首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ppk gene encodes polyphosphate kinase (Ppk), an enzyme that catalyses the polymerization of inorganic phosphate into long chains of polyphosphate (polyP). An insertion mutation in ppk causes a decrease in adaptive mutation in Escherichia coli strain FC40. Adaptive mutation in FC40 mostly results from error-prone DNA polymerase IV (Pol IV), encoded by dinB; most of the antimutagenic phenotype of the ppk mutant disappears in a dinB mutant strain. In addition, the ppk mutant causes a decrease in growth-dependent mutations produced by overexpressing Pol IV. However, the amount of Pol IV protein is unchanged in the ppk mutant strain, indicating that the activity or fidelity of Pol IV is altered. Adaptive mutation is inhibited both by the absence of Ppk, which results in low amounts of polyP, and by overproduction of Ppk, which results in high amounts of polyP, suggesting that an optimal level of polyP is necessary. Taken together, these results suggest a novel mechanism involving polyP that directly or indirectly regulates DNA polymerase activity or fidelity.  相似文献   

2.
Escherichia coli transiently accumulates large amounts of inorganic polyphosphate (polyP), up to 20 mM in phosphate residues (Pi), in media deficient in both Pi and amino acids. This transient accumulation is preceded by the appearance of nucleotides ppGpp and pppGpp, generated in response to nutritional stresses. Mutants which lack PhoB, the response regulator of the phosphate regulon, do not accumulate polyP even though they develop wild-type levels of (p)ppGpp when subjected to amino acid starvation. When complemented with a phoB-containing plasmid, phoB mutants regain the ability to accumulate polyP. PolyP accumulation requires high levels of (p)ppGpp independent of whether they are generated by RelA (active during the stringent response) or SpoT (expressed during Pi starvation). Hence, accumulation of polyP requires a functional phoB gene and elevated levels of (p)ppGpp. A rapid assay of polyP depends on its adsorption to an anion-exchange disk on which it is hydrolyzed by a yeast exopolyphosphatase.  相似文献   

3.
Inorganic polyphosphate is a ubiquitous, linear polymer of phosphate residues linked by high-energy phosphoanhydride bonds. In response to starvation, polyP levels are increased up to 100-fold. It has been proposed that chelation of transition metals by polyP might reduce their toxicity, and that polyP accumulation is vital for survival in stationary phase. SOD-deficient E. coli is unable to survive in stationary phase. We found that deletion of the cytoplasmic SODs does not impair the cell's capability of synthesizing polyP. However, transient accumulation of polyphosphate correlated with increased resistance to H(2)O(2) and protection of DNA against oxidative damage. The reason for this protective effect of polyP is the induction of HPII catalase and DNA repair enzymes as members of the rpoS regulon. PolyP did not directly protect DNA against oxidative damage in vitro and acted as a pro-oxidant by stimulating the production of hydroxyl radical in the Fenton reaction. It is thus suggested that accumulation of poly P and rpoS induction cannot compensate for the lack of cytosolic SODs for survival in stationary phase.  相似文献   

4.
A potassium transport mutant of Escherichia coli is described which is deficient in the intake of potassium. The phenotype of this mutant is characterized by (i) failure to grow in K(+)-deficient medium, (ii) failure to accumulate K(+) in K(+)-deficient medium, (iii) a steady-state intracellular K(+) that varies sigmoidally with the medium K(+) concentration, (iv) a signoidally shaped rate-concentration curve and a curved reciprocal plot for net K(+) uptake kinetics, and (v) a low steady-state flux of potassium associated with a reduced influx rate constant. The data are discussed in terms of the present day models of cation transport. These models have led to four possible explanations of the mutant's phenotype: (i) a selectivity reversal such that intracellular cation binding sites bind another cation instead of K(+); (ii) a structural alteration of cation binding cell proteins so that K(+) is bound by "cooperative binding" (sigmoid isotherm) instead of by simple adsorption (hyperbolic isotherm); (iii) conversion of an enzyme in intermediate metabolism that rate-limits K(+) uptake to an allosteric protein; (iv) conversion of the "carrier protein" for K(+) to an allosteric protein.  相似文献   

