首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the airways of cystic fibrosis (CF) patients and undergoes a process of genetic adaptation based on mutagenesis. We evaluated the role of mononucleotide G:C and A:T simple sequence repeats (SSRs) in this adaptive process. An in silico survey of the genome sequences of 7 P. aeruginosa strains showed that mononucleotide G:C SSRs but not A:T SSRs were greatly under-represented in coding regions, suggesting a strong counterselection process for G:C SSRs with lengths >5 bp but not for A:T SSRs. A meta-analysis of published whole genome sequence data for a P. aeruginosa strain from a CF patient with chronic airway infection showed that G:C SSRs but not A:T SSRs were frequently mutated during the infection process through the insertion or deletion of one or more SSR subunits. The mutation tendency of G:C SSRs was length-dependent and increased exponentially as a function of SSR length. When this strain naturally became a stable Mismatch Repair System (MRS)-deficient mutator, the degree of increase of G:C SSRs mutations (5-fold) was much higher than that of other types of mutation (2.2-fold or less). Sequence analysis of several mutated genes reported for two different collections, both containing mutator and non-mutator strains of P. aeruginosa from CF chronic infections, showed that the proportion of G:C SSR mutations was significantly higher in mutators than in non-mutators, whereas no such difference was observed for A:T SSR mutations. Our findings, taken together, provide genome-scale evidences that under a MRS-deficient background, long G:C SSRs are able to stochastically bias mutagenic pathways by making the genes in which they are harbored more prone to mutation. The combination of MRS deficiency and virulence-related genes that contain long G:C SSRs is therefore a matter of concern in P. aeruginosa CF chronic infection.  相似文献   

2.
Pseudomonas aeruginosa is a Gram-negative, environmental bacterium with versatile metabolic capabilities. P. aeruginosa is an opportunistic bacterial pathogen which establishes chronic pulmonary infections in patients with cystic fibrosis (CF). The overproduction of a capsular polysaccharide called alginate, also known as mucoidy, promotes the formation of mucoid biofilms which are more resistant than planktonic cells to antibiotic chemotherapy and host defenses. Additionally, the conversion from the nonmucoid to mucoid phenotype is a clinical marker for the onset of chronic infection in CF. Alginate overproduction by P. aeruginosa is an endergonic process which heavily taxes cellular energy. Therefore, alginate production is highly regulated in P. aeruginosa. To better understand alginate regulation, we describe a protocol using the mini-himar1 transposon mutagenesis for the identification of novel alginate regulators in a prototypic strain PAO1. The procedure consists of two basic steps. First, we transferred the mini-himar1 transposon (pFAC) from host E. coli SM10/λpir into recipient P. aeruginosa PAO1 via biparental conjugation to create a high-density insertion mutant library, which were selected on Pseudomonas isolation agar plates supplemented with gentamycin. Secondly, we screened and isolated the mucoid colonies to map the insertion site through inverse PCR using DNA primers pointing outward from the gentamycin cassette and DNA sequencing. Using this protocol, we have identified two novel alginate regulators, mucE (PA4033) and kinB (PA5484), in strain PAO1 with a wild-type mucA encoding the anti-sigma factor MucA for the master alginate regulator AlgU (AlgT, σ22). This high-throughput mutagenesis protocol can be modified for the identification of other virulence-related genes causing change in colony morphology.  相似文献   

3.
Survival of Pseudomonas aeruginosa in cystic fibrosis (CF) chronic infections is based on a genetic adaptation process consisting of mutations in specific genes, which can produce advantageous phenotypic switches and ensure its persistence in the lung. Among these, mutations inactivating the regulators MucA (alginate biosynthesis), LasR (quorum sensing) and MexZ (multidrug-efflux pump MexXY) are the most frequently observed, with those inactivating the DNA mismatch repair system (MRS) being also highly prevalent in P. aeruginosa CF isolates, leading to hypermutator phenotypes that could contribute to this adaptive mutagenesis by virtue of an increased mutation rate. Here, we characterized the mutations found in the mucA, lasR, mexZ and MRS genes in P. aeruginosa isolates obtained from Argentinean CF patients, and analyzed the potential association of mucA, lasR and mexZ mutagenesis with MRS-deficiency and antibiotic resistance. Thus, 38 isolates from 26 chronically infected CF patients were characterized for their phenotypic traits, PFGE genotypic patterns, mutations in the mucA, lasR, mexZ, mutS and mutL gene coding sequences and antibiotic resistance profiles. The most frequently mutated gene was mexZ (79%), followed by mucA (63%) and lasR (39%) as well as a high prevalence (42%) of hypermutators being observed due to loss-of-function mutations in mutL (60%) followed by mutS (40%). Interestingly, mutational spectra were particular to each gene, suggesting that several mechanisms are responsible for mutations during chronic infection. However, no link could be established between hypermutability and mutagenesis in mucA, lasR and mexZ, indicating that MRS-deficiency was not involved in the acquisition of these mutations. Finally, although inactivation of mucA, lasR and mexZ has been previously shown to confer resistance/tolerance to antibiotics, only mutations in MRS genes could be related to an antibiotic resistance increase. These results help to unravel the mutational dynamics that lead to the adaptation of P. aeruginosa to the CF lung.  相似文献   

