首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable assembly of murine cytomegalovirus (MCMV) virions in differentiated macrophages is dependent upon the expression of US22 family gene M140. The M140 protein (pM140) exists in complex with products of neighboring US22 genes. Here we report that pM140 protects its binding partner, pM141, from ubiquitin-independent proteasomal degradation. Protection is conferred by a stabilization domain mapping to amino acids 306 to 380 within pM140, and this domain is functionally independent from the region that confers binding of pM140 to pM141. The M140 protein thus contains multiple domains that collectively confer a structure necessary to function in virion assembly in macrophages.Murine cytomegalovirus (MCMV) US22 family genes M36, M139, M140, and M141 promote efficient replication of the virus in macrophages (1, 8, 12, 17). The M139, M140, and M141 genes are clustered within the MCMV genome and appear to function cooperatively (10, 12). During infection, the protein M140 (pM140) forms a stable complex with pM141, and one or more larger complexes are formed by the addition of M139 gene products (15). Although these complexes are evident in infected fibroblasts as well as macrophages, they are required for optimal MCMV replication selectively in macrophages (1, 17). In the absence of M140, virion assembly in macrophages is defective, likely due to the reduced levels of the major capsid protein and tegument protein M25 (11). pM140 also confers stability to its binding partner, pM141; in the absence of the M140 gene, the half-life of pM141 is reduced from 2 h to 1 h (12). Deletion of M141 compromises virus replication in macrophages (12), and pM141 directs pM140 to a perinuclear region of infected macrophages adjacent to an enlarged microtubule organizing center with characteristics of an aggresome (11, 15). Aggresomes are sites where proteins are targeted for degradation by either the proteasome or autophagy (3, 6, 19). We therefore hypothesized that complexing of pM141 to pM140 rescues pM141 from degradation by the proteasome and/or autophagy.  相似文献   

2.
Papillomavirus capsids are composed of 72 pentamers reinforced through inter- and intrapentameric disulfide bonds. Recent research suggests that virus-like particles and pseudovirions (PsV) can undergo a redox-dependent conformational change involving disulfide interactions. We present here evidence that native virions exploit a tissue-spanning redox gradient that facilitates assembly events in the context of the complete papillomavirus life cycle. DNA encapsidation and infectivity titers are redox dependent in that they can be temporally modulated via treatment of organotypic cultures with oxidized glutathione. These data provide evidence that papillomavirus assembly and maturation is redox-dependent, utilizing multiple steps within both suprabasal and cornified layers.Human papillomaviruses (HPVs) exclusively infect cutaneous or mucosal epithelial tissues (14, 15, 30). HPV types that infect the mucosal epithelia can lead to the development of benign or malignant neoplasms, thus allowing for their categorization into low-risk or high-risk HPV types, respectively (14, 15, 30). A small subset of the more than 200 HPV types now identified are the causative agents of over 75% of all cervical cancers. HPV16 is the most prevalent type worldwide, found in ca. 50 to 62% of squamous cell carcinomas (14, 50).HPV16 virions contain a single, circular double-stranded DNA genome of ∼8 kb which associates with histones to form a chromatin-like structure. This minichromosome is packaged within a nonenveloped, icosahedral capsid composed of the major capsid protein L1 and the minor capsid protein L2. Similar to polyomaviruses, 72 capsomeres of L1 are geometrically arranged on a T=7 icosahedral lattice (2, 9, 17, 19, 36, 42). Recent cryoelectron microscopy images of HPV16 pseudovirions (PsV) suggest that L2 is arranged near the inner conical hollow of each L1 pentamer, although it is not known whether each L1 pentamer is occupied with a single L2 protein (5, 42).Due to technical constraints in the production of native HPV virions in organotypic culture, assembly studies of HPV particles have largely been restricted to the utilization of in vitro-derived particles such as virus-like particles (VLPs), PsV, and quasivirions (QV) (6, 12, 25, 40, 43). Recent research suggests that HPV and bovine papillomavirus PsV can undergo a redox-dependent conformational change that takes place over the course of many hours. This conformational change is characterized by resistance to proteolysis and chemical reduction and the appearance of a more orderly capsid structure via transmission electron microscopy (TEM) (7, 20).We present evidence that native virions, in the context of the complete papillomavirus life cycle, utilize a tissue-spanning redox gradient that facilitates multiple redox-dependent assembly and maturation events over the course of many days. We show that stability and specific infectivity of 20-day virions increases over 10-day virions, 20-day virions are more susceptible to neutralization than 10-day virions, and both viral DNA encapsidation and infectivity of HPV-infected tissues are redox dependent in that they can be manipulated via the treatment of organotypic tissues with oxidized glutathione (GSSG), which is concentration and temporally dependent.  相似文献   

3.
Paramyxovirus particles, like other enveloped virus particles, are formed by budding from membranes of infected cells. To define mumps virus (MuV) proteins important for this process, viral proteins were expressed either singly or in combination in mammalian cells to produce virus-like particles (VLPs). Only the MuV matrix (M) protein when expressed by itself was capable of inducing particle release, but the quantity of these M-alone particles was very small. Efficient production of mumps VLPs occurred only when the M protein was coexpressed together with other viral proteins, with maximum production achieved upon coexpression of the viral M, nucleocapsid (NP), and fusion (F) proteins together. Electron microscopy analysis confirmed that VLPs were morphologically similar to MuV virions. The two MuV glycoproteins were not equal contributors to particle formation. The F protein was a major contributor to VLP production, while the hemagglutinin-neuraminidase protein made a smaller contribution. Evidence for the involvement of class E protein machinery in VLP budding was obtained, with mumps VLP production inhibited upon expression of dominant-negative versions of the class E proteins Vps4A and Chmp4b. Disruption of the sequence 24-FPVI-27 within the MuV M protein led to poor VLP production, consistent with findings of earlier studies of a related sequence, FPIV, important for the budding of parainfluenza virus 5. Together, these results demonstrate that different MuV structural proteins cooperate together for efficient particle production and that particle budding likely involves host class E protein machinery.Mumps virus (MuV) is a paramyxovirus from the Rubulavirus genus. Prior to mass vaccination, mumps was a very common childhood illness, with characteristic symptoms including fever, fatigue, and inflammation of the salivary glands. Less frequently, MuV infection results in serious complications including aseptic meningitis and encephalitis (22). Significant outbreaks of mumps have occurred recently in the United Kingdom (6), Canada (40), and the United States (7, 14), highlighting the continued relevance of this disease even in countries where vaccination is widespread. Like other paramyxoviruses, MuV possesses a genome that consists of single-stranded negative-sense RNA, encapsidated by a nucleocapsid (NP) protein and associated with an RNA-dependent RNA polymerase complex composed of large protein and phosphoprotein subunits. This core is linked to the virion membrane by matrix (M) protein. The outer surface of the virion is covered with glycoprotein spikes consisting of the hemagglutinin-neuraminidase (HN) protein, which binds sialic acid to allow virion attachment to cells, and fusion (F) protein, which induces viral and cellular membranes to fuse together during virus entry. Additional components of MuV include the small hydrophobic protein, which prevents infected cells from undergoing apoptosis (67), and V protein, which prevents induction of interferon-induced antiviral responses (29, 30, 62). The late steps of the MuV life cycle that allow for assembly and budding of MuV virions remain for the most part unexplored.Enveloped virus particles are formed by budding from cellular membranes at specific locations at which viral proteins, and often host factors, have assembled together. For the negative-strand RNA viruses, coordination among the different viral components during virus assembly appears to be directed by the viral matrix proteins, which have the potential to interact with the cytoplasmic tails of the viral glycoproteins and with viral ribonucleoproteins (RNPs) in the cytoplasms of infected cells. M proteins likely assemble as layers beneath the plasma membranes of infected cells and induce other viral components to gather at these locations, from which virus budding occurs (reviewed in references 49 and 57).For many viruses, it has been possible to achieve assembly