5.
The biological process for phosphate (Pi) removal is based on the use of bacteria capable of accumulating inorganic polyphosphate (polyP). We obtained Escherichia coli mutants which accumulate a large amount of polyP. The polyP accumulation in these mutants was ascribed to a mutation of the phoU gene that encodes a negative regulator of the Pi regulon. Insertional inactivation of the phoU gene also elevated the intracellular level of polyP in Synechocystis sp. strain PCC6803. The mutant could remove fourfold more Pi from the medium than the wild-type strain removed.  相似文献   

6.
Gluconate Metabolism in Escherichia coli   总被引:26,自引:20,他引:6       下载免费PDF全文
On the basis of information available in the literature, gluconate dissimilation in Escherichia coli is thought to occur via the hexose monophosphate pathway. Evidence is presented in this study that gluconate is catabolized in this organism via an inducible Entner-Doudoroff pathway. This evidence is based on chromatographic examination of end products produced from (14)C-labeled gluconate or glucose, distribution of (14)C in the carbon atoms of pyruvate formed from specifically labeled (14)C-glucose and (14)C-gluconate, and the ability of cell-free extracts to produce pyruvate from 6-phosphogluconate. Degradation of gluconate by an Entner-Doudoroff pathway occurred simultaneously with a glycolytic cleavage of glucose. A relationship between gluconate-induced, Entner-Doudoroff pathway activity and catabolism of glucose in Escherichia coli and other bacterial species is discussed.  相似文献   

7.
S-Methylmethionine Metabolism in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
Selenium-accumulating Astragalus spp. contain an enzyme which specifically transfers a methyl group from S-methylmethionine to the selenol of selenocysteine, thus converting it to a nontoxic, since nonproteinogenic, amino acid. Analysis of the amino acid sequence of this enzyme revealed that Escherichia coli possesses a protein (YagD) which shares high sequence similarity with the enzyme. The properties and physiological role of YagD were investigated. YagD is an S-methylmethionine: homocysteine methyltransferase which also accepts selenohomocysteine as a substrate. Mutants in yagD which also possess defects in metE and metH are unable to utilize S-methylmethionine for growth, whereas a metE metH double mutant still grows on S-methylmethionine. Upstream of yagD and overlapping with its reading frame is a gene (ykfD) which, when inactivated, also blocks growth on methylmethionine in a metE metH genetic background. Since it displays sequence similarities with amino acid permeases it appears to be the transporter for S-methylmethionine. Methionine but not S-methylmethionine in the medium reduces the amount of yagD protein. This and the existence of four MET box motifs upstream of yfkD indicate that the two genes are members of the methionine regulon. The physiological roles of the ykfD and yagD products appear to reside in the acquisition of S-methylmethionine, which is an abundant plant product, and its utilization for methionine biosynthesis.  相似文献   

8.
We found that Escherichia coli grown in media with >37 mM phosphate maintained a high polyphosphate level in late stationary phase, which could account for changes in gene expression and enzyme activities that enhance stationary-phase fitness.Polyphosphate (poly-P) is a long-chain polymer composed of many orthophosphates linked together by high-energy ATP-like bonds. Studied mainly in prokaryotes, poly-P plays an important role as an energy source, as a regulator of gene expression, as a store of inorganic phosphate, and as a chelator of heavy metals (8, 10). The main enzymes associated with poly-P metabolism in bacteria are the polyphosphate kinase (PPK, encoded by ppk) and the exopolyphosphatase (PPX, encoded by ppx) (1, 2). The ppk ppx double mutant exhibits greatly reduced synthesis of poly-P, is deficient in stationary-phase functions, and lacks resistance to different stresses (6, 17).Previously, we found that expression of several respiratory (ndh, sdhC, ubiC, nuoAB, and cydA) and defense (katG and ahpC) genes was maintained in late stationary phase when the medium''s phosphate concentration was above 37 mM (24, 25). Furthermore, Escherichia coli cells grown in medium containing this critical phosphate concentration had high viability, low oxidative damage, and elevated resistance to external H2O2 stress in late stationary phase (25).We examined the relationship between the medium''s phosphate concentration and intracellular poly-P levels in the wild-type and ppk ppx mutant strains to see if the previously observed effects on gene expression, enzyme activity, and tolerance to H2O2 were correlated with elevated poly-P levels.  相似文献   

