首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horizontal DNA transfer is an important factor of evolution and participates in biological diversity. Unfortunately, the location and length of horizontal transfers (HTs) are known for very few species. The usage of short oligonucleotides in a sequence (the so-called genomic signature) has been shown to be species-specific even in DNA fragments as short as 1 kb. The genomic signature is therefore proposed as a tool to detect HTs. Since DNA transfers originate from species with a signature different from those of the recipient species, the analysis of local variations of signature along recipient genome may allow for detecting exogenous DNA. The strategy consists in (i) scanning the genome with a sliding window, and calculating the corresponding local signature (ii) evaluating its deviation from the signature of the whole genome and (iii) looking for similar signatures in a database of genomic signatures. A total of 22 prokaryote genomes are analyzed in this way. It has been observed that atypical regions make up ~6% of each genome on the average. Most of the claimed HTs as well as new ones are detected. The origin of putative DNA transfers is looked for among ~12000 species. Donor species are proposed and sometimes strongly suggested, considering similarity of signatures. Among the species studied, Bacillus subtilis, Haemophilus Influenzae and Escherichia coli are investigated by many authors and give the opportunity to perform a thorough comparison of most of the bioinformatics methods used to detect HTs.  相似文献   

2.
Accurate estimation of systemic tumor load from the blood of cancer patients has enormous potential. One avenue is to measure the presence of cell-free circulating tumor DNA in plasma. Various approaches have been investigated, predominantly covering hotspot mutations or customized, patient-specific assays. Therefore, we investigated the utility of using exome sequencing to monitor circulating tumor DNA levels through the detection of single nucleotide variants in plasma. Two technologies, claiming to offer efficient library preparation from nanogram levels of DNA, were evaluated. This allowed us to estimate the proportion of starting molecules measurable by sequence capture (<5%). As cell-free DNA is highly fragmented, we designed and provide software for efficient identification of PCR duplicates in single-end libraries with a varying size distribution. On average, this improved sequence coverage by 38% in comparison to standard tools. By exploiting the redundant information in PCR-duplicates the background noise was reduced to ∼1/35000. By applying our optimized analysis pipeline to a simulation analysis, we determined the current sensitivity limit to ∼1/2400, starting with 30 ng of cell-free DNA. Subsequently, circulating tumor DNA levels were assessed in seven breast- and one prostate cancer patient. One patient carried detectable levels of circulating tumor DNA, as verified by break-point specific PCR. These results demonstrate exome sequencing on cell-free DNA to be a powerful tool for disease monitoring of metastatic cancers. To enable a broad implementation in the diagnostic settings, the efficiency limitations of sequence capture and the inherent noise levels of the Illumina sequencing technology must be further improved.  相似文献   

3.
The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.  相似文献   

4.
Although the human genome has been nearly completely sequenced, the functions and the roles of the vast majority of the genes, and the influences of single nucleotide polymorphisms (SNPs) in these genes are not entirely known. A modified mutation detection method was developed for large-scale cloning of the possible SNPs between tumor and normal cells for facilitating the identification of genetic factors that associated with cancer formation and progression. The method involves hybridization of restriction enzyme-cut chromosomal DNA, cleavage and modification of the sites of differences by enzymes, and differential cloning of sequence variations with a designed vector. Experimental validations of the presence and location of sequence variations in the isolated clones by PCR and DNA sequencing support the capability of this method in identifying sequence differences between tumor cells and normal cells.  相似文献   

5.
Recently, we isolated from the blood of lymphoproliferative disease (LPD)-affected turkeys a type C retrovirus distinct from the avian leukosis-sarcoma virus complex and the reticuloendotheliosis virus group. We present molecular evidence for the implication of this virus in the LPD of turkeys. Using complementary DNA of LPD viral RNA, we found that the LPD viral genome is specifically and efficiently transcribed (2,500 copies per cell) in LPD tumor cells. Moreover, the LPD tumor cells contained newly inserted LPD viral information (5 to 10 copies per haploid genome), which was not present before the infection. From the absence of LPD virus-specific sequences in the normal cell genome of turkeys, it was concluded that the LPD virus is not an endogenous virus of turkeys. DNA-DNA annealing experiments revealed that the degree of sequence homology between LPD viral complementary DNA and cellular DNA of turkeys was not higher than that between LPD viral complementary DNA and cellular DNA of other species, thus indicating that the virus does not originate from turkeys.  相似文献   