and budding of particles from cells that have been transfected to produce one or more viral proteins in the absence of virus infection. These particles often resemble virions morphologically and have been termed virus-like particles (VLPs). VLP production provides a useful means for determining the individual roles of different virus proteins in particle formation, and in some cases the VLPs themselves have shown promise as vaccines (45). For most negative-strand RNA viruses, VLP formation is critically dependent on the presence of the viral matrix proteins (49). Indeed, in the cases of Newcastle disease virus (NDV) (37) and Nipah virus (11, 38), M protein expression is sufficient for highly efficient VLP production, with no apparent need for assistance from any of the other viral structural components, such as the viral glycoproteins or NP proteins. In the case of NDV, incorporation of glycoproteins and NP proteins into the budding VLPs requires specific interactions involving the M protein, but these interactions do not appear to facilitate the budding process itself (37).Although expression of viral matrix protein is sufficient for robust VLP production in the above cases, it has long been thought that additional viral components are also important for efficient budding of many negative-strand RNA viruses. For example, an important role for viral glycoproteins in virus assembly has been established based on studies with recombinant viruses that contain glycoproteins lacking their cytoplasmic tails (4, 17, 26, 34, 35, 48, 52, 66) and analyses of assembly-defective subacute sclerosing panencephalitis measles virus strains (5, 47). In fact, recent evidence suggests that for influenza virus it is the viral glycoproteins (and not viral matrix protein) that are the main drivers of virus budding (9). For other negative-strand RNA viruses, expression of viral glycoproteins together with matrix proteins in some cases significantly enhances the efficiency of VLP release. Ebola VLPs (31), Sendai VLPs (55, 56), and parainfluenza virus 5 (PIV5)-like particles (51) are all produced more efficiently in the presence of viral glycoprotein expression. Ebola virus glycoprotein in some cell types functions during virus release to inhibit the action of tetherin, a cellular protein which functions to prevent the release of enveloped virus particles from infected cells (28). In addition to the viral glycoproteins, other viral components can also enhance the production of VLPs. Production of Ebola VLPs and PIV5-like particles can be further enhanced through expression of the corresponding NP proteins (31, 51), and Sendai VLP production is enhanced through expression of Sendai virus C protein (55). Hence, for these viruses, multiple proteins cooperate with one another to achieve maximum VLP production. The extent to which particle formation actually requires this cooperation differs, however. In the case of PIV5, it is absolutely essential; expression of the M protein alone does not lead to VLP production (51). On the other hand, cooperation among viral proteins is beneficial but not strictly required for the production of Sendai or Ebola VLPs, since expression of the matrix proteins of these viruses is sufficient for VLP production (20, 55, 56, 61).The late steps of negative-strand RNA virus budding may occur in a way that is analogous to the budding of retroviruses, which employ protein-protein interaction domains called late domains to manipulate host machinery and allow release of virus particles (reviewed in references 1 and 3). Cellular factors recruited by late domains in many cases are class E proteins that are part of the vacuolar protein sorting (Vps) pathway of the cell. Indeed, disruption of the Vps pathway through expression of dominant-negative (DN) versions of the Vps4 ATPase protein blocks the budding of many retroviruses (reviewed in reference 1), as well as the budding of Ebola virus (32), Lassa fever virus (63), and PIV5 (50). However, other negative-strand RNA viruses, such as influenza virus, bud particles in ways that are not substantially affected by disruption of the cellular Vps pathway (reviewed in reference 8).Here, experiments are described which define MuV proteins important for the assembly and budding of VLPs. Using proteins derived from the 88-1961 wild-type (wt) strain of MuV, optimal production of mumps VLPs is shown to occur upon coexpression of the MuV M, F, and NP proteins together in transiently transfected mammalian cells. Evidence is also provided that supports a role for cellular class E protein machinery in the budding of mumps VLPs.  相似文献   

4.
All herpesviruses have a layer of protein called the tegument that lies between the virion membrane and the capsid. The tegument consists of multiple, virus-encoded protein species that together can account for nearly half the total virus protein. To clarify the structure of the tegument and its attachment to the capsid, we used electron microscopy and protein analysis to examine the tegument of herpes simplex virus type 1 (HSV-1). Electron microscopic examination of intact virions revealed that whereas the tegument was asymmetrically distributed around the capsid in extracellular virions, it was symmetrically arranged in cell-associated virus. Examination of virions after treatment with nonionic detergent demonstrated that: (i) in extracellular virus the tegument was resistant to removal with Triton X-100 (TX-100), whereas it was lost nearly completely when cell-associated virus was treated in the same way; (ii) the tegument in TX-100-treated extracellular virions was asymmetrically distributed around the capsid as it is in unextracted virus; and (iii) in some images, tegument was seen to be linked to the capsid by short, regularly spaced connectors. Further analysis was carried out with extracellular virus harvested from cells at different times after infection. It was observed that while the amount of tegument present in virions was not affected by time of harvest, the amount remaining after TX-100 treatment increased markedly as the time of harvest was increased from 24 h to 64 h postinfection. The results support the view that HSV-1 virions undergo a time-dependent change in which the tegument is transformed from a state in which it is symmetrically organized around the capsid and extractable with TX-100 to a state where it is asymmetrically arranged and resistant to extraction.All herpesviruses have a tegument, a layer of protein located between the virus membrane and the capsid. Depending on the virus species, the tegument can be 20 to 40 nm in thickness, and it may be uniformly or asymmetrically distributed about the capsid (7, 17, 24, 33). The tegument is composed predominantly of virus-encoded proteins that together can account for up to half or more of the total virion protein mass. Tegument proteins are thought to be those involved in the early stages of infection before progeny virus proteins are synthesized.The tegument has been most thoroughly studied in herpes simplex virus type 1 (HSV-1). Examination of virions by electron microscopy has demonstrated that the tegument is not highly structured. Its morphology is described as predominantly granular with fibrous elements also present (7, 19). Analysis by cryo-electron microscopy, followed by icosahedral reconstruction has shown that the tegument is not icosahedrally ordered, although a small amount of tegument density is observed close to the capsid surface at the pentons (3, 47).The HSV-1 tegument is composed of approximately 20 distinct, virus-encoded protein species whose amounts vary considerably. The predominant components are UL47, UL48, and UL49, each of which occurs in more than 800 copies per virion (8, 46). In contrast, others, such as RL2 (ICP0), RS1 (ICP4), UL36, and UL37, occur in ∼100 copies or less. Trace amounts of host cell-encoded proteins are also present (15). Many of the tegument proteins are required for virus replication (34), and functions have been defined for most (9, 12, 31, 40).Biochemical studies have demonstrated that the tegument makes noncovalent contacts with both the virus capsid and the membrane. Studies of capsid-tegument contacts have emphasized binding of UL36, a tegument protein, to UL25, a capsid protein located near the vertices and involved in DNA encapsidation (5, 20, 29). Other tegument proteins such as UL48 (VP16), UL37, and UL49 (VP22) are found to associate with UL36 and may be bound to the capsid indirectly by way of UL36 (13, 44). UL16 binds reversibly to the capsid while UL46 (VP11/12) has been shown to bind to both the membrane and the capsid (21, 22, 26). Binding of tegument proteins to the membrane has been shown to occur by way of attachment to UL11 (45) and also to the internal domains of membrane glycoproteins, including glycoprotein D (gD), gH, and gE (4, 6, 11).We describe here the results of a study in which electron microscopy and protein analysis were used to clarify the structure of the HSV-1 tegument and its attachment to the capsid. The study was designed to extend the observation that most of the HSV-1 tegument remains attached to the capsid when the membrane is removed from the virus by treatment with nonionic detergent (19). Cell-associated and extracellular virions were compared after treatment with Triton X-100 (TX-100).  相似文献   

5.