9.
The reversion behavior of pleiotropic carbohydrate mutants, previously designated as ctr, was studied. The mutants revert to complete restoration of the wild-type phenotype, as well as to a spectrum of partial wild-type phenotypes. Lac+ reversions were found in the lac region (11 min) and some Mal+ reversions occurred at malB (79 min), at a distance from the site of the ctr mutations (46 to 47 min). About one-third of Lac+ and Mal+ revertants were constitutive for uptake of their respective substrates, and one-third modified for inducibility. The remaining third were not distinguishable from wild type. Induction of a ctr mutation in a lac constitutive strain, either operator or repressor mutant, did not affect lactose metabolism. A polar-like ctr mutant, deficient in both enzyme I and heat-stable protein of the phosphoenolpyruvate-dependent phosphotransferase strain was also described. Partial revertants of ctr were still found to lack enzyme I.  相似文献   

10.
Exopolyphosphatase of Escherichia coli (PPX) is a highly processive enzyme demonstrating the ability to recognize polyphosphates of specific lengths. The mechanisms responsible for the processivity and polymer length recognition of the enzyme were investigated in relation to the manner in which polyphosphate is bound to the enzyme. Multiple polyphosphate binding sites were identified on distant portions of the enzyme and were determined to be responsible for the polymer length recognition of the enzyme. In addition, two independently folded domains were identified. The N-terminal domain contained a quasi-processive polyphosphatase active site belonging to the sugar kinase/actin/hsp70 superfamily. The C-terminal domain contained a single polyphosphate binding site and was responsible for nearly all of the PPX affinity for polyphosphate. This domain was also found to confer a highly processive mode of action to PPX. Collectively, these results were used to describe the interaction of polyphosphate with PPX.  相似文献   

11.
Accumulation of Tetracyclines by Escherichia coli   总被引:10,自引:1,他引:9       下载免费PDF全文
The net accumulation of tetracyclines by Escherichia coli as a function of concentration was shown to be biphasic. At concentrations less than the bacteriostatic levels, the mode of uptake was not azide-sensitive and was considered to be physical adsorption on the cell surface. At concentrations above the minimal inhibitory level, a second, azide-sensitive, uptake component was functional in addition to the surface adsorption process. This second energy-requiring mode was judged to represent penetration of the cytoplasmic membrane by tetracycline molecules to their sites of inhibitory action. Each mode for a given tetracycline and culture is expressed algebraically by a characteristic Freundlich equation. Resistance in E. coli is shown to be a result of diminished transport of antibiotic. However, this resistance was due not to a reduction or loss of a transport mechanism but rather to a requirement for higher antibiotic concentrations before the second mode of uptake could become operative.  相似文献   

12.
Cells of a newly isolated environmental strain of Candida humicola accumulated 10-fold more polyphosphate (polyP), during active growth, when grown in complete glucose-mineral salts medium at pH 5.5 than when grown at pH 7.5. Neither phosphate starvation, nutrient limitation, nor anaerobiosis was required to induce polyP formation. An increase in intracellular polyP was accompanied by a 4.5-fold increase in phosphate uptake from the medium and sixfold-higher levels of cellular polyphosphate kinase activity. This novel accumulation of polyP by C. humicola G-1 in response to acid pH provides further evidence as to the importance of polyP in the physiological adaptation of microbial cells during growth and development and in their response to environmental stresses.  相似文献   

13.
Mutations Affecting Gluconate Metabolism in Escherichia coli   总被引:2,自引:6,他引:2       下载免费PDF全文
A mutant of Escherichia coli K-12 that does not ferment gluconate on fermentation plates was isolated and characterized. This mutant, designated M2, shows a long lag for growth on gluconate mineral medium and somewhat reduced levels of high-affinity transport, gluconokinase, and gluconate-6-P dehydrase activities in the log phase of growth. The mutation involved is near malA. Deletion mutants in which malA region was affected were also studied. They were found to affect the function of different genes involved in gluconate metabolism.  相似文献   