6.
7.
Deletions in mitochondrial DNA (mtDNA) accumulate with age in humans without overt mitochondriopathies, but relatively limited attention has been devoted to the measurement of the total number of mtDNA molecules per cell during ageing. We have developed a precise assay that determines mtDNA levels relative to nuclear DNA using a PCR-based procedure. Quantification was performed by reference to a single recombinant plasmid standard containing a copy of each target DNA sequence (mitochondrial and nuclear). Copy number of mtDNA was determined by amplifying a short region of the cytochrome b gene (although other regions of mtDNA were demonstrably useful). Nuclear DNA content was determined by amplification of a segment of the single copy β-globin gene. The copy number of mtDNA per diploid nuclear genome in myocardium was 6970 ± 920, significantly higher than that in skeletal muscle, 3650 ± 620 (P = 0.006). In both human skeletal muscle and myocardium, there was no significant change in mtDNA copy number with age (from neonates to subjects older than 80 years). This PCR-based assay not only enables accurate determination of mtDNA relative to nuclear DNA but also has the potential to quantify accurately any DNA sequence in relation to any other.  相似文献   

8.
DNA damage has been associated with prostate cancer risk. Men who were referred for initial prostate biopsy for elevated prostate-specific antigen or abnormal digital rectal examination are often found with no cancer but have a higher risk of developing prostate cancer than the general population of men in their lifetime. In this study, we investigated whether DNA damage is one of the factors that predispose these men referred for prostate biopsies to a higher risk of prostate cancer. We found significantly elevated levels of 8-oxo-2-deoxyguanosine immunoreactivity in the prostates of the referred men (n = 50) in comparison to the control prostates of men (n = 32) with no indication for referral for prostate biopsy. Twelve of these control men were healthy middle-aged men and 20 of them were older men whose conditions were diagnosed with bladder cancer but with normal serum prostate-specific antigen and digital rectal examination and no evidence of prostate disease. In all the 8-oxo-2-deoxyguanosine-positive prostates, we detected phosphorylation of the ataxia telangiectasia mutated kinase and expression of the immune-stimulatory molecule MIC in the prostate epithelium. These data suggest that: 1) oxidative DNA damage has occurred in the “referred” but pathologically normal prostates, indicating that these prostates may be subjected to genomic instability and eventually neoplastic transformation; 2) in response to DNA damage, two surveillance pathways, represented by ataxia telangiectasia mutated phosphorylation and induction of the NKG2D ligand MIC, were activated to prevent tumorigenesis.  相似文献   

9.
A bacterial artificial chromosome (BAC) library was constructed by cloning HindIII-digested high molecular weight DNA from a gynogenetic channel catfish, Ictalurus punctatus, into the vector pBeloBAC11. Approximately 53 500 clones were arrayed in 384-well plates and stored at -80°C (CCBL1), while clones from a smaller insert size fraction were stored at -80°C without arraying (CCBL2). Pulsed-field gel electrophoresis of 100 clones after NotI digestion revealed an average insert size of 165 kb for CCBL1 and 113 kb for CCBL2. Further characterization of CCBL1 demonstrated that 10% of the clones did not contain an insert. CCBL1 provides a 7.2-fold coverage of the channel catfish haploid genome. PCR-based screening demonstrated that 68 out of 74 unique loci were present in the library. This represents a 92% chance to find a unique sequence. These libraries will be useful for physical mapping of the channel catfish genome, and identification of genes controlling major traits in this economically important species.  相似文献   

10.
A new comparative genome hybridization technology using NotI microarrays is described (Karolinska Institute International Patent WO02/086163). The method is based on comparative genome hybridization of NotI-enriched probes from tumor and normal genomic DNA with radically new NotI microarrays. A total of 181 NotI-binding loci of human chromosome 3 were assayed in 200 human malignant tissue samples from various organs: kidney, lung, breast, ovary, cervix, and prostate. The most significant portion (above 30%) of aberrations (deletions and methylation) were detected in NotI sites located in the MINT24, BHLHB2, RPL15, RARbeta1, ITGA9, RBSP3, VHL, and ZIC4 genes. This indicates that they may be associated with cancer development. Methylation of these genomic loci was confirmed by methylation-specific PCR and bisulfite sequencing. The results confirm that the proposed method can contribute to cancer genomics.  相似文献   

11.
A new approach has been used to examine DNA sequence organization in the chicken genome. The interspersion pattern was determined by studying the fraction of labelled DNA fragments of different lengths that hybridized to an excess of short chicken repeated DNA sequences. The results indicate that chicken DNA has a pattern of sequence organization quite different than the standard ‘Xenopus’ or ‘Drosophila’ patterns. Two classes of unique sequences are found. One, 34% of the genome, consists of unique sequences approx. 4 kb long interspersed with repeated sequences. The second, non-interspersed fraction, 38% of the genome, consists of unique sequences found in long tracts, a minimum of approx. 22 kb in length. In an attempt to determine whether a relationship exists between DNA sequence organization and the distribution of structural genes we have isolated chicken DNA sequences belonging to different interspersion classes and tested each for the presence of structural genes by hybridization to excess poly(A)+ mRNA. Sequences complementary to poly(A)+ mRNA can be found with approximately the same frequency in both the non-interspersed fraction of the genome and a repeat-contiguous fraction enriched for interspersed sequences.  相似文献   

12.
U87MG is a commonly studied grade IV glioma cell line that has been analyzed in at least 1,700 publications over four decades. In order to comprehensively characterize the genome of this cell line and to serve as a model of broad cancer genome sequencing, we have generated greater than 30× genomic sequence coverage using a novel 50-base mate paired strategy with a 1.4kb mean insert library. A total of 1,014,984,286 mate-end and 120,691,623 single-end two-base encoded reads were generated from five slides. All data were aligned using a custom designed tool called BFAST, allowing optimal color space read alignment and accurate identification of DNA variants. The aligned sequence reads and mate-pair information identified 35 interchromosomal translocation events, 1,315 structural variations (>100 bp), 191,743 small (<21 bp) insertions and deletions (indels), and 2,384,470 single nucleotide variations (SNVs). Among these observations, the known homozygous mutation in PTEN was robustly identified, and genes involved in cell adhesion were overrepresented in the mutated gene list. Data were compared to 219,187 heterozygous single nucleotide polymorphisms assayed by Illumina 1M Duo genotyping array to assess accuracy: 93.83% of all SNPs were reliably detected at filtering thresholds that yield greater than 99.99% sequence accuracy. Protein coding sequences were disrupted predominantly in this cancer cell line due to small indels, large deletions, and translocations. In total, 512 genes were homozygously mutated, including 154 by SNVs, 178 by small indels, 145 by large microdeletions, and 35 by interchromosomal translocations to reveal a highly mutated cell line genome. Of the small homozygously mutated variants, 8 SNVs and 99 indels were novel events not present in dbSNP. These data demonstrate that routine generation of broad cancer genome sequence is possible outside of genome centers. The sequence analysis of U87MG provides an unparalleled level of mutational resolution compared to any cell line to date.  相似文献   

13.
14.
Somatic mosaicism refers to the existence of somatic mutations in a fraction of somatic cells in a single biological sample. Its importance has mainly been discussed in theory although experimental work has started to emerge linking somatic mosaicism to disease diagnosis. Through novel statistical modeling of paired-end DNA-sequencing data using blood-derived DNA from healthy donors as well as DNA from tumor samples, we present an ultra-fast computational pipeline, LocHap that searches for multiple single nucleotide variants (SNVs) that are scaffolded by the same reads. We refer to scaffolded SNVs as local haplotypes (LH). When an LH exhibits more than two genotypes, we call it a local haplotype variant (LHV). The presence of LHVs is considered evidence of somatic mosaicism because a genetically homogeneous cell population will not harbor LHVs. Applying LocHap to whole-genome and whole-exome sequence data in DNA from normal blood and tumor samples, we find wide-spread LHVs across the genome. Importantly, we find more LHVs in tumor samples than in normal samples, and more in older adults than in younger ones. We confirm the existence of LHVs and somatic mosaicism by validation studies in normal blood samples. LocHap is publicly available at http://www.compgenome.org/lochap.  相似文献   

15.
Chemical synthesis of DNA sequences provides a powerful tool for modifying genes and for studying gene function, structure and expression. Here, we report a simple, high-fidelity and cost-effective PCR-based two-step DNA synthesis (PTDS) method for synthesis of long segments of DNA. The method involves two steps. (i) Synthesis of individual fragments of the DNA of interest: ten to twelve 60mer oligonucleotides with 20 bp overlap are mixed and a PCR reaction is carried out with high-fidelity DNA polymerase Pfu to produce DNA fragments that are ~500 bp in length. (ii) Synthesis of the entire sequence of the DNA of interest: five to ten PCR products from the first step are combined and used as the template for a second PCR reaction using high-fidelity DNA polymerase pyrobest, with the two outermost oligonucleotides as primers. Compared with the previously published methods, the PTDS method is rapid (5–7 days) and suitable for synthesizing long segments of DNA (5–6 kb) with high G + C contents, repetitive sequences or complex secondary structures. Thus, the PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures. Using the newly developed PTDS method, we have successfully obtained several genes of interest with sizes ranging from 1.0 to 5.4 kb.  相似文献   

16.
To determine the sterility of pharmaceutical samples, highly conserved bacterial ribosomal DNA sequences were used in a PCR-based assay. Finished products, raw materials, growth media, and diluents were artificially contaminated with different types of microorganisms. Samples were incubated for 24 h. After incubation, microbial DNA was extracted from enrichment broths using a Tris-EDTA-Tween 20 buffer containing proteinase K. Extracted DNA was added to Ready-To-Go PCR beads and eubacterial primers. Contaminated samples were found to contain the conserved 1.5 kilobase (kb) DNA fragment of the bacterial genome by using the PCR assay. None of the uninoculated samples was found to show the presence of the 1.5 kb fragment. PCR test results were compared with standard conventional methods. There was a 100% correlation between standard conventional methods and the PCR assay. However, the PCR-based assay was completed within 27 h while conventional methods required 4–5 days. Rapid PCR analysis using a simple sample preparation reduced the time for sterility testing of pharmaceutical samples allowing optimization of risk assessment and implementation of corrective actions.  相似文献   

17.
Prostate cancer is the most common cancer in males in the United States, yet the etiology of this disease is still poorly understood. In previous work from our laboratory, one or more deleted regions were found in prostate tumors distal to the breast and ovarian cancer susceptibility gene (BRCA1) on chromosome 17. This suggested that genes at 17q21 may play a pivotal role in prostate cancer progression, and there may be new tumor suppressor genes at this locus. We now present a physical map built with P1, P1 artificial chromosome, and bacterial artificial chromosome clones encompassing a DNA sequence anchored by multiple STS markers. The analysis of prostate tumors indicated an 85-kb novel commonly deleted interval flanked by D17S1184-D17S183-D17S1203-D17S1860, which is at least 470 kb distal to the BRCA1 gene. Fifty-four of 126 prostrate cancer cases (43%) showed a deletion by a direct FISH technique using P1 probes in this region. Searching with clone end sequences in the sequence database BLAST, the deleted clone covered genomic DNA sequence that contained upstream binding factor (UBF), EPB3 genes, SHCL1, ASB-4-like sequence, and acidic protein-like sequence. PCR for the ESTs confirmed that these genes or ESTs are within the deletion region. Our results will be helpful for finding candidate tumor suppressor genes in prostate cancer.  相似文献   

18.
The Synthetic Yeast Genome Project (Sc2.0) aims to build 16 designer yeast chromosomes and combine them into a single yeast cell. To date one synthetic chromosome, synIII1, and one synthetic chromosome arm, synIXR2, have been constructed and their in vivo function validated in the absence of the corresponding wild type chromosomes. An important design feature of Sc2.0 chromosomes is the introduction of PCRTags, which are short, re-coded sequences within open reading frames (ORFs) that enable differentiation of synthetic chromosomes from their wild type counterparts. PCRTag primers anneal selectively to either synthetic or wild type chromosomes and the presence/absence of each type of DNA can be tested using a simple PCR assay. The standard readout of the PCRTag assay is to assess presence/absence of amplicons by agarose gel electrophoresis. However, with an average PCRTag amplicon density of one per 1.5 kb and a genome size of ~12 Mb, the completed Sc2.0 genome will encode roughly 8,000 PCRTags. To improve throughput, we have developed a real time PCR-based detection assay for PCRTag genotyping that we call qPCRTag analysis. The workflow specifies 500 nl reactions in a 1,536 multiwell plate, allowing us to test up to 768 PCRTags with both synthetic and wild type primer pairs in a single experiment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号