Influenza A virus buds through the apical plasma membrane, forming enveloped virus particles that can take the shape of pleomorphic spheres or vastly elongated filaments. For either type of virion, the factors responsible for separation of viral and cell membranes are not known. We find that cellular Rab11 (a small GTP-binding protein involved in endocytic recycling) and Rab11-family interacting protein 3 ([FIP3] which plays a role in membrane trafficking and regulation of actin dynamics) are both required to support the formation of filamentous virions, while Rab11 is additionally involved in the final budding step of spherical particles. Cells transfected with Rab11 GTP-cycling mutants or depleted of Rab11 or FIP3 content by small interfering RNA treatment lost the ability to form virus filaments. Depletion of Rab11 resulted in up to a 100-fold decrease in titer of spherical virus released from cells. Scanning electron microscopy of Rab11-depleted cells showed high densities of virus particles apparently stalled in the process of budding. Transmission electron microscopy of thin sections confirmed that Rab11 depletion resulted in significant numbers of abnormally formed virus particles that had failed to pinch off from the plasma membrane. Based on these findings, we see a clear role for a Rab11-mediated pathway in influenza virus morphogenesis and budding.Influenza A virus is a highly infectious respiratory pathogen, causing 3 to 5 million severe cases yearly while the recent H1N1 pandemic has spread to over 200 countries and resulted in over 15,000 WHO-confirmed deaths since its emergence in March 2009 (57). Influenza virus particles are enveloped structures that contain nine identified viral polypeptides. The lipid envelope is derived by budding from the apical plasma membrane and contains the viral integral membrane proteins hemagglutinin (HA) and neuraminidase (NA) as well as the M2 ion channel. Internally, virus particles contain a matrix protein (M1), small quantities of the NS2/NEP polypeptide, and eight genomic segments of negative-sense RNA that are separately encapsidated into ribonucleoprotein (RNP) particles by the viral nucleoprotein (NP) and tripartite polymerase complex (PB1, PB2, and PA). M1 is thought to form a link between the RNPs and the cytoplasmic tails of the viral membrane proteins though M2 may also play a role (39). The minimal viral protein requirements for budding are disputed; while initial studies suggested that M1 was the main driver of budding (21, 34), more recent work proposes that the glycoproteins HA and NA are responsible (8).Further complicating the analysis of influenza A virus budding is the observation that most strains of the virus form two distinct types of virions: spherical particles approximately 100 nm in diameter and much longer filamentous particles up to 30 μm in length (38). Of the viral proteins, M1 is the primary determinant of particle shape (3, 17) although other virus genes also play a role. It is also likely that host factors are involved in the process as cells with fully differentiated apical and basolateral membranes produce more filaments than nonpolarized cell types (42). While it is tempting to speculate that virus morphology and budding are regulated by the same cellular process, the fact that spherical budding occurs in the absence of an intact actin cytoskeleton while filament formation does not (42, 48) indicates some level of divergence in the mechanisms responsible for spherical and filamentous virion morphogenesis.The means by which viral and cellular membranes are separated are also unclear. Unlike many other enveloped viruses, including retroviruses (19, 36, 52) and herpes simplex virus (12), influenza A virus does not utilize the cellular endosomal sorting complex required for transport (ESCRT) pathway (5, 8). However, recent reports indicate that some viruses, including human cytomegalovirus (HCMV) (32), the hantavirus Andes virus (44), and respiratory syncytial virus (RSV) may employ a Rab11-mediated pathway during assembly and/or budding (4, 51). The Rab family of small GTPases is involved in targeting vesicle trafficking, mediating a wide range of downstream processes including endosomal trafficking and membrane fusion/fission events (reviewed in references 53 and 58). Rab11 is involved in trafficking proteins and vesicles between the trans-Golgi network (TGN), recycling endosome, and the plasma membrane (9, 49, 50) as well as playing a role in actin remodeling, cytokinesis, and abscission (27, 41, 55). Apical recycling endosome (ARE) trafficking is of particular interest in the context of viral infection as other negative-sense RNA viruses have been shown to assemble and/or traffic virion components through the ARE prior to final assembly and budding at the plasma membrane (4, 44, 51). Rab11 function is modulated and targeted through interactions with Rab11 family interacting proteins (Rab11-FIPs) that direct it to specific subcellular locations (23, 25, 26) by binding to actin or microtubule-based motor proteins (24, 26, 47). While Rab11-FIPs recognize both isoforms of Rab11 (a and b [Rab11a/b]) through a conserved amphipathic α-helical motif, they differ in their ability to bind either the GTP-bound form of Rab11 (FIP1, FIP3, FIP4, and Rip11) or both the GTP and GDP-bound forms (FIP2) (23, 30). FIP1 and FIP2 have been implicated in RSV budding (4, 51) while FIP4 is important for trafficking of HCMV components (32). FIP3 has not previously been linked with virus budding but plays an important role in both cell motility and cytokinesis, regulating actin dynamics and endosomal membrane trafficking (29, 55).In light of the normal cellular functions of Rab11 and its effectors and of their reported involvement in the budding of other viruses, we examined the role of this cellular pathway in influenza virus budding. We find that Rab11-FIP3 is essential for filamentous but not spherical virion formation while Rab11 is required for both forms of virus budding.  相似文献   

6.
7.
Herpes simplex virus type 1 (HSV-1)-induced cell fusion is mediated by viral glycoproteins and other membrane proteins expressed on infected cell surfaces. Certain mutations in the carboxyl terminus of HSV-1 glycoprotein B (gB) and in the amino terminus of gK cause extensive virus-induced cell fusion. Although gB is known to be a fusogenic glycoprotein, the mechanism by which gK is involved in virus-induced cell fusion remains elusive. To delineate the amino-terminal domains of gK involved in virus-induced cell fusion, the recombinant viruses gKΔ31-47, gKΔ31-68, and gKΔ31-117, expressing gK carrying in-frame deletions spanning the amino terminus of gK immediately after the gK signal sequence (amino acids [aa] 1 to 30), were constructed. Mutant viruses gKΔ31-47 and gKΔ31-117 exhibited a gK-null (ΔgK) phenotype characterized by the formation of very small viral plaques and up to a 2-log reduction in the production of infectious virus in comparison to that for the parental HSV-1(F) wild-type virus. The gKΔ31-68 mutant virus formed substantially larger plaques and produced 1-log-higher titers than the gKΔ31-47 and gKΔ31-117 mutant virions at low multiplicities of infection. Deletion of 28 aa from the carboxyl terminus of gB (gBΔ28syn) caused extensive virus-induced cell fusion. However, the gBΔ28syn mutation was unable to cause virus-induced cell fusion in the presence of the gKΔ31-68 mutation. Transient expression of a peptide composed of the amino-terminal 82 aa of gK (gKa) produced a glycosylated peptide that was efficiently expressed on cell surfaces only after infection with the HSV-1(F), gKΔ31-68, ΔgK, or UL20-null virus. The gKa peptide complemented the gKΔ31-47 and gKΔ31-68 mutant viruses for infectious-virus production and for gKΔ31-68/gBΔ28syn-mediated cell fusion. These data show that the amino terminus of gK modulates gB-mediated virus-induced cell fusion and virion egress.Herpes simplex virus type 1 (HSV-1) specifies at least 11 virally encoded glycoproteins, as well as several nonglycosylated and lipid-anchored membrane-associated proteins, which serve important functions in virion infectivity and virus spread. Although cell-free enveloped virions can efficiently spread viral infection, virions can also spread by causing cell fusion of adjacent cellular membranes. Virus-induced cell fusion, which is caused by viral glycoproteins expressed on infected cell surfaces, enables transmission of virions from one cell to another, avoiding extracellular spaces and exposure of free virions to neutralizing antibodies (reviewed in reference 56). Most mutations that cause extensive virus-induced cell-to-cell fusion (syncytial or syn mutations) have been mapped to at least four regions of the viral genome: the UL20 gene (5, 42, 44); the UL24 gene (37, 58); the UL27 gene, encoding glycoprotein B (gB) (9, 51); and the UL53 gene, coding for gK (7, 15, 35, 53, 54, 57).Increasing evidence suggests that virus-induced cell fusion is mediated by the concerted action of glycoproteins gD, gB, and gH/gL. Recent studies have shown that gD interacts with both gB and gH/gL (1, 2). Binding of gD to its cognate receptors, including Nectin-1, HVEM, and others (12, 29, 48, 59, 60, 62, 63), is thought to trigger conformation changes in gH/gL and gB that cause fusion of the viral envelope with cellular membranes during virus entry and virus-induced cell fusion (32, 34). Transient coexpression of gB, gD, and gH/gL causes cell-to-cell fusion (49, 68). However, this phenomenon does not accurately model viral fusion, because other viral glycoproteins and membrane proteins known to be important for virus-induced cell fusion are not required (6, 14, 31). Specifically, gK and UL20 were shown to be absolutely required for virus-induced cell fusion (21, 46). Moreover, syncytial mutations within gK (7, 15, 35, 53, 54, 57) or UL20 (5, 42, 44) promote extensive virus-induced cell fusion, and viruses lacking gK enter more slowly than wild-type virus into susceptible cells (25). Furthermore, transient coexpression of gK carrying a syncytial mutation with gB, gD, and gH/gL did not enhance cell fusion, while coexpression of the wild-type gK with gB, gD, and gH/gL inhibited cell fusion (3).Glycoproteins gB and gH are highly conserved across all subfamilies of herpesviruses. gB forms a homotrimeric type I integral membrane protein, which is N glycosylated at multiple sites within the polypeptide. An unusual feature of gB is that syncytial mutations that enhance virus-induced cell fusion are located exclusively in the carboxyl terminus of gB, which is predicted to be located intracellularly (51). Single-amino-acid substitutions within two regions of the intracellular cytoplasmic domain of gB were shown to cause syncytium formation and were designated region I (amino acid [aa] positions 816 and 817) and region II (aa positions 853, 854, and 857) (9, 10, 28, 69). Furthermore, deletion of 28 aa from the carboxyl terminus of gB, disrupting the small predicted alpha-helical domain H17b, causes extensive virus-induced cell fusion as well as extensive glycoprotein-mediated cell fusion in the gB, gD, and gH/gL transient-coexpression system (22, 49, 68). The X-ray structure of the ectodomain of gB has been determined and is predicted to assume at least two major conformations, one of which may be necessary for the fusogenic properties of gB. Therefore, perturbation of the carboxyl terminus of gB may alter the conformation of the amino terminus of gB, thus favoring one of the two predicted conformational structures that causes membrane fusion (34).The UL53 (gK) and UL20 genes encode multipass transmembrane proteins of 338 and 222 aa, respectively, which are conserved in all alphaherpesviruses (15, 42, 55). Both proteins have multiple sites where posttranslational modification can occur; however, only gK is posttranslationally modified by N-linked carbohydrate addition (15, 35, 55). The specific membrane topologies of both gK and UL20 protein (UL20p) have been predicted and experimentally confirmed using epitope tags inserted within predicted intracellular and extracellular domains (18, 21, 44). Syncytial mutations in gK map predominantly within extracellular domains of gK and particularly within the amino-terminal portion of gK (domain I) (18), while syncytial mutations of UL20 are located within the amino terminus of UL20p, shown to be located intracellularly (44). A series of recent studies have shown that HSV-1 gK and UL20 functionally and physically interact and that these interactions are necessary for their coordinate intracellular transport and cell surface expression (16, 18, 21, 26, 45). Specifically, direct protein-protein interactions between the amino terminus of HSV-1 UL20 and gK domain III, both of which are localized intracellularly, were recently demonstrated by two-way coimmunoprecipitation experiments (19).According to the most prevalent model for herpesvirus intracellular morphogenesis, capsids initially assemble within the nuclei and acquire a primary envelope by budding into the perinuclear spaces. Subsequently, these virions lose their envelope through fusion with the outer nuclear lamellae. Within the cytoplasm, tegument proteins associate with the viral nucleocapsid and final envelopment occurs by budding of cytoplasmic capsids into specific trans-Golgi network (TGN)-associated membranes (8, 30, 47, 70). Mature virions traffic to cell surfaces, presumably following the cellular secretory pathway (33, 47, 61). In addition to their significant roles in virus-induced cell fusion, gK and UL20 are required for cytoplasmic virion envelopment. Viruses with deletions in either the gK or the UL20 gene are unable to translocate from the cytoplasm to extracellular spaces and accumulated as unenveloped virions in the cytoplasm (5, 15, 20, 21, 26, 35, 36, 38, 44, 55). Current evidence suggests that the functions of gK and UL20 in cytoplasmic virion envelopment and virus-induced cell fusion are carried out by different, genetically separable domains of UL20p. Specifically, UL20 mutations within the amino and carboxyl termini of UL20p allowed cotransport of gK and UL20p to cell surfaces, virus-induced cell fusion, and TGN localization, while effectively inhibiting cytoplasmic virion envelopment (44, 45).In this paper, we demonstrate that the amino terminus of gK expressed as a free peptide of 82 aa (gKa) is transported to infected cell surfaces by viral proteins other than gK or UL20p and facilitates virus-induced cell fusion caused by syncytial mutations in the carboxyl terminus of gB. Thus, functional domains of gK can be genetically separated, as we have shown previously (44, 45), as well as physically separated into different peptide portions that retain functional activities of gK. These results are consistent with the hypothesis that the amino terminus of gK directly or indirectly interacts with and modulates the fusogenic properties of gB.  相似文献   

8.
9.
The filovirus VP40 protein is capable of budding from mammalian cells in the form of virus-like particles (VLPs) that are morphologically indistinguishable from infectious virions. Ebola virus VP40 (eVP40) contains well-characterized overlapping L domains, which play a key role in mediating efficient virus egress. L domains represent only one component required for efficient budding and, therefore, there is a need to identify and characterize additional domains important for VP40 function. We demonstrate here that the 96LPLGVA101 sequence of eVP40 and the corresponding 84LPLGIM89 sequence of Marburg virus VP40 (mVP40) are critical for efficient release of VP40 VLPs. Indeed, deletion of these motifs essentially abolished the ability of eVP40 and mVP40 to bud as VLPs. To address the mechanism by which the 96LPLGVA101 motif of eVP40 contributes to egress, a series of point mutations were introduced into this motif. These mutants were then compared to the eVP40 wild type in a VLP budding assay to assess budding competency. Confocal microscopy and gel filtration analyses were performed to assess their pattern of intracellular localization and ability to oligomerize, respectively. Our results show that mutations disrupting the 96LPLGVA101 motif resulted in both altered patterns of intracellular localization and self-assembly compared to wild-type controls. Interestingly, coexpression of either Ebola virus GP-WT or mVP40-WT with eVP40-ΔLPLGVA failed to rescue the budding defective eVP40-ΔLPLGVA mutant into VLPs; however, coexpression of eVP40-WT with mVP40-ΔLPLGIM successfully rescued budding of mVP40-ΔLPLGIM into VLPs at mVP40-WT levels. In sum, our findings implicate the LPLGVA and LPLGIM motifs of eVP40 and mVP40, respectively, as being important for VP40 structure/stability and budding.Ebola and Marburg viruses are members of the family Filoviridae. Filoviruses are filamentous, negative-sense, single-stranded RNA viruses that cause lethal hemorrhagic fevers in both humans and nonhuman primates (5). Filoviruses encode seven viral proteins including: NP (major nucleoprotein), VP35 (phosphoprotein), VP40 (matrix protein), GP (glycoprotein), VP30 (minor nucleoprotein), VP24 (secondary matrix protein), and L (RNA-dependent RNA polymerase) (2, 5, 10, 12, 45). Numerous studies have shown that expression of Ebola virus VP40 (eVP40) alone in mammalian cells leads to the production of virus-like particles (VLPs) with filamentous morphology which is indistinguishable from infectious Ebola virus particles (12, 17, 18, 25, 26, 27, 30, 31, 34, 49). Like many enveloped viruses such as rhabdovirus (11) and arenaviruses (44), Ebola virus encodes late-assembly or L domains, which are sequences required for the membrane fission event that separates viral and cellular membranes to release nascent virion particles (1, 5, 7, 10, 12, 18, 25, 27, 34). Thus far, four classes of L domains have been identified which were defined by their conserved amino acid core sequences: the Pro-Thr/Ser-Ala-Pro (PT/SAP) motif (25, 27), the Pro-Pro-x-Tyr (PPxY) motif (11, 12, 18, 19, 41, 53), the Tyr-x-x-Leu (YxxL) motif (3, 15, 27, 37), and the Phe-Pro-Ile-Val (FPIV) motif (39). Both PTAP and the PPxY motifs are essential for efficient particle release for eVP40 (25, 27, 48, 49), whereas mVP40 contains only a PPxY motif. L domains are believed to act as docking sites for the recruitment of cellular proteins involved in endocytic trafficking and multivesicular body biogenesis to facilitate virus-cell separation (8, 13, 14, 16, 28, 29, 33, 36, 43, 50, 51).In addition to L domains, oligomerization, and plasma-membrane localization of VP40 are two functions of the protein that are critical for efficient budding of VLPs and virions. Specific sequences involved in self-assembly and membrane localization have yet to be defined precisely. However, recent reports have attempted to identify regions of VP40 that are important for its overall function in assembly and budding. For example, the amino acid region 212KLR214 located at the C-terminal region was found to be important for efficient release of eVP40 VLPs, with Leu213 being the most critical (30). Mutation of the 212KLR214 region resulted in altered patterns of cellular localization and oligomerization of eVP40 compared to those of the wild-type genotype (30). In addition, the proline at position 53 was also implicated as being essential for eVP40 VLP release and plasma-membrane localization (54).In a more recent study, a YPLGVG motif within the M protein of Nipah virus (NiV) was shown to be important for stability, membrane binding, and budding of NiV VLPs (35). Whether this NiV M motif represents a new class of L domain remains to be determined. However, it is clear that this YPLGVG motif of NiV M is important for budding, perhaps involving a novel mechanism (35). Our rationale for investigating the corresponding, conserved motifs present within the Ebola and Marburg virus VP40 proteins was based primarily on these findings with NiV. In addition, Ebola virus VP40 motif maps close to the hinge region separating the N- and C-terminal domains of VP40 (4). Thus, the 96LPLGVA101 motif of eVP40 is predicted to be important for the overall stability and function of VP40 during egress. Findings presented here indicate that disruption of these filovirus VP40 motifs results in a severe defect in VLP budding, due in part to impairment in overall VP40 structure, stability and/or intracellular localization.  相似文献   

10.
11.
12.
Poxviruses produce complement regulatory proteins to subvert the host''s immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host''s immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement''s role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE''s regulatory capacity. These results suggest that EMICE''s role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.Poxviruses encode in their large double-stranded DNA genomes many factors that modify the immune system (30, 56). The analysis of these molecules has revealed a delicate balance between viral pathogenesis and the host''s immune response (2, 21, 31, 61). Variola, vaccinia, monkeypox, cowpox, and ectromelia (ECTV) viruses each produce an orthologous complement regulatory protein (poxviral inhibitor of complement enzymes [PICE]) that has structural and functional homology to host proteins (14, 29, 34, 38, 41, 45, 54). The loss of the regulatory protein resulted in smaller local lesions with vaccinia virus lacking the vaccinia virus complement control protein (VCP) (29) and in a greater local inflammatory response in the case of cowpox lacking the inflammation-modulatory protein (IMP; the cowpox virus PICE) (35, 45, 46). Additionally, the complete loss of the monkeypox virus inhibitor of complement enzymes (MOPICE) may account for part of the reduced mortality observed in the West African compared to Congo basin strains of monkeypox virus (12).The complement system consists of proteins on the cell surface and in blood that recognize and destroy invading pathogens and infected host cells (36, 52). Viruses protect themselves from the antiviral effects of complement activation in a variety of ways, including hijacking the host''s complement regulatory proteins or producing their own inhibitors (7, 8, 15, 20, 23). Another effective strategy is to incorporate the host''s complement regulators in the outermost viral membrane, which then protects the virus from complement attack (62). The extracellular enveloped virus (EEV) produced by poxviruses acquires a unique outer membrane derived from the Golgi complex or early endosomes that contain the protective host complement regulators (58, 62). Poxviruses have multiple infectious forms, and the most abundant, intracellular mature virions (IMV), are released when infected cells lyse (58). The IMV lacks the outermost membrane found on EEV and is sensitive to complement-mediated neutralization. The multiple strategies viruses have evolved to evade the complement system underscore its importance to innate and adaptive immunity (15, 36).The most well-characterized PICE is VCP (24-29, 34, 49, 50, 53, 55, 59, 60). Originally described as a secreted complement inhibitor (34), VCP also attaches to the surface of infected cells through an interaction with the viral membrane protein A56 that requires an unpaired N-terminal cysteine (26). This extra cysteine also adds to the potency of the inhibitor by forming function-enhancing dimers (41). VCP and the smallpox virus inhibitor of complement enzymes (SPICE) bind heparin in vitro, and this may facilitate cell surface interactions (24, 38, 50, 59). The coevolution of variola virus with its only natural host, humans, likely explains the enhanced activity against human complement observed with SPICE compared to the other PICEs (54, 64).Our recent work with ECTV, the causative agent of mousepox infection, demonstrated that the classical and alternative pathways of the complement system are required for host survival (48). The mouse-specific pathogen ECTV causes severe disease in most strains and has coevolved with its natural host, analogous to variola virus in humans (9). This close host-virus relationship is particularly important for evaluating the role of the complement system, given the species specificity of many complement proteins, receptors, and regulators (10, 47, 62). Additionally, the availability of complement-deficient mice permits dissection of the complement activation pathways involved. Naïve C57BL/6 mouse serum neutralizes the IMV of ECTV in vitro, predominately through opsonization (48). Maximal neutralization requires natural antibody, classical-pathway activation, and amplification by the alternative pathway. C3 deficiency in the normally resistant C57BL/6 strain results in acute mortality, similar to immunodeficiencies in important elements of the antiviral immune response, including CD8+ T cells (19, 32), natural killer cells (18, 51), and gamma interferon (33). During ECTV infection, the complement system acts in the first few hours and days to delay the spread of infection, resulting in lower levels of viremia and viral burden in tissues (48).This study characterized the PICE produced by ECTV, ectromelia virus inhibitor of complement enzymes (EMICE), and assessed its complement regulatory activity. Recombinant EMICE (rEMICE) decreased activation of both human and mouse complement. Murine cells produced EMICE at 4 to 6 h postinfection prior to the release of the majority of the complement-sensitive IMV from infected cells. rEMICE protected ECTV IMV from complement-mediated neutralization. Further, EMICE produced during natural infection inhibited complement deposition on infected cells by the alternative pathway. ECTV likely produces this abundance of EMICE to protect both the IMV and infected cells.  相似文献   

13.
14.
15.