4.
5.
Acquisition of adaptive mutations is essential for microbial persistence during chronic infections. This is particularly evident during chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients. Thus far, mutagenesis has been attributed to the generation of reactive species by polymorphonucleocytes (PMN) and antibiotic treatment. However, our current studies of mutagenesis leading to P. aeruginosa mucoid conversion have revealed a potential new mutagen. Our findings confirmed the current view that reactive oxygen species can promote mucoidy in vitro, but revealed PMNs are proficient at inducing mucoid conversion in the absence of an oxidative burst. This led to the discovery that cationic antimicrobial peptides can be mutagenic and promote mucoidy. Of specific interest was the human cathelicidin LL-37, canonically known to disrupt bacterial membranes leading to cell death. An alternative role was revealed at sub-inhibitory concentrations, where LL-37 was found to induce mutations within the mucA gene encoding a negative regulator of mucoidy and to promote rifampin resistance in both P. aeruginosa and Escherichia coli. The mechanism of mutagenesis was found to be dependent upon sub-inhibitory concentrations of LL-37 entering the bacterial cytosol and binding to DNA. LL-37/DNA interactions then promote translesion DNA synthesis by the polymerase DinB, whose error-prone replication potentiates the mutations. A model of LL-37 bound to DNA was generated, which reveals amino termini α-helices of dimerized LL-37 bind the major groove of DNA, with numerous DNA contacts made by LL-37 basic residues. This demonstrates a mutagenic role for antimicrobials previously thought to be insusceptible to resistance by mutation, highlighting a need to further investigate their role in evolution and pathoadaptation in chronic infections.  相似文献   

6.
7.
8.
A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and ς22) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU-lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment.  相似文献   

9.
The effects of co-evolution with lytic phage on bacterial virulence-related traits are largely unknown. In this study we investigate the incidence of the mucoid phenotype of the bacterium Pseudomonas fluorescens SBW25 in response to co-evolution with the lytic phage phi2 (φ2). The mucoid phenotype of Pseudomonas spp. is due to overproduction of alginate and is a considerable virulence factor contributing to the intractability of infections most notably in cystic fibrosis (CF) lung, but also in pathogenic infections of plants. Our data show that this phenotype can evolve as an adaptive response to phage predation and is favoured under specific abiotic conditions, in particular a homogenous spatial structure and a high rate of nutrient replacement. The mucoid phenotype remains partially sensitive to phage infection, which facilitates ‘apparent competition'' with phage-sensitive competitors, partially offsetting the costs of alginate production. Although P. fluorescens SBW25 is not a pathogen, several key characteristics typical of Pseudomonas aeruginosa clinical isolates from CF lung were noted, including loss of motility on mucoid conversion and a high rate of spontaneous reversion to the wild-type phenotype. Although the genetic mechanisms of this phenotype remain unknown, they do not include mutations at many of the commonly reported loci implicated in mucoid conversion, including mucA and algU. These data not only further our understanding of the potential role phage have in the ecology and evolution of bacteria virulence in both natural and clinical settings, but also highlight the need to consider both biotic and abiotic variables if bacteriophages are to be used therapeutically.  相似文献   

10.
Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for flavodoxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments.  相似文献   

