首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combining sequence analysis, structure prediction, and site-directed mutagenesis, we have investigated the mechanism of catalysis and substrate binding by the apoptotic mitochondrial nuclease EndoG, which belongs to the large family of DNA/RNA non-specific betabetaalpha-Me-finger nucleases. Catalysis of phosphodiester bond cleavage involves several highly conserved amino acid residues, namely His143, Asn174, and Glu182 required for water activation and metal ion binding, as well as Arg141 required for proper substrate binding and positioning, respectively. These results indicate that EndoG basically follows a similar mechanism as the Serratia nuclease, the best studied representative of the family of DNA/RNA non-specific nucleases, but that differences are observed for transition state stabilisation. In addition, we have identified two putative DNA/RNA binding residues of bovine EndoG, Arg135 and Arg186, strictly conserved only among mammalian members of the nuclease family, suggesting a similar mode of binding to single and double-stranded nucleic acid substrates by these enzymes. Finally, we demonstrate by ectopic expression of active and inactive variants of bovine EndoG in HeLa and CV1-cells that extramitochondrial active EndoG by itself induces cell death, whereas expression of an enzymatically inactive variant does not.  相似文献   

2.
The mitochondrial protein, endonuclease G (EndoG), is one of the endonucleases implicated in DNA fragmentation during apoptosis. It has been shown to translocate from the mitochondria to the nucleus upon cell death stimuli. These observations suggest that EndoG is a mitochondrial cell death effector, and that it possibly acts as a cell death nuclease, similar to DNA fragmentation factor. To better understand the role of EndoG in development and apoptosis, we generated EndoG null mice by homologous gene targeting without disruption of D2Wsu81e. EndoG null mice are viable and develop to adulthood with no obvious abnormalities. Fibroblasts generated from the EndoG null mice show no difference in susceptibility when induced to die by a variety of intrinsic and extrinsic apoptotic stimuli. Additionally, EndoG null mice are equally sensitive to excitotoxic stress. These data suggest that EndoG is not essential for early embryogenesis and apoptosis.  相似文献   

3.
Endonuclease G (EndoG) is a mitochondrial non-specific nuclease that is highly conserved among the eukaryotes. Although the precise role of EndoG in mitochondria is not yet known, the enzyme is released from the mitochondria and digests nuclear DNA during apoptosis in mammalian cells. Schizosaccharomyces pombe has an EndoG homolog Pnu1p (previously named SpNuc1) that is produced as a precursor protein with a mitochondrial targeting sequence. During the sorting into mitochondria the signal sequence is cleaved to yield the functionally active endonuclease. From the analogy to EndoG, active extramitochondrial Pnu1p may trigger cell killing by degrading nuclear DNA. Here, we tested this possibility by expressing a truncated Pnu1p lacking the signal sequence in the extramitochondrial region of pnu1-deleted cells. The truncated Pnu1p was localized in the cytosol and nuclei of yeast cells. And ectopic expression of active Pnu1p led to cell death with fragmentation of nuclear DNA. This suggests that the Pnu1p is possibly involved in a certain type of yeast cell death via DNA fragmentation. Although expression of human Bak in S. pombe was lethal, Pnu1p nuclease is not necessary for hBak-induced cell death.  相似文献   

4.
Nonspecific, extracellular nucleases have received enhanced attention recently as a consequence of the critical role that these enzymes can play in infectivity by overcoming the host neutrophil defense system. The activity of the cyanobacterial nuclease NucA, a member of the betabetaalpha Me superfamily, is controlled by the specific nuclease inhibitor, NuiA. Here we report the 2.3-A resolution crystal structure of the NucA-NuiA complex, showing that NucA inhibition by NuiA involves an unusual divalent metal ion bridge that connects the nuclease with its inhibitor. The C-terminal Thr-135(NuiA) hydroxyl oxygen is directly coordinated with the catalytic Mg(2+) of the nuclease active site, and Glu-24(NuiA) also extends into the active site, mimicking the charge of a scissile phosphate. NuiA residues Asp-75 and Trp-76 form a second interaction site, contributing to the strength and specificity of the interaction. The crystallographically defined interface is shown to be consistent with results of studies using site-directed NuiA mutants. This mode of inhibition differs dramatically from the exosite mechanism of inhibition seen with the DNase colicins E7/E9 and from other nuclease-inhibitor complexes that have been studied. The structure of this complex provides valuable insights for the development of inhibitors for related nonspecific nucleases that share the DRGH active site motif such as the Streptococcus pneumoniae nuclease EndA, which mediates infectivity of this pathogen, and mitochondrial EndoG, which is involved in recombination and apoptosis.  相似文献   

5.
Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes. However, the pathway by which DNA degradation ensues following Bnip3 activation is not resolved. To identify the mechanism involved, we analyzed the interdependence of Bnip3, Nix and EndoG in mitochondrial damage and DNA fragmentation during experimental ischemia in neonatal rat ventricular cardiomyocytes. Our results show that the expression of EndoG and Bnip3 increases in the heart throughout development, while the caspase-dependent machinery is silenced. TUNEL-positive DNA damage, which depends on caspase activity in other cells, is caspase-independent in ischemic cardiomyocytes and ischemia-induced DNA high and low molecular weight fragmentation is blocked by repressing EndoG expression. Ischemia-induced EndoG translocation and DNA degradation are prevented by silencing the expression of Bnip3, but not Nix, or by overexpressing Bcl-x(L). These data establish a link between Bnip3 and EndoG-dependent, TUNEL-positive, DNA fragmentation in ischemic cardiomyocytes in the absence of caspases, defining an alternative cell death pathway in postmitotic cells.  相似文献   

6.
Malfunctioning of the protein α‐synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson‐diseased patients, while EndoG depletion largely reduces α‐synuclein‐induced cell death in human neuroblastoma cells. Xenogenic expression of human α‐synuclein in yeast cells triggers mitochondria‐nuclear translocation of EndoG and EndoG‐mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α‐synuclein‐driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α‐synuclein‐expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α‐synuclein cytotoxicity.  相似文献   

7.
Endonuclease G (EndoG) is a mitochondrial protein that traverses to the nucleus and participates in chromosomal DNA degradation during apoptosis in yeast, worms, flies, and mammals. However, it remains unclear how EndoG binds and digests DNA. Here we show that the Caenorhabditis elegans CPS-6, a homolog of EndoG, is a homodimeric Mg2+-dependent nuclease, binding preferentially to G-tract DNA in the optimum low salt buffer at pH 7. The crystal structure of CPS-6 was determined at 1.8 Å resolution, revealing a mixed αβ topology with the two ββα-metal finger nuclease motifs located distantly at the two sides of the dimeric enzyme. A structural model of the CPS-6-DNA complex suggested a positively charged DNA-binding groove near the Mg2+-bound active site. Mutations of four aromatic and basic residues: Phe122, Arg146, Arg156, and Phe166, in the protein-DNA interface significantly reduced the DNA binding and cleavage activity of CPS-6, confirming that these residues are critical for CPS-6-DNA interactions. In vivo transformation rescue experiments further showed that the reduced DNase activity of CPS-6 mutants was positively correlated with its diminished cell killing activity in C. elegans. Taken together, these biochemical, structural, mutagenesis, and in vivo data reveal a molecular basis of how CPS-6 binds and hydrolyzes DNA to promote cell death.  相似文献   

8.
Endonuclease G (EndoG) is an evolutionarily conserved mitochondrial protein in eukaryotes that digests nucleus chromosomal DNA during apoptosis and paternal mitochondrial DNA during embryogenesis. Under oxidative stress, homodimeric EndoG becomes oxidized and converts to monomers with diminished nuclease activity. However, it remains unclear why EndoG has to function as a homodimer in DNA degradation. Here, we report the crystal structure of the Caenorhabditis elegans EndoG homologue, CPS-6, in complex with single-stranded DNA at a resolution of 2.3 Å. Two separate DNA strands are bound at the ββα-metal motifs in the homodimer with their nucleobases pointing away from the enzyme, explaining why CPS-6 degrades DNA without sequence specificity. Two obligatory monomeric CPS-6 mutants (P207E and K131D/F132N) were constructed, and they degrade DNA with diminished activity due to poorer DNA-binding affinity as compared to wild-type CPS-6. Moreover, the P207E mutant exhibits predominantly 3′-to-5′ exonuclease activity, indicating a possible endonuclease to exonuclease activity change. Thus, the dimer conformation of CPS-6 is essential for maintaining its optimal DNA-binding and endonuclease activity. Compared to other non-specific endonucleases, which are usually monomeric enzymes, EndoG is a unique dimeric endonuclease, whose activity hence can be modulated by oxidation to induce conformational changes.  相似文献   

9.
Mitochondrial outer-membrane permeabilization by pro-apoptotic Bcl-2 family members plays a crucial role in apoptosis induction. However, whether this directly causes the release of the different mitochondrial apoptogenic factors simultaneously is currently unknown. Here we report that in cells or with isolated mitochondria, pro-apoptotic Bcl-2 proteins cause the release of cytochrome c, Smac/Diablo and HtrA2/Omi but not endonuclease G (EndoG) and apoptosis-inducing factor (AIF). In cells treated with Bax/Bak-dependent pro-apoptotic drugs, neither the caspase inhibitor zVAD-fmk nor loss of Apaf-1 affected the efflux of cytochrome c, Smac/Diablo and HtrA2/Omi, but both prevented the release of EndoG and AIF. Our findings identify the mitochondrial response to pro-apoptotic stimuli as a selective process leading to a hierarchical ordering of the effectors involved in cell death induction. Moreover, as in Caenorhabditis elegans, EndoG and AIF act downstream of caspase activation. Thus EndoG and AIF seem to define a 'caspase-dependent' mitochondria-initiated apoptotic DNA degradation pathway that is conserved between mammals and nematodes.  相似文献   

10.
End-stage kidney disease is a terminal stage of chronic kidney disease, which is associated with a high incidence of cardiovascular disease. Cardiovascular disease frequently results from endothelial injury caused by carbamylated LDL (cLDL), the product of LDL modification by urea-derived cyanate. Our previous data suggested that cLDL induces mitogen-activated protein kinase-dependent mitotic DNA fragmentation and cell death. However, the mechanism of this pathway is unknown. The current study demonstrated that cLDL-induced endothelial mitotic cell death is independent of caspase-3. The expression of endonuclease G (EndoG), the nuclease implicated in caspase-independent DNA fragmentation, was significantly increased in response to cLDL exposure to the cells. The inhibition of EndoG by RNAi protected cLDL-induced DNA fragmentation, whereas the overexpression of EndoG induced more DNA fragmentation in endothelial cells. Ex vivo experiments with primary endothelial cells isolated from wild-type (WT) and EndoG knockout (KO) mice demonstrated that EndoG KO cells are partially protected against cLDL toxicity compared with WT cells. To determine cLDL toxicity in vivo, we administered cLDL or native LDL (nLDL) intravenously to the WT and EndoG KO mice and then measured floating endothelial cells in blood using flow cytometry. The results showed an increased number of floating endothelial cells after cLDL versus nLDL injection in WT mice but not in EndoG KO mice. Finally, the inhibitors of MEK-ERK1/2 and JNK-c-jun pathways decreased cLDL-induced EndoG overexpression and DNA fragmentation. In summary, our data suggest that cLDL-induced endothelial toxicity is caspase independent and results from EndoG-dependent DNA fragmentation.  相似文献   

11.
Although a link between toxic smoke and oxidant lung vascular injury has been indicated, the cellular mechanisms of smoke-induced injury to lung endothelial cells are unknown. We investigated oxidative stress and apoptosis induced by wood smoke extract (SE) in human pulmonary artery endothelial cells (HPAECs) and delineated their relationship. We found that SE increased intracellular reactive oxygen species (ROS), depleted intracellular glutathione, and upregulated Cu/Zn superoxide dismutase and heme oxygenase-1 (2 antioxidant enzymes), but it failed to alter the expression of catalase and glutathione peroxidase. In addition, SE promoted apoptosis as indicated by the external exposure of membrane phosphatidylserine, the loss of mitochondrial membrane potential, an increase in the level of Bax (a proapoptotic protein), and enhanced DNA fragmentation. This apoptosis was associated with mitochondrial-to-nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) (2 apoptogenic proteins) but was independent of caspase cascade activation. Whereas N-acetylcysteine (an antioxidant) effectively reversed the SE-induced increase in ROS and depletion of glutathione, it also suppressed SE-induced nuclear translocation of either AIF or EndoG and prevented the enhanced DNA fragmentation that would have resulted from this. We conclude that 1) although SE upregulates Cu/Zn superoxide dismutase and heme oxygenase-1, it nevertheless increases intracellular oxidative stress in HPAECs, and 2) SE promotes oxidative stress-mediated caspase-independent HPAEC apoptosis that involves mitochondrial-to-nuclear translocation of AIF and EndoG. Thus modulations of the expression of antioxidant enzymes and the caspase-independent apoptotic pathway are possible target choices for potential therapeutic regimes to treat smoke-induced lung injury.  相似文献   

12.
Human telomerase catalytic subunit hTERT is subjected to alternative splicing results in loss of its function and leads to decrease of telomerase activity. However, very little is known about the mechanism of hTERT pre-mRNA alternative splicing. Apoptotic endonuclease EndoG is known to participate this process. The aim of this study was to determine the role of EndoG in regulation of hTERT alternative splicing. Increased expression of β-deletion splice variant was determined during EndoG overexpression in CaCo-2 cell line, after EndoG treatment of cell cytoplasm and nuclei as well as after nuclei incubation with EndoG digested cell RNA. hTERT alternative splicing was induced by 47-mer RNA oligonucleotide in naked nuclei and in cells after transfection. Identified long non-coding RNA, that is the precursor of 47-mer RNA oligonucleotide. Its size is 1754 nucleotides. Based on the results the following mechanism was proposed. hTERT pre-mRNA is transcribed from coding DNA strand while long non-coding RNA is transcribed from template strand of hTERT gene. EndoG digests long non-coding RNA and produces 47-mer RNA oligonucleotide complementary to hTERT pre-mRNA exon 8 and intron 8 junction place. Interaction of 47-mer RNA oligonucleotide and hTERT pre-mRNA causes alternative splicing.  相似文献   

13.
14.
15.
16.
Upon apoptosis induction, translocation of mammalian mitochondrial endonuclease G (EndoG) to the nucleus coincides with large-scale DNA fragmentation. Here, we describe for the first time a homologue of EndoG in filamentous fungi by investigating if the Aspergillus nidulans homologue of the EndoG gene, named nucA(EndoG), is being activated during farnesol-induced cell death. Our results suggest that NucA is not involved in cell death, but it plays a role in the DNA-damaging response in A. nidulans.  相似文献   

17.
The caspase-activated DNase (CAD) is an important nuclease involved in apoptotic DNA degradation. Results of a sequence comparison of CAD proteins with beta beta alpha-Me-finger nucleases in conjunction with a mutational and chemical modification analysis suggest that CAD proteins constitute a new family of beta beta alpha-Me-finger nucleases. Nucleases of this family have widely different functions but are characterized by a common active-site fold and similar catalytic mechanisms. According to our results and comparisons with related nucleases, the active site of CAD displays features that partly resemble those of the colicin E9 and partly those of the T4 endonuclease VII active sites. We suggest that the catalytic mechanism of CAD involves a conserved histidine residue, acting as a general base, and another histidine as well as an aspartic acid residue required for cofactor binding. Our findings provide a first insight into the likely active-site structure and catalytic mechanism of a nuclease involved in the degradation of chromosomal DNA during programmed cell death.  相似文献   

18.
The bacterial toxin ColE7 contains an H-N-H endonuclease domain (nuclease ColE7) that digests cellular DNA or RNA non-specifically in target cells, leading to cell death. In the host cell, protein Im7 forms a complex with ColE7 to inhibit its nuclease activity. Here, we present the crystal structure of the unbound nuclease ColE7 at a resolution of 2.1A. Structural comparison between the unbound and bound nuclease ColE7 in complex with Im7, suggests that Im7 is not an allosteric inhibitor that induces backbone conformational changes in nuclease ColE7, but rather one that inhibits by blocking the substrate-binding site. There were two nuclease ColE7 molecules in the P1 unit cell in crystals and they appeared as a dimer related to each other by a non-crystallographic dyad symmetry. Gel-filtration and cross-linking experiments confirmed that nuclease ColE7 indeed formed dimers in solution and that the dimeric conformation was more favored in the presence of double-stranded DNA. Structural comparison of nuclease ColE7 with the His-Cys box homing endonuclease I-PpoI further demonstrated that H-N-H motifs in dimeric nuclease ColE7 were oriented in a manner very similar to that of the betabetaalpha-fold of the active sites found in dimeric I-PpoI. A mechanism for the binding of double-stranded DNA by dimeric H-N-H nuclease ColE7 is suggested.  相似文献   

19.
We have previously shown that inhibition of catalase and glutathione peroxidase activities by 3-amino-1,2,4-triazole (ATZ) and mercaptosuccinic acid (MS), respectively, in rat primary hepatocytes caused sustained endogenous oxidative stress and apoptotic cell death without caspase-3 activation. In this study, we investigated the mechanism of this apoptotic cell death in terms of nucleosomal DNA fragmentation. Treatment with ATZ+MS time-dependently increased the number of deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL)-positive nuclei from 12 h, resulting in clear DNA laddering at 24 h. The deoxyribonuclease (DNase) inhibitor, aurintricarboxylic acid (ATA), completely inhibited nucleosomal DNA fragmentation but the pan-caspase inhibitor, z-VAD-fmk was without effects; furthermore, the cleavage of inhibitor of caspase-activated DNase was not detected, indicating the involvement of DNase(s) other than caspase-activated DNase. Considering that endonuclease G (EndoG) reportedly acts in a caspase-independent manner, we cloned rat EndoG cDNA for the first time. Recombinant EndoG alone digested plasmid DNA and induced nucleosomal DNA fragmentation in isolated hepatocyte nuclei. Recombinant EndoG activity was inhibited by ATA but not by hydrogen peroxide, even at 10 mm. ATZ+MS stimulation elicited decreases in mitochondrial membrane potential and EndoG translocation from mitochondria to nuclei. By applying RNA interference, the mRNA levels of EndoG were almost completely suppressed and the amount of EndoG protein was decreased to approximately half the level of untreated cells. Under these conditions, decreases in TUNEL-positive nuclei were significantly suppressed. These results indicate that EndoG is responsible, at least in part, for nucleosomal DNA fragmentation under endogenous oxidative stress conditions induced by ATZ+MS.  相似文献   

20.
When the topoisomerase II inhibitor, novobiocin, is administered to embryonic chicken red blood cells, it induces the in vivo release of an endogenous nuclease which cleaves specifically within internucleosomal spacer DNA and within nuclease-hypersensitive sites in the active chromatin of intact cells. This in vivo released nuclease activity is induced by novobiocin only in metabolically active immature red blood cells. Little induction occurs in mature erythrocytes and no induction occurs in cells previously treated with 2,4-dinitrophenol. Although novobiocin is required to induce release and/or activation of the nuclease, the activity of the nuclease, once activated, is independent of novobiocin. Analysis of the cleaved DNA in drug-treated immature cells demonstrates that the novobiocin-induced nuclease has an unusual blunt-ended double-stranded mode of cleavage. Because of its special properties and apparent chromatin related function in vivo, the novobiocin-induced nuclease activity offers a novel and useful in vivo and in vitro probe of chromatin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号