UL31 and UL34 of herpes simplex virus type 1 form a complex necessary for nucleocapsid budding at the inner nuclear membrane (INM). Previous examination by immunogold electron microscopy and electron tomography showed that pUL31, pUL34, and glycoproteins D and M are recruited to perinuclear virions and densely staining regions of the INM where nucleocapsids bud into the perinuclear space. We now show by quantitative immunogold electron microscopy coupled with analysis of variance that gD-specific immunoreactivity is significantly reduced at both the INM and outer nuclear membrane (ONM) of cells infected with a UL34 null virus. While the amount of gM associated with the nuclear membrane (NM) was only slightly (P = 0.027) reduced in cells infected with the UL34 null virus, enrichment of gM in the INM at the expense of that in the ONM was greatly dependent on UL34 (P < 0.0001). pUL34 also interacted directly or indirectly with immature forms of gD (species expected to reside in the endoplasmic reticulum or nuclear membrane) in lysates of infected cells and with the cytosolic tail of gD fused to glutathione S-transferase in rabbit reticulocyte lysates, suggesting a role for the pUL34/gD interaction in recruiting gD to the NM. The effects of UL34 on gD and gM localization were not a consequence of decreased total expression of gD and gM, as determined by flow cytometry. Separately, pUL31 was dispensable for targeting gD and gM to the two leaflets of the NM but was required for (i) the proper INM-versus-ONM ratio of gD and gM in infected cells and (ii) the presence of electron-dense regions in the INM, representing nucleocapsid budding sites. We conclude that in addition to their roles in nucleocapsid envelopment and lamina alteration, UL31 and UL34 play separate but related roles in recruiting appropriate components to nucleocapsid budding sites at the INM.Herpesvirus virions comprise a nucleocapsid containing genomic viral DNA, a proteinaceous tegument layer surrounding the nucleocapsid, and a virion envelope surrounding the tegument. The envelope of extracellular herpes simplex virus (HSV) virions contains glycoproteins gB, gC, gD, gE, gI, gG, gH, gK, gL, and gM (23, 51).As viewed by electron microscopy, nascent virions form as the nucleocapsid buds through densely staining regions of the nuclear membrane (NM) (21, 41). Electron tomograms of HSV perinuclear virions compared to those of extracellular virions infer that the former contain glycoproteins of considerably less glycosylation and a relatively sparse tegument layer compared to their counterparts in mature extracellular virions (6). The lower levels of glycosylation in HSV perinuclear virions are consistent with the fact that the lumen of the perinuclear space is continuous with that of the endoplasmic reticulum. Thus, the polysaccharide moieties of virion glycoproteins become fully processed as virions access Golgi enzymes during their egress to the extracellular space. Although the full proteome of the nascent perinuclear virion is unknown, immunogold studies have shown that they contain at least pUL31, pUL34, pUS3, gB, gC, gD, gH, gM, and the VP16 and pUL11 tegument proteins in addition to the proteins that comprise the viral capsid (4, 5, 15, 25, 37, 40, 47, 50, 55).The UL31 and UL34 gene products of HSV-1 (pUL31 and pUL34, respectively) form a complex that localizes at the inner and outer NMs (INM and ONM, respectively) of infected cells (40). Both proteins are essential for nucleocapsid envelopment at the INM and become incorporated into nascent virions when nucleocapsids bud through the INM into the perinuclear space (39, 40, 42). The proteins and their essential role in nucleocapsid envelopment are conserved in all herpesvirus subfamilies (14, 20, 32, 45). pUL31 of HSV-1 is a mostly hydrophobic phosphoprotein that is held in close approximation to the nucleoplasmic face of the INM by interaction with pUL34, an integral membrane protein of type II orientation (33, 40, 46, 56). The first 248 amino acids of pUL34 are predicted to reside in the nucleoplasm or cytoplasm, depending on whether the protein localizes in the INM or ONM, respectively. This is followed by an approximately 22-amino acid transmembrane domain with up to 5 amino acids residing in the perinuclear space or lumen of the endoplasmic reticulum.In the most prominent model of herpesvirion egress, the envelope of the perinuclear virion fuses with the ONM, releasing the deenveloped nucleocapsid into the cytoplasm, where it subsequently buds into cytoplasmic membranous organelles such as the Golgi or trans-Golgi network (34, 49). This model is supported by the observation that pUL31 and pUL34 are located in the perinuclear virion but not extracellular virions (18, 40). Thus, these proteins are lost from the virion upon fusion of the virion envelope with the ONM. Also supporting this egress model is the observation that deletion of both gB and gH causes virions to accumulate aberrantly in the perinuclear space (15). The involvement of gH and gB is potentially satisfying because these proteins comprise essential components of the machinery that mediates fusion of the virion envelope with the plasma or endosomal membranes during the initiation of infection (9, 12, 16, 44, 52). Moreover, expression of a combination of gB, gD, gH, and gL is sufficient to mediate fusion of cell membranes, whereas coexpression with gM or gK inhibits this fusion (3, 8, 11). Although the mechanism of fusion is unclear, gD is known to bind viral receptors on cell surfaces, and the structure of gB indicates features reminiscent of other viral fusion proteins (24, 35, 48). gD has been shown to interact with gB and gH at least transiently, suggesting that these interactions may be important for the fusion reaction (1, 2). Thus, fusion between the nascent and mature virion envelopes with target membranes may share mechanistic similarities.On the other hand, it is likely that the two fusion events are mechanistically distinct because (i) single deletion of either gH or gB precludes viral entry and cell/cell fusion but does not cause nascent virions to accumulate in the perinuclear space (9, 16, 31, 43) and (ii) the activity of a viral kinase encoded by US3 is dispensable for entry but believed to promote fusion of the perinuclear virion and ONM (28, 40). Moreover, the lack of glycoproteins from the pseudorabies virus perinuclear virion suggests that fusion is mediated by an entirely different mechanism in this system (26).The current study focuses on how glycoproteins are incorporated into the nascent virion. We show that optimal recruitment of gD to both leaflets of the NM and gM to the INM requires pUL34 and pUL31. We also show that immature gD interacts with pUL34, suggesting a mechanism by which pUL34 might recruit gD to the NM.  相似文献   

16.
Herpes simplex virus 1 nucleocapsids bud through the inner nuclear membrane (INM) into the perinuclear space to obtain a primary viral envelope. This process requires a protein complex at the INM composed of the UL31 and UL34 gene products. While it is clear that the viral kinase encoded by the US3 gene regulates the localization of pUL31/pUL34 within the INM, the molecular mechanism by which this is accomplished remains enigmatic. Here, we have determined the following. (i) The N terminus of pUL31 is indispensable for the protein''s normal function and contains up to six serines that are phosphorylated by the US3 kinase during infection. (ii) Phosphorylation at these six serines was not essential for a productive infection but was required for optimal viral growth kinetics. (iii) In the presence of active US3 kinase, changing the serines to alanine caused the pUL31/pUL34 complex to aggregate at the nuclear rim and caused some virions to accumulate aberrantly in herniations of the nuclear membrane, much as in cells infected with a US3 kinase-dead mutant. (iv) The replacement of the six serines of pUL31 with glutamic acid largely restored the smooth distribution of pUL34/pUL31 at the nuclear membrane and precluded the accumulation of virions in herniations whether or not US3 kinase was active but also precluded the optimal primary envelopment of nucleocapsids. These observations indicate that the phosphorylation of pUL31 by pUS3 represents an important regulatory event in the virion egress pathway that can account for much of pUS3''s role in nuclear egress. The data also suggest that the dynamics of pUL31 phosphorylation modulate both the primary envelopment and the subsequent fusion of the nascent virion envelope with the outer nuclear membrane.The UL31 and UL34 proteins of herpes simplex virus 1 (HSV-1) form a complex that accumulates at the inner nuclear membrane (INM) of infected cells (26, 27). This complex is essential for the budding of nucleocapsids through the INM into the perinuclear space (26, 28). pUL34 is a type 2 integral membrane protein with a 247-amino-acid nucleoplasmic domain that binds pUL31 and holds the latter in close approximation to the INM (16, 19, 26, 31, 36, 37). Both proteins become incorporated into nascent virions, indicating that they directly or indirectly interact with nucleocapsids during the budding event (27). Interestingly, the coexpression of the pseudorabies virus homologs of HSV pUL31 and pUL34 are sufficient to induce budding from the INM in the absence of other viral proteins (13).The most prominent model of nuclear egress proposes that the step following primary envelopment involves the fusion of the perinuclear virion envelope with the outer nuclear membrane (ONM), allowing subsequent steps in which the deenveloped capsid engages budding sites in the Golgi or trans-Golgi network (20, 32). The US3 protein is a promiscuous kinase that phosphorylates pUL31, pUL34, and several other viral and cellular components (1, 2, 5, 11, 15, 21-23, 25). In the absence of pUS3 kinase activity, (i) virions accumulate within distensions of the perinuclear space that herniate into the nucleoplasm (14, 27, 29), (ii) the pUL31/pUL34 complex is mislocalized at the nuclear rim from a smooth pattern to discrete foci that accumulate adjacent to nuclear membrane herniations (12, 14, 27, 29), and (iii) the onset of infectious virus production is delayed (21, 29).Aberrant accumulations of perinuclear virions similar to those observed in cells infected with US3 kinase-dead viruses have been observed in cells infected with viruses lacking the capacity to produce glycoproteins H and B (gH and gB, respectively) (8). Because these proteins are required for fusion with the plasma membrane or endocytic vesicles during HSV entry (3, 4, 9, 10, 18, 30, 33), it has been proposed that the accumulation of perinuclear virions in the absence of gH and gB reflects a failure in the apparatus that normally mediates the fusion between the nascent virion envelope and the ONM (8). By extension of this hypothesis, pUS3 might act to trigger or otherwise regulate this perinuclear fusion event.The substrate(s) of the pUS3 kinase responsible for the altered localization of the pUL31/pUL34 complex and the aberrant accumulation of perinuclear virions were heretofore unknown. In one study to identify such a substrate, it was determined that precluding the phosphorylation of pUL34 was not responsible for the nuclear egress defects induced by the absence of pUS3 or its kinase activity (29). The current study was therefore undertaken to investigate the hypothesis that the pUS3-mediated phosphorylation of pUL31 is critical to regulate nuclear egress. The presented evidence indicates that aspects of the US3 kinase-dead phenotype, including the retention of virions in the perinuclear space, the mislocalization of the pUL31/pUL34 complex, and the delayed onset of virus replication, can be replicated by precluding pUL31 phosphorylation in the presence or absence of pUS3 kinase activity. The data also suggest that the dynamic phosphorylation of pUL31 is important during the primary envelopment of nucleocapsids.  相似文献   

17.