11.
12.
A microsatellite (simple sequence repeat; SSR) panel for Cryptomeria japonica was established, using both newly developed and previously reported markers, to construct a frame of linkage map and facilitate localization of important genes in this species. In this study, 32 new expressed sequence tag SSRs (EST-SSRs) and 12 new genomic SSRs (gSSRs) were developed. Their average polymorphism information content (PIC) values were 0.549 and 0.776, respectively. The markers were mapped onto a high-density linkage map. The SSR panel that was established to cover the genome consisted of 46 gSSRs and 47 EST-SSRs. The number of SSR markers in each linkage group, the average map distance between loci within a linkage group, and the average PIC values in each linkage group ranged from 6 to 13, 6.77 to 19.88 and 0.475 to 0.712, respectively. The utility of the SSR panel was tested by using it to localize a male-sterile gene, ms-2. The ms-2 locus was successfully localized on the linkage group 5 using 33 SSR markers (three SSRs per linkage group) which were selected from the SSR panel based on the existence of polymorphisms and the absence of null alleles in the mapping population for ms-2. A partial linkage map surrounding the ms-2 locus was then constructed using a further 57 single nucleotide polymorphisms and three SSRs, to facilitate future development of markers tightly linked to the ms-2 locus for use in marker-assisted selection. The SSR panel covering the C. japonica genome will allow researchers to localize important genes efficiently.  相似文献   

13.
Summary The mucAB operon carried on plasmid pKM101, which is an analogue of the umuDC operon of Escherichia coli, is involved in UV mutagenesis and mutagenesis induced by many chemicals. Mutagenesis dependent on either the umuDC or mucAB operon requires the function of the recA gene and is called SOS mutagenesis. By treating the cell with agents that damage DNA, RecA protein is activated by conversion into a form (RecA*) that mediates proteolytic cleavage of the LexA repressor and derepresses the SOS genes including mucAB. Since UmuD protein is proteolytically processed to an active form (UmuD*) in a RecA*-dependent fashion, and MucA shares extensive amino acid homology with UmuD, we examined whether MucA is similarly processed in the cell, using antiserum against a LacZ-MucA fusion protein. Like UmuD, MucA protein is indeed proteolytically processed in a RecA*-dependent fashion. In recA430 strains, MucAB but not UmuDC can mediate UV mutagenesis. However, MucA was not processed in the recA430 cells treated with mitomycin C. We constructed, by site-directed mutagenesis, several mutant mucA genes that encode MucA proteins with alterations in the amino acids flanking the putative cleavage site (Ala25-Gly26). MucA(Cys25) was processed and was as mutagenically active as wild-type MucA; MucA(Asp26) and MucA(Cys25,Asp26) were not processed, and were mutagenically inactive; MucA-(Thr25) was not processed, but was mutagenically as active as wild-type MucA. The mutant mucA gene that encoded the putative cleavage product of MucA was as active as mucA + in UV mutagenesis. These results raise the possibility that both the nascent MucA and the processed product are active in mutagenesis.  相似文献   

14.
Pseudomonas aeruginosa mucoid strains as well as mutants defective in pili, flagella, lipopolysaccharide, and proteases were isolated and tested for their virulence for the larvae of Galleria mellonella. Of all of the mutants, only the lipopolysaccharide-deficient (rough) strain showed a major decrease in virulence when compared to the wild type. The LD50 of the rough strain was about 30,000 bacteria/larva or roughly 10,000-fold higher than the wild type, suggesting an important role for the lipopolysaccharide in P. aeruginosa infections of G. mellonella larvae.  相似文献   

15.
The conversion of O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin to aflatoxins B1, G1, B2, and G2 requires a cytochrome P-450 type of oxidoreductase activity. ordA, a gene adjacent to the omtA gene, was identified in the aflatoxin-biosynthetic pathway gene cluster by chromosomal walking in Aspergillus parasiticus. The ordA gene was a homolog of the Aspergillus flavus ord1 gene, which is involved in the conversion of OMST to aflatoxin B1. Complementation of A. parasiticus SRRC 2043, an OMST-accumulating strain, with the ordA gene restored the ability to produce aflatoxins B1, G1, B2, and G2. The ordA gene placed under the control of the GAL1 promoter converted exogenously supplied OMST to aflatoxin B1 in Saccharomyces cerevisiae. In contrast, the ordA gene homolog in A. parasiticus SRRC 2043, ordA1, was not able to carry out the same conversion in the yeast system. Sequence analysis revealed that the ordA1 gene had three point mutations which resulted in three amino acid changes (His-400→Leu-400, Ala-143→Ser-143, and Ile-528→Tyr-528). Site-directed mutagenesis studies showed that the change of His-400 to Leu-400 resulted in a loss of the monooxygenase activity and that Ala-143 played a significant role in the catalytic conversion. In contrast, Ile-528 was not associated with the enzymatic activity. The involvement of the ordA gene in the synthesