biological processes but little is known about conserved cis-regulatory elements (CREs) surrounding MIRNA genes. We developed a solution-based targeted genomic enrichment methodology to capture, enrich, and sequence flanking genomic regions surrounding conserved MIRNA genes with a locked-nucleic acid (LNA)-modified, biotinylated probe complementary to the mature miRNA sequence. Genomic DNA bound by the probe is captured by streptavidin-coated magnetic beads, amplified, sequenced and assembled de novo to obtain genomic DNA sequences flanking MIRNA locus of interest. We demonstrate the sensitivity and specificity of this enrichment methodology in Arabidopsis thaliana to enrich targeted regions spanning 10–20 kb surrounding known MIR166 and MIR165 loci. Assembly of the sequencing reads successfully recovered all targeted loci. While further optimization for larger, more complex genomes is needed, this method may enable determination of flanking genomic DNA sequence surrounding a known core (like a conserved mature miRNA) from multiple species that currently don''t have a full genome assembly available.  相似文献   

6.
miRNA genes are thought to undergo quick birth and death processes in genomes and the emergence of a MIRNA‐like hairpin provides the base for functional miRNA gene formation. However, the factors affecting the formation of an active miRNA gene from a MIRNA‐like hairpin within a genome remain unclear. We performed a genome‐wide investigation of MIRNA‐like hairpin accumulation, expression, structural changes and relationships with annotated genomic features in the paleopolyploid soybean genome. Our results showed that adjacent gene and transposable element content, rates of genetic recombination at location of emergence, along with its own gene structure divergence greatly affected miRNA gene evolution. Further investigation suggested that miRNA genes from different duplication sources followed distinct evolutionary trajectories and that the accumulation of MIRNA‐like hairpins might be an important factor in causing long terminal repeat retrotransposons to lose activity during genome evolution.  相似文献   

7.
8.
9.
10.
11.
12.
13.
In Drosophila, three types of endogenous small RNAs—microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and endogenous small-interfering RNAs (endo-siRNAs or esiRNAs)—function as triggers in RNA silencing. Although piRNAs are produced independently of Dicer, miRNA and esiRNA biogenesis pathways require Dicer1 and Dicer2, respectively. Recent studies have shown that among the four isoforms of Loquacious (Loqs), Loqs-PB and Loqs-PD are involved in miRNA and esiRNA processing pathways, respectively. However, how these Loqs isoforms function in their respective small RNA biogenesis pathways remains elusive. Here, we show that Loqs-PD associates specifically with Dicer2 through its C-terminal domain. The Dicer2–Loqs-PD complex contains R2D2, another known Dicer2 partner, and excises both exogenous siRNAs and esiRNAs from their corresponding precursors in vitro. However, Loqs-PD, but not R2D2, enhanced Dicer2 activity. The Dicer2–Loqs-PD complex processes esiRNA precursor hairpins with long stems, which results in the production of AGO2-associated small RNAs. Interestingly, however, small RNAs derived from terminal hairpins of esiRNA precursors are loaded onto AGO1; thus, they are classified as a new subset of miRNAs. These results suggest that the precursor RNA structure determines the biogenesis mechanism of esiRNAs and miRNAs, thereby implicating hairpin structures with long stems as intermediates in the evolution of Drosophila miRNA.  相似文献   

14.
15.
Twenty-one-nucleotide microRNAs (miRNAs) and 24-nucleotide Pol IV-dependent small interfering RNAs (p4-siRNAs) are the most abundant types of small RNAs in angiosperms. Some miRNAs are well conserved among different plant lineages, whereas others are less conserved, and it is not clear whether less-conserved miRNAs have the same functionality as the well conserved ones. p4-siRNAs are broadly produced in the Arabidopsis genome, sometimes from active hot spot loci, but it is unknown whether individual p4-siRNA hot spots are retained as hot spots between plant species. In this study, we compare small RNAs in two closely related species (Arabidopsis thaliana and Arabidopsis lyrata) and find that less-conserved miRNAs have high rates of divergence in MIRNA hairpin structures, mature miRNA sequences, and target-complementary sites in the other species. The fidelity of miRNA biogenesis from many less-conserved MIRNA hairpins frequently deteriorates in the sister species relative to the species of first discovery. We also observe that p4-siRNA occupied loci have a slight tendency to be retained as p4-siRNA loci between species, but the most active A. lyrata p4-siRNA hot spots are generally not syntenic to the most active p4-siRNA hot spots of A. thaliana. Altogether, our findings indicate that many MIRNAs and most p4-siRNA hot spots are rapidly changing and evolutionarily transient within the Arabidopsis genus.  相似文献   

16.
MicroRNAs have been identified and analyzed in various model species, but an investigation of miRNAs in nonmodel species is required for a more complete understanding of miRNA evolution. In this study, we investigated the miRNAs of the nonmodel species Triops cancriformis (tadpole shrimp), a “living fossil,” whose morphological form has not changed in almost 200 million years. Dramatic ontogenetic changes occur during its development. To clarify the evolution of miRNAs, we comparatively analyzed its miRNAs and the components of its RNAi machinery. We used deep sequencing to analyze small RNA libraries from the six different developmental stages of T. cancriformis (egg, first–fourth instars, and adult), and also analyzed its genomic DNA with deep sequencing. We identified 180 miRNAs (87 conserved miRNAs and 93 novel candidate miRNAs), and deduced the components of its RNAi machinery: the DICER1, AGO1–3, PIWI, and AUB proteins. A comparative miRNA analysis of T. cancriformis and Drosophila melanogaster showed inconsistencies in the expression patterns of four conserved miRNAs. This suggests that although the miRNA sequences of the two species are very similar, their roles differ across the species. An miRNA conservation analysis revealed that most of the conserved T. cancriformis miRNAs share sequence similarities with those of arthropods, although T. cancriformis is called a “living fossil.” However, we found that let-7 and DICER1 of T. cancriformis are more similar to those of the vertebrates than to those of the arthropods. These results suggest that miRNA systems of T. cancriformis have evolved in a unique fashion.  相似文献   

17.
Plant microRNAs (miRNAs) typically form near-perfect duplexes with their targets and mediate mRNA cleavage. Here, we describe an unconventional miRNA target of miR398 in Arabidopsis, an mRNA encoding the blue copper-binding protein (BCBP). BCBP mRNA carries an miR398 complementary site in its 5′-untranslated region (UTR) with a bulge of six nucleotides opposite to the 5′ region of the miRNA. Despite the disruption of a target site region thought to be especially critical for function, BCBP mRNAs are cleaved by ARGONAUTE1 between nucleotides 10th and 11th, opposite to the miRNA, like conventional plant target sites. Levels of BCBP mRNAs are inversely correlated to levels of miR398 in mutants lacking the miRNA, or transgenic plants overexpressing it. Introducing two mutations that disrupt the miRNA complementarity around the cleavage site renders the target cleavage-resistant. The BCBP site functions outside of the context of the BCBP mRNA and does not depend on 5′-UTR location. Reducing the bulge does not interfere with miR398-mediated regulation and completely removing it increases the efficiency of the slicing. Analysis of degradome data and target predictions revealed that the miR398-BCBP interaction seems to be rather unique. Nevertheless, our results imply that functional target sites with non-perfect pairings in the 5′ region of an ancient conserved miRNA exist in plants.  相似文献   

18.
19.
The propensity of animal miRNAs to regulate targets bearing modest complementarity, most notably via pairing with miRNA positions ∼2–8 (the “seed”), is believed to drive major aspects of miRNA evolution. First, minimal targeting requirements have allowed most conserved miRNAs to acquire large target cohorts, thus imposing strong selection on miRNAs to maintain their seed sequences. Second, the modest pairing needed for repression suggests that evolutionarily nascent miRNAs may generally induce net detrimental, rather than beneficial, regulatory effects. Hence, levels and activities of newly emerged miRNAs are expected to be limited to preserve the status quo of gene expression. In this study, we unexpectedly show that Drosophila testes specifically express a substantial miRNA population that contravenes these tenets. We find that multiple genomic clusters of testis-restricted miRNAs harbor recently evolved miRNAs, whose experimentally verified orthologs exhibit divergent sequences, even within seed regions. Moreover, this class of miRNAs exhibits higher expression and greater phenotypic capacities in transgenic misexpression assays than do non-testis-restricted miRNAs of similar evolutionary age. These observations suggest that these testis-restricted miRNAs may be evolving adaptively, and several methods of evolutionary analysis provide strong support for this notion. Consistent with this, proof-of-principle tests show that orthologous miRNAs with divergent seeds can distinguish target sensors in a species-cognate manner. Finally, we observe that testis-restricted miRNA clusters exhibit extraordinary dynamics of miRNA gene flux in other Drosophila species. Altogether, our findings reveal a surprising tissue-directed influence of miRNA evolution, involving a distinct mode of miRNA function connected to adaptive gene regulation in the testis.  相似文献   

20.
Plant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-sequenced. 428 potential targets of small interfering RNAs and 25 novel miRNA families were identified. A total of 211 potential miRNA targets, including 174 conserved miRNA targets and 37 soybean-specific miRNA targets, were identified. Among them, 121 targets were first discovered in soybean. The signature distribution of soybean primary miRNAs (pri-miRNAs) showed that most pri-miRNAs had the characteristic pattern of Dicer processing. The biogenesis of TAS3 small interfering RNAs (siRNAs) was conserved in soybean, and nine Auxin Response Factors were identified as TAS3 siRNA targets. Twenty-three miRNA targets produced secondary small interfering RNAs (siRNAs) in soybean. These targets were guided by five miRNAs: gma-miR393, gma-miR1508, gma-miR1510, gma-miR1514, and novel-11. Multiple targets of these secondary siRNAs were detected. These 23 miRNA targets may be the putative novel TAS genes in soybean. Global identification of miRNA targets and potential novel TAS genes will contribute to research on the functions of miRNAs in soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号