18.
The human immunodeficiency virus type 1 structural polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles on cellular membranes. Previous studies demonstrated the importance of the capsid C-terminal domain (CA-CTD), nucleocapsid (NC), and membrane association in Gag-Gag interactions, but the relationships between these factors remain unclear. In this study, we systematically altered the CA-CTD, NC, and the ability to bind membrane to determine the relative contributions of, and interplay between, these factors. To directly measure Gag-Gag interactions, we utilized chimeric Gag-fluorescent protein fusion constructs and a fluorescence resonance energy transfer (FRET) stoichiometry method. We found that the CA-CTD is essential for Gag-Gag interactions at the plasma membrane, as the disruption of the CA-CTD has severe impacts on FRET. Data from experiments in which wild-type (WT) and CA-CTD mutant Gag molecules are coexpressed support the idea that the CA-CTD dimerization interface consists of two reciprocal interactions. Mutations in NC have less-severe impacts on FRET between normally myristoylated Gag proteins than do CA-CTD mutations. Notably, when nonmyristoylated Gag interacts with WT Gag, NC is essential for FRET despite the presence of the CA-CTD. In contrast, constitutively enhanced membrane binding eliminates the need for NC to produce a WT level of FRET. These results from cell-based experiments suggest a model in which both membrane binding and NC-RNA interactions serve similar scaffolding functions so that one can functionally compensate for a defect in the other.The human immunodeficiency virus type 1 (HIV-1) structural precursor polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles (VLPs). Gag is composed of four major structural domains, matrix (MA), capsid (CA), nucleocapsid (NC), and p6, as well as two spacer peptides, SP1 and SP2 (3, 30, 94). Following particle assembly and release, cleavage by HIV-1 protease separates these domains. However, these domains must work together in the context of the full-length Gag polyprotein to drive particle assembly.Previous studies have mapped two major functional domains involved in the early steps of assembly: first, Gag associates with cellular membranes via basic residues and N-terminal myristoylation of the MA domain (10, 17, 20, 35, 39, 87, 91, 106); second, the Gag-Gag interaction domains that span the CA C-terminal domain (CA-CTD) and NC domain promote Gag multimerization (3, 11, 14, 16, 18, 23, 27, 29, 30, 33, 36, 46, 64, 88, 94, 102, 103). Structural and genetic studies have identified two residues (W184 and M185) within a dimerization interface in the CA-CTD that are critical to CA-CA interactions (33, 51, 74, 96). Analytical ultracentrifugation of heterodimers formed between wild-type (WT) Gag and Gag mutants with changes at these residues suggests that the dimerization interface consists of two reciprocal interactions, one of which can be disrupted to form a “half-interface” (22).In addition to the CA-CTD, NC contributes to assembly via 15 basic residues (8, 9, 11, 14, 18, 23, 25, 28, 34, 40, 43, 54, 57, 58, 74, 79, 88, 97, 104, 105), although some researchers have suggested that NC instead contributes to the stability of mature virions after assembly (75, 98, 99). It is thought that the contribution of NC to assembly is due to its ability to bind RNA, since the addition of RNA promotes the formation of particles in vitro (14-16, 37, 46), and RNase treatment disrupts Gag-Gag interactions (11) and immature viral cores (67). However, RNA is not necessary per se, since dimerization motifs can substitute for NC (1, 4, 19, 49, 105). This suggests a model in which RNA serves a structural role, such as a scaffold, to promote Gag-Gag interactions through NC. Based on in vitro studies, it has been suggested that this RNA scaffolding interaction facilitates the low-order Gag multimerization mediated by CA-CTD dimerization (4, 37, 49, 62, 63, 85). Despite a wealth of biochemical data, the relative contributions of the CA-CTD and NC to Gag multimerization leading to assembly are yet to be determined in cells.Mutations in Gag interaction domains alter membrane binding in addition to affecting Gag multimerization. In particular, mutations or truncations of CA reduce membrane binding (21, 74, 82), and others previously reported that mutations or truncations of NC affect membrane binding (13, 78, 89, 107). These findings are consistent with a myristoyl switch model of membrane binding in which Gag can switch between high- and low-membrane-affinity states (38, 71, 76, 83, 86, 87, 92, 95, 107). Many have proposed, and some have provided direct evidence (95), that Gag multimerization mediated by CA or NC interactions promotes the exposure of the myristoyl moiety to facilitate membrane associations.Gag membrane binding and multimerization appear to be interrelated steps of virus assembly, since membrane binding also facilitates Gag multimerization. Unlike betaretroviruses that fully assemble prior to membrane targeting and envelopment (type B/D), lentiviruses, such as HIV, assemble only on cellular membranes at normal Gag expression levels (type C), although non-membrane-bound Gag complexes exist (45, 58, 60, 61, 65). Consistent with this finding, mutations that reduce Gag membrane associations cause a defect in Gag multimerization (59, 74). Therefore, in addition to their primary effects on Gag-Gag interactions, mutations in Gag interaction domains cause a defect in membrane binding, which, in turn, causes a secondary multimerization defect. To determine the relative contributions of the CA-CTD and the NC domain to Gag-Gag interactions at the plasma membrane, it is essential to eliminate secondary effects due to a modulation of membrane binding.Except for studies using a His-tag-mediated membrane binding system (5, 46), biochemical studies of C-type Gag multimerization typically lack membranes. Therefore, these studies do not fully represent particle assembly, which occurs on biological membranes in cells. Furthermore, many biochemical and structural approaches are limited to isolated domains or truncated Gag constructs. Thus, some of these studies are perhaps more relevant to the behavior of protease-cleaved Gag in mature virions. With few exceptions (47, 74), cell-based studies of Gag multimerization have typically been limited to measuring how well mutant Gag is incorporated into VLPs when coexpressed or not with WT Gag. Since VLP production is a complex multistep process, effects of mutations on other steps in the process can confound this indirect measure. For example, NC contributes to VLP production by both promoting multimerization and interacting with the host factor ALIX to promote VLP release (26, 80). To directly assay Gag multimerization in cells, several groups (24, 45, 52, 56) developed microscopy assays based on fluorescence resonance energy transfer (FRET). These assays measure the transfer of energy between donor and acceptor fluorescent molecules that are brought within ∼5 nm by the association of the proteins to which they are attached (41, 48, 90). However, these microscopy-based Gag FRET assays have not been used to fully elucidate several fundamental aspects of HIV-1 Gag multimerization at the plasma membrane of cells, such as the relative contributions of the CA-CTD and NC and the effect of membrane binding on Gag-Gag interactions. In this study, we used a FRET stoichiometry method based on calibrated spectral analysis of fluorescence microscopy images (41). This algorithm determines the fractions of both donor and acceptor fluorescent protein-tagged Gag molecules participating in FRET. For cells expressing Gag molecules tagged with donor (cyan fluorescent protein [CFP]) and acceptor (yellow fluorescent protein [YFP]) molecules, this method measures the apparent FRET efficiency, which is proportional to the mole fraction of Gag constructs in complex. By measuring apparent FRET efficiencies, quantitative estimates of the mole fractions of interacting proteins can be obtained.Using this FRET-based assay, we aim to answer two questions: (i) what are the relative contributions of CA-CTD and NC domains to Gag multimerization when secondary effects via membrane binding are held constant, and (ii) what is the effect of modulating membrane binding on the ability of Gag mutants to interact with WT Gag?Our data demonstrate that the CA-CTD dimerization interface is essential for Gag multimerization at the plasma membrane, as fully disrupting the CA-CTD interaction abolishes FRET, whereas a modest level of FRET is still detected in the absence of NC. We also present evidence that the CA-CTD dimerization interface consists of two reciprocal interactions, allowing the formation of a half-interface that can still contribute to Gag multimerization. Notably, when Gag derivatives with an intact CA-CTD were coexpressed with WT Gag, either membrane binding ability or NC was required for the Gag mutants to interact with WT Gag, suggesting functional compensation between these factors.  相似文献   

19.
The first morphological evidence of African swine fever virus (ASFV) assembly is the appearance of precursor viral membranes, thought to derive from the endoplasmic reticulum, within the assembly sites. We have shown previously that protein p54, a viral structural integral membrane protein, is essential for the generation of the viral precursor membranes. In this report, we study the role of protein p17, an abundant transmembrane protein localized at the viral internal envelope, in these processes. Using an inducible virus for this protein, we show that p17 is essential for virus viability and that its repression blocks the proteolytic processing of polyproteins pp220 and pp62. Electron microscopy analyses demonstrate that when the infection occurs under restrictive conditions, viral morphogenesis is blocked at an early stage, immediately posterior to the formation of the viral precursor membranes, indicating that protein p17 is required to allow their progression toward icosahedral particles. Thus, the absence of this protein leads to an accumulation of these precursors and to the delocalization of the major components of the capsid and core shell domains. The study of ultrathin serial sections from cells infected with BA71V or the inducible virus under permissive conditions revealed the presence of large helicoidal structures from which immature particles are produced, suggesting that these helicoidal structures represent a previously undetected viral intermediate.African swine fever virus (ASFV) (61, 72) is the only known DNA-containing arbovirus and the sole member of the Asfarviridae family (24). Infection by this virus of its natural hosts, the wild swine warthogs and bushpigs and the argasid ticks of the genus Ornithodoros, results in a mild disease, often asymptomatic, with low viremia titers, that in many cases develops into a persistent infection (3, 43, 71). In contrast, infection of domestic pigs leads to a lethal hemorrhagic fever for which the only available methods of disease control are the quarantine of the affected area and the elimination of the infected animals (51).The ASFV genome is a lineal molecule of double-stranded DNA of 170 to 190 kbp in length with convalently closed ends and terminal inverted repeats. The genome encodes more than 150 open reading frames, half of which lack any known or predictable function (16, 75).The virus particle, with an overall icosahedral shape and an average diameter of 200 nm (11), is organized in several concentric layers (6, 11, 15) containing more than 50 structural proteins (29). Intracellular particles are formed by an inner viral core, which contains the central nucleoid surrounded by a thick protein coat, referred to as core shell. This core is enwrapped by an inner lipid envelope (7, 34) on top of which the icosahedral capsid is assembled (26, 27, 31). Extracellular virions possess an additional membrane acquired during the budding from the plasma membrane (11). Both forms of the virus, intracellular and extracellular, are infective (8).The assembly of ASFV particles occurs in the cytoplasm of the infected cell, in viral factories located close to the cell nucleus (6, 13, 49). ASFV factories possess several characteristics similar to those of the cellular aggresomes (35), which are accumulations of aggregates of cellular proteins that form perinuclear inclusions (44).Current models propose that ASFV assembly begins with the modification of endoplasmic reticulum (ER) membranes, which are subsequently recruited to the viral factories and transformed into viral precursor membranes. These ER-derived viral membranes represent the precursors of the inner viral envelope and are the first morphological evidence of viral assembly (7, 60). ASFV viral membrane precursors evolve into icosahedral intermediates and icosahedral particles by the progressive assembly of the outer capsid layer at the convex face of the precursor membranes (5, 26, 27, 31) through an ATP- and calcium-dependent process (19). At the same time, the core shell is formed underneath the concave face of the viral envelope, and the viral DNA and nucleoproteins are packaged and condensed to form the innermost electron-dense nucleoid (6, 9, 12, 69). However, the assembly of the capsid and the internal envelope appears to be largely independent of the components of the core of the particle, since the absence of the viral polyprotein pp220 during assembly produces empty virus-like particles that do not contain the core (9).Comparative genome analysis suggests that ASFV shares a common origin with the members of the proposed nucleocytoplasmic large DNA viruses (NCLDVs) (40, 41). The reconstructed phylogeny of NCLDVs as well as the similitude in the structures and organizations of the genomes indicates that ASFV is more closely related to poxviruses than to other members of the NCLDVs. A consensus about the origin and nature of the envelope of the immature form of vaccinia virus (VV), the prototypical poxvirus, seems to be emerging (10, 17, 20, 54). VV assembly starts with the appearance of crescent-shaped structures within specialized regions of the cytoplasm also known as viral factories (21, 23). The crescent membranes originate from preexisting membranes derived from some specialized compartment of the ER (32, 37, 52, 53, 67), and an operative pathway from the ER to the crescent membrane has recently been described (38, 39). VV crescents apparently grow in length while maintaining the same curvature until they become closed circles, spheres in three dimensions, called immature virions (IV) (22). The uniform curvature is produced by a honeycomb lattice of protein D13L (36, 70), which attaches rapidly to the membranes so that nascent viral membranes always appear to be coated over their entirety. The D13L protein is evolutionarily related to the capsid proteins of the other members of the NCLDV group, including ASFV, but lacks the C-terminal jelly roll motif (40). This structural difference is probably related to the fact that poxviruses are the only member of this group without an icosahedral capsid; instead, the spherical D13L coat acts as a scaffold during the IV stage but is discarded in subsequent steps of morphogenesis (10, 28, 46, 66). Thus, although crescents in VV and precursors of the inner envelope in ASFV are the first morphogenetic stages discernible in the viral factories of these viruses, they seem to be different in nature. Crescents are covered by the D13L protein and are more akin to the icosahedral intermediates of ASFV assembly, whereas ASFV viral membrane precursors are more similar to the naked membranes seen when VV morphogenesis is arrested by rifampin treatment (33, 47, 48, 50) or when the expression of the D13L and A17L proteins are repressed during infection with lethal conditional VV viruses (45, 55, 56, 68, 74, 76).Although available evidence strongly supports the reticular origin of the ASFV inner envelope (7, 60), the mechanism of acquisition remains unknown, and the number of membranes present in the inner envelope is controversial. The traditional view of the inner envelope as formed by two tightly opposed membranes derived from ER collapsed cisternae (7, 59, 60) has recently been challenged by the careful examination of the width of the internal membrane of viral particles and the single outer mitochondrial membrane, carried out using chemical fixation, cryosectioning, and high-pressure freezing (34). The results suggest that the inner envelope of ASFV is a single lipid bilayer, which raises the question of how such a structure can be generated and stabilized in the precursors of the ASFV internal envelope. In the case of VV, the coat of the D13L protein has been suggested to play a key role in the stabilization of the single membrane structure of the crescent (10, 17, 36), but the ASFV capsid protein p72 is not a component of the viral membrane precursors. The identification and functional characterization of the proteins involved in the generation of these structures are essential for the understanding of the mechanisms involved in these early stages of viral assembly. For this reason, we are focusing our interest on the study of abundant structural membrane proteins that reside at the inner envelope of the viral particle. We have shown previously that one of these proteins, p54, is essential for the recruitment of ER membranes to the viral factory (59). Repression of protein p54 expression has a profound impact on virus production and leads to an early arrest in virion morphogenesis, resulting in the virtual absence of membranes in the viral factory.Protein p17, encoded by the late gene D117L in the BA71V strain, is an abundant structural protein (60, 65). Its sequence, which is highly conserved among ASFV isolates (16), does not show any significant similarity with the sequences present in the databases. Protein p17 is an integral membrane protein (18) that is predicted to insert in membranes with a Singer type I topology and has been localized in the envelope precursors as well as in both intracellular and extracellular mature particles (60), suggesting that it resides at the internal envelope, the only membranous structure of the intracellular particles.In this work, we analyze the role of protein p17 in viral assembly by means of an IPTG (isopropyl-β-d-thiogalactopyranoside)-dependent lethal conditional virus. The data presented indicate that protein p17 is essential for viral morphogenesis. The repression of this protein appears to block assembly at the level of viral precursor membranes, resulting in their accumulation at the viral factory.From the electron microscopy analysis of serial sections of viral factories at very early times during morphogenesis, we present experimental evidence that suggests that, during assembly, viral precursor membranes and core material organize into large helicoidal intermediates from which icosahedral particles emerge. The possible role of these structures during ASFV morphogenesis is discussed.  相似文献   

20.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号