首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
2.
3.
4.
5.
6.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

7.
8.
9.
10.
Vibrio cholerae is the etiologic agent of cholera in humans. Intestinal colonization occurs in a stepwise fashion, initiating with attachment to the small intestinal epithelium. This attachment is followed by expression of the toxin-coregulated pilus, microcolony formation, and cholera toxin (CT) production. We have recently characterized a secreted attachment factor, GlcNAc binding protein A (GbpA), which functions in attachment to environmental chitin sources as well as to intestinal substrates. Studies have been initiated to define the regulatory network involved in GbpA induction. At low cell density, GbpA was detected in the culture supernatant of all wild-type (WT) strains examined. In contrast, at high cell density, GbpA was undetectable in strains that produce HapR, the central regulator of the cell density-dependent quorum-sensing system of V. cholerae. HapR represses the expression of genes encoding regulators involved in V. cholerae virulence and activates the expression of genes encoding the secreted proteases HapA and PrtV. We show here that GbpA is degraded by HapA and PrtV in a time-dependent fashion. Consistent with this, ΔhapA ΔprtV strains attach to chitin beads more efficiently than either the WT or a ΔhapA ΔprtV ΔgbpA strain. These results suggest a model in which GbpA levels fluctuate in concert with the bacterial production of proteases in response to quorum-sensing signals. This could provide a mechanism for GbpA-mediated attachment to, and detachment from, surfaces in response to environmental cues.Vibrio cholerae has adapted to lifestyles in dual environments, allowing survival in aquatic locations, as well as the ability to colonize the epithelium of the human small intestine. This intestinal colonization by V. cholerae is a prerequisite for the disease cholera in humans. Intestinal colonization proceeds in a stepwise manner, initiating with attachment to the epithelial cell layer by multiple attachment factors (26). This stable attachment localizes the bacterium in an environment conducive for activation of subsequent virulence factors, including the toxin-coregulated pilus, a type IVb pilus that mediates cell-cell interactions and microcolony formation (27). Cholera toxin (CT) is produced and extracellularly secreted by bacteria within the microcolonies and enters into intestinal epithelial cells. CT causes the disruption of fluid and electrolyte balance and results in the voluminous rice water diarrhea characteristically observed with cholera patients.The ability of V. cholerae to bind to surfaces is crucial for the initial stages of colonization of both the aquatic and intestinal environments. Previous studies observing V. cholerae in the aquatic setting identified the ability of the bacteria to attach to zooplankton and phytoplankton, binding to surface structures that include chitin as a major component (7, 10, 11, 19, 21, 42). Chitin, a polymer consisting primarily of a β-1,4 linkage of GlcNAc monomers, is the most abundant aquatic carbon source and, when presented on the surfaces of zooplankton, aquatic exoskeletons, algae, and plants, provides a substrate for V. cholerae surface binding (8, 19-22). V. cholerae is able to break down chitin into carbon to use as a nutrient source via degradation by secreted chitinases (12). We have described a protein, GbpA (GlcNAc binding protein A), which facilitates the binding of V. cholerae to chitin, specifically to the chitin monomer GlcNAc, a sugar residue that is also found on the surface of epithelial cells (3, 16, 26). GbpA mediates binding to chitin, GlcNAc, and exoskeletons of Daphnia magna, as well as participates in effective intestinal colonization within the infant mouse model of cholera (26). GbpA is a secreted protein that exits the cell via the type 2 secretion system by which it mediates attachment by a yet uncharacterized mechanism (26). Previous studies examining the role of GbpA in binding to surfaces have been conducted utilizing various wild-type (WT) strains of V. cholerae, specifically O395 (26) and N16961 (33). These strains both are of the O1 serogroup but are differentially classified as classical (43) and El Tor biotypes (18), respectively. The classical biotype was responsible for the first six pandemics of cholera, whereas El Tor is the cause of the current pandemic (39).Quorum sensing regulates multiple bacterial processes, including virulence, formation of biofilms, and bioluminescence (25, 35, 36). In contrast to many other bacterial quorum-sensing systems, virulence gene expression and biofilm formation in V. cholerae is expressed under conditions of low cell density and repressed at high cell density (17, 35, 48). HapR, a member of the TetR family of regulatory proteins, is a central regulator on which the three parallel inputs of the V. cholerae quorum-sensing system converge (30, 35). During low-cell-density conditions, characteristic of growth within the aquatic environment or stages of early intestinal colonization, the quorum-sensing system is not engaged. Under conditions of high cell density, bacterial numbers and secreted autoinducer molecules are increased to a level that triggers the V. cholerae quorum-sensing system.HapR regulates gene function in two ways, serving as both an activator and repressor. At high cell density, HapR functions in the capacity of a repressor of the toxin-coregulated pilus and CT virulence cascade (29, 31) as well as a repressor of vps gene expression (17), preventing biofilm formation. In addition to repressing gene expression, at high cell density HapR activates the expression of genes encoding extracellularly secreted proteases HapA and PrtV (14, 17, 23, 45-47). HapA, also referred to as hemagglutinin/protease (HA/P), was first reported as a mucinase by Burnet (6) and later characterized as a zinc- and calcium-dependent metalloprotease (4). Extracellularly secreted via the V. cholerae type 2 secretion pathway (40), HA/P has been demonstrated to cleave fibronectin, lactoferrin, and mucin (15), as well as to participate in the activation of the CT A subunit (5). Further studies have led to the suggestion that HA/P is a detachase, critical for the release of V. cholerae from the surface of intestinal cells (2, 14, 38). PrtV is a second protease encoded by a gene that is activated by HapR (47). It has been demonstrated to be essential for both V. cholerae killing of Caenorhabditis elegans, as well as protecting V. cholerae from predator grazing by various flagellates (32, 45).The data presented here indicate that HapA and PrtV participate in the targeted degradation of the attachment factor GbpA. We demonstrate that GbpA is present during the logarithmic phase of growth and conditions of low cell density but that it is not present in the supernatant of high-cell-density cultures of strains that express functional HapR. Further studies revealed that during stages of high cell density, proteases HapA and PrtV, encoded by HapR-activated genes, are responsible for GbpA degradation in the culture supernatant. These findings suggest that the attachment factor GbpA is potentially a ligand targeted for protease degradation during the epithelial detachment process. This process could aid in the release of V. cholerae back into the aquatic environment following late stages of intestinal colonization.  相似文献   

11.
Epidemics of Vibrio parahaemolyticus in Chile have occurred since 1998. Direct genome restriction enzyme analysis (DGREA) using conventional gel electrophoresis permitted discrimination of different V. parahaemolyticus isolates obtained from these outbreaks and showed that this species consists of a highly diverse population. A multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) approach was developed and applied to 22 clinical and 91 environmental V. parahaemolyticus isolates from Chile to understand their clonal structures. To this end, an advanced molecular technique was developed by applying multiplex PCR, fluorescent primers, and capillary electrophoresis, resulting in a high-resolution and high-throughput (HRHT) genotyping method. The genomic basis of this HRHT method was eight VNTR loci described previously by Kimura et al. (J. Microbiol. Methods 72:313-320, 2008) and two new loci which were identified by a detailed molecular study of 24 potential VNTR loci on both chromosomes. The isolates of V. parahaemolyticus belonging to the same DGREA pattern were distinguishable by the size variations in the indicative 10 VNTRs. This assay showed that these 10 VNTR loci were useful for distinguishing isolates of V. parahaemolyticus that had different DGREA patterns and also isolates that belong to the same group. Isolates that differed in their DGREA patterns showed polymorphism in their VNTR profiles. A total of 81 isolates was associated with 59 MLVA groups, providing fine-scale differentiation, even among very closely related isolates. The developed approach enables rapid and high-resolution analysis of V. parahaemolyticus with pandemic potential and provides a new surveillance tool for food-borne pathogens.Food-borne infections by Vibrio parahaemolyticus cause gastroenteritis, which is the most common clinical manifestation (38). An increasing number of V. parahaemolyticus infections and outbreaks caused by strains belonging to a pandemic clonal complex have been observed throughout the world since 1996 (2, 6, 9, 12, 13, 31, 32, 36, 40). Epidemics of Vibrio parahaemolyticus in Chile have occurred since the summer of 1998 and were caused by the pandemic clone O3:K6 that had emerged in Southeast Asia in 1996 (12, 13, 15). However, this strain was only a minor component of a highly diverse V. parahaemolyticus population in shellfish, as demonstrated by an improved method for restriction enzyme analysis, using total bacterial DNA, named direct genome restriction enzyme analysis (DGREA), in combination with conventional gel electrophoresis (12). This method has a discrimination index similar to that of restriction fragment length polymorphism-pulsed-field gel electrophoresis (PFGE) (12, 13, 19).A variety of molecular typing methods have been applied to V. parahaemolyticus, such as ribotyping (3, 10, 14), PFGE (3, 30), group-specific PCR (32), arbitrarily primed PCR (18, 32, 36), and multilocus sequence typing (7, 16). The use of DGREA permitted discrimination of different V. parahaemolyticus Chilean isolates and showed that these bacteria consist of a highly diverse population comprising at least 23 different genotypic groups among the environmental isolates obtained from shellfish and 5 different groups of clinical isolates (19).Epidemiological analyses of infections caused by pathogenic bacteria depend on the accurate identification of strains, preferably at the clonal level. Variable-number tandem repeats (VNTRs) comprising short sequence repeats constitute a rich source of genetic polymorphism and have been used extensively as markers for discrimination between strains of many different bacterial genera (27, 46). VNTRs have been used to discriminate among individual strains within several food- or waterborne pathogens with little genetic variation, including Escherichia coli O157:H7 (25, 35), Pseudomonas aeruginosa (37), Staphylococcus aureus (41), and Salmonella enterica subsp. enterica serovar Typhimurium (26), and to characterize other important human pathogens, such as Neisseria meningitidis (42), Listeria monocytogenes (28), Legionella pneumophila (34, 39), Leptospira interrogans (43), and Mycobacterium tuberculosis (45). VNTR loci have even been found in genetically highly homogenous pathogens, such as Bacillus anthracis (1, 21, 29). Multiple-locus VNTR analysis (MLVA) is defined as the analysis of a set of loci spread throughout the bacterial genome (23). Individual strains within a bacterial species often maintain the same sequence elements but with different copy numbers due to variations introduced by slipped-strand mispairing during DNA replication (33).Recently, a study of the polymorphism of tandem repeats in V. parahaemolyticus showed the utility of the MLVA approach for characterizing recently emerged and highly homogeneous pandemic strains of serotype O3:K6 (22). These authors reported a scheme of eight genomic VNTR loci, comparing PFGE results for clinical strains of V. parahaemolyticus serotype O3:K6. The study by Kimura et al. (22) comprised only strains of serogroup O3:K6 and used conventional gel electrophoresis to evaluate VNTRs. In epidemiological studies, a more rapid technique is needed for mass application of MLVA that also provides improved resolution and has been validated for nonserogroup O3:K6 isolates. Capillary electrophoresis has become the preferred technology to improve resolution and accuracy in bacterial VNTR analysis due to the availability of multiple fluorescent labels and better accuracy and reproducibility (27).In our study we describe the use of an improved MLVA for discriminating genotypically a diverse collection of clinical and environmental V. parahaemolyticus isolates from Chile. These very closely related isolates have been analyzed and grouped by DGREA previously (12). To this end, we developed and applied multiplex PCR of 10 VNTR loci, tagged with multiple fluorescent dyes, and analyzed the amplicons by capillary electrophoresis. The results demonstrated that MLVA typing is able to distinguish between V. parahaemolyticus isolates that have different DGREA patterns and isolates that belong to the same group, allowing accurate sizing of amplicons by assignment of the fragment size. Validation of this typing method with 113 Chilean isolates demonstrated the utility of this technique also for nonserogroup O3:K6 clinical isolates, thereby providing a new tool for the study of the molecular epidemiology of V. parahaemolyticus.  相似文献   

12.
13.
Outbreaks of Vibrio vulnificus wound infections in Israel were previously attributed to tilapia aquaculture. In this study, V. vulnificus was frequently isolated from coastal but not freshwater aquaculture in Bangladesh. Phylogenetic analyses showed that strains from Bangladesh differed remarkably from isolates commonly recovered elsewhere from fish or oysters and were more closely related to strains of clinical origin.Vibrio vulnificus causes severe wound infections and life-threatening septicemia (mortality, >50%), primarily in patients with underlying chronic diseases (10, 19, 23) and primarily from raw oyster consumption (21). This Gram-negative halophile is readily recovered from oysters (27, 35, 43) and fish (14) and was initially classified into two biotypes (BTs) based on growth characteristics and serology (5, 18, 39). Most human isolates are BT1, while BT2 is usually associated with diseased eels (1, 39). An outbreak of wound infections from aquacultured tilapia in Israel (6) revealed a new biotype (BT3). Phenotypic assays do not consistently distinguish biotypes (33), but genetic analyses have helped resolve relationships (20). A 10-locus multilocus sequence typing (MLST) scheme (8, 9) and a similar analysis of 6 loci (13) segregated V. vulnificus strains into two clusters. BT1 strains were in both clusters, while BT2 segregated into a single cluster and BT3 was a genetic mosaic of the two lineages. Significant associations were observed between MLST clusters and strain origin: most clinical strains (BT1) were in one cluster, and the other cluster was comprised mostly of environmental strains (some BT1 and all BT2). Clinical isolates were also associated with a unique genomic island (13).The relationship between genetic lineages and virulence has not been determined, and confirmed virulence genes are universally present in V. vulnificus strains from both clinical and environmental origins (19, 23). However, segregation of several polymorphic alleles agreed with the MLST analysis and correlated genotype with either clinical or environmental strain origin. Alleles include 16S rRNA loci (15, 26, 42), a virulence-correlated gene (vcg) locus (31, 41, 42), and repetitive sequence in the CPS operon (12). DiversiLab repetitive extrageneic palindromic (rep-PCR) analysis also confirmed these genetic distinctions and showed greater diversity among clinical strains (12).Wound infections associated with tilapia in Israel implicated aquaculture as a potential source of V. vulnificus in human disease (6, 40). Tilapia aquaculture is increasing rapidly, as shown by a 2.8-fold increase in tons produced from 1998 to 2007 (Food and Agriculture Organization; http://www.fao.org/fishery/statistics/en). Therefore, presence of V. vulnificus in tilapia aquaculture was examined in Bangladesh, a region that supports both coastal and freshwater sources of industrial-scale aquaculture. V. vulnificus strains were recovered from market fish, netted fish, and water samples, and the phylogenetic relationship among strains was examined relative to clinical and environmental reference strains collected elsewhere.  相似文献   

14.
15.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

16.
17.
18.
During the course of infection, transmitted HIV-1 isolates that initially use CCR5 can acquire the ability to use CXCR4, which is associated with an accelerated progression to AIDS. Although this coreceptor switch is often associated with mutations in the stem of the viral envelope (Env) V3 loop, domains outside V3 can also play a role, and the underlying mechanisms and structural basis for how X4 tropism is acquired remain unknown. In this study we used a V3 truncated R5-tropic Env as a starting point to derive two X4-tropic Envs, termed ΔV3-X4A.c5 and ΔV3-X4B.c7, which took distinct molecular pathways for this change. The ΔV3-X4A.c5 Env clone acquired a 7-amino-acid insertion in V3 that included three positively charged residues, reestablishing an interaction with the CXCR4 extracellular loops (ECLs) and rendering it highly susceptible to the CXCR4 antagonist AMD3100. In contrast, the ΔV3-X4B.c7 Env maintained the V3 truncation but acquired mutations outside V3 that were critical for X4 tropism. In contrast to ΔV3-X4A.c5, ΔV3-X4B.c7 showed increased dependence on the CXCR4 N terminus (NT) and was completely resistant to AMD3100. These results indicate that HIV-1 X4 coreceptor switching can involve (i) V3 loop mutations that establish interactions with the CXCR4 ECLs, and/or (ii) mutations outside V3 that enhance interactions with the CXCR4 NT. The cooperative contributions of CXCR4 NT and ECL interactions with gp120 in acquiring X4 tropism likely impart flexibility on pathways for viral evolution and suggest novel approaches to isolate these interactions for drug discovery.For human immunodeficiency virus type I (HIV-1) to enter a target cell, the gp120 subunit of the viral envelope glycoprotein (Env) must engage CD4 and a coreceptor on the cell surface. Although numerous coreceptors have been identified in vitro, the two most important coreceptors in vivo are the CCR5 (3, 11, 19, 22, 24) and CXCR4 (27) chemokine receptors. HIV-1 variants that can use only CCR5 (R5 viruses) are critical for HIV-1 transmission and predominate during the early stages of infection (86, 90). The importance of CCR5 for HIV-1 transmission is underscored by the fact that individuals bearing a homozygous 32-bp deletion in the CCR5 gene (ccr5-Δ32) are largely resistant to HIV-1 infection (15, 49, 84). Although R5 viruses typically persist into late disease stages, viruses that can use CXCR4, either alone (X4 viruses) or in addition to CCR5 (R5X4 viruses), emerge in approximately 50% of individuals infected with subtype B or D viruses (12, 39, 44). Although not required for disease progression, the appearance of X4 and/or R5X4 viruses is associated with a more rapid depletion of CD4+ cells in peripheral blood and faster progression to AIDS (12, 44, 77, 86). However, it remains unclear whether these viruses are a cause or a consequence of accelerated CD4+ T cell decline (57). The emergence of CXCR4-using viruses has also complicated the use of small-molecule CCR5 antagonists as anti-HIV-therapeutics as these compounds can select for the outgrowth of X4 or R5X4 escape variants (93).Following triggering by CD4, gp120 binds to a coreceptor via two principal interactions: (i) the bridging sheet, a four-stranded antiparallel beta sheet that connects the inner and outer domains of gp120, together with the base of the V3 loop, engages the coreceptor N terminus (NT); and (ii) more distal regions of V3 interact with the coreceptor extracellular loops (ECLs) (13, 14, 36-38, 43, 59, 60, 78, 79, 88). Although both the NT and ECL interactions are important for coreceptor binding and entry, their relative contributions vary among different HIV-1 strains (23). For example, V3 interactions with the ECLs, particularly ECL2, serve a dominant role in CXCR4 utilization (7, 21, 50, 63, 72), while R5 viruses exhibit a more variable use of CCR5 domains, with the NT interaction being particularly important (4, 6, 20, 67, 83). Although V3 is the primary determinant of coreceptor preference (34), it is unclear how specificity for CCR5 and/or CXCR4 is determined, and, in particular, it is unknown how X4 tropism is acquired. Several reports have shown that the emergence of X4 tropism correlates with the acquisition of positively charged residues in the V3 stem (17, 29, 87), particularly at positions 11, 24, and 25 (8, 17, 28, 29, 42, 75), raising the possibility that these mutations directly or indirectly mediate interactions with negatively charged residues in the CXCR4 ECLs. However, Env domains outside V3, including V1/V2 (9, 32, 45, 46, 61, 64, 65, 80, 95) and even gp41 (40), can also contribute to coreceptor switching, and it is unclear mechanistically or structurally how X4 tropism is determined.We previously derived a replication-competent variant of the R5X4 HIV-1 clone R3A that contained a markedly truncated V3 loop (47). This Env was generated by introducing a mutation termed ΔV3(9,9), which deleted the distal 15 amino acids of V3. The ΔV3(9,9) mutation selectively ablated X4 tropism but left R5 tropism intact, consistent with the view that an interaction between the distal half of V3 and the ECLs is critical for CXCR4 usage (7, 21, 43, 50, 59, 60, 63, 72). This V3-truncated virus provided a unique opportunity to address whether CXCR4 utilization could be regained on a background in which this critical V3-ECL interaction had been ablated and, if so, by what mechanism. Here, we characterize two novel X4 variants of R3A ΔV3(9,9) derived by adapting this virus to replicate in CXCR4+ CCR5 SupT1 cells. We show that R3A ΔV3(9,9) could indeed reacquire X4 tropism but through two markedly different mechanisms. One X4 variant, designated ΔV3-X4A, acquired changes in the V3 remnant that reestablished an interaction with the CXCR4 ECLs; the other, ΔV3-X4B, acquired changes outside V3 that engendered interactions with the CXCR4 NT. These divergent evolutionary pathways led to profound differences in sensitivity to the CXCR4 antagonist AMD3100, with ΔV3-X4A showing increased sensitivity relative to R3A and with ΔV3-X4B becoming completely resistant. These findings demonstrate the contributions that interactions with distinct coreceptor regions have in mediating tropism and drug sensitivity and illustrate how HIV''s remarkable evolutionary plasticity in adapting to selection pressures can be exploited to better understand its biological potential.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号