14.
4-N-hydroxy-cytidine was found to substitute for uridine as a pyrimidine supplement for the growth of Escherichia coli Bu. Measurement of the incorporation of 4-N-hydroxy-cytidine-2-14C into ribonucleic acid and deoxyribonucleic acid revealed that this compound was converted to cytidine or uridine before utilization. Two pathways for metabolism were considered: (i) the reduction of 4-N-hydroxy-cytidine to cytidine followed by deamination, (ii) the direct hydrolysis of hydroxylamine from 4-N-hydroxy-cytidine to yield uridine. A threefold increase in cytidine (deoxycytidine) deaminase (EC 3.5.4.5) activity, when the cells were grown on 4-N-hydroxy-cytidine, suggested the involvement of this enzyme. More direct proof was obtained by purifying the deaminase 185-fold and finding that it released hydroxylamine from 4-N-hydroxy-cytidine at one-fiftieth the rate at which ammonia was removed from cytidine. This result is consistent with the slower rate of growth of the Bu cells on 4-N-hydroxy-cytidine than cytidine and suggests that the second pathway is the major route for utilization of this compound.  相似文献   

15.
Metabolism of guanosine tetraphosphate in Escherichia coli   总被引:21,自引:0,他引:21  
  相似文献   

16.
17.
海藻糖是一种重要的抗逆物质。大肠杆菌中otsBA操纵子编码的两种酶负责海藻糖合成。otsBA基因的表达受渗透压诱导和σs因子的调节。细胞的周质海藻糖酶(treA)将外源海藻糖分解成两个葡萄糖分子。尽管大肠杆菌中渗透压诱导合成的海藻糖并不能保护细胞抗干燥,我们将otsA单个基因通过农杆菌转入烟草时,转基因株提高了耐盐和抗干燥特性,同时在转基因烟草提取物中检测到海藻糖,证明otsA基因在烟草中表达并合成海藻糖。我们认为若将otsA基因转入其它植物,可望改善这些植物的抗干旱、耐盐碱特性和延长采摘后的保鲜期 。  相似文献   

18.
ABSTRACT:?

The idea that plasmids replicate within hosts at the expense of cell metabolic energy and preformed cellular blocks depicts plasmids as a kind of molecular parasites that, even when they may eventually provide plasmid-carrying strains with growth advantages over plasmid-free strains, doom hosts to bear an unavoidable metabolic burden. Due to the consistency with experimental data, this idea was rapidly adopted and used as a basis of different hypotheses to explain plasmid-host interactions. In this article we critically discuss current ideas about plasmid effects on host metabolism, and present evidence suggesting that the complex interaction between plasmids and hosts is related to the alteration of the cellular regulatory status.  相似文献   

19.
Polyphosphate kinase is a component of the Escherichia coli RNA degradosome   总被引:2,自引:6,他引:2  
Xer site-specific recombination functions in the stable inheritance of circular plasmids and bacterial chromosomes. Two related recombinases, XerC and XerD, mediate this recombination, which 'undoes' the potential damage of homologous recombination. Xer recombination on natural plasmid sites is preferentially intramolecular, converting plasmid multimers to monomers. In contrast, recombination at the Escherichia coli recombination site, dif , occurs both intermolecularly and intramolecularly, at least when dif is inserted into a multicopy plasmid. Here the DNA sequence features of a family of core recombination sites in which the XerC- and XerD-binding sites, which are separated by 6 bp, were analysed in order to ascertain what determines whether recombination will be preferentially intramolecular, or will occur both within and between molecules. Sequence changes in either the XerC- or XerD-binding site can alter the recombination outcome. Preferential intramolecular recombination between a pair of recombination sites requires additional accessory DNA sequences and accessory recombination proteins and is correlated with reduced affinities of recombinase binding to recombination core sites, reduced XerC-mediated cleavage in vitro , and an apparent increased overall bending in recombinase–core-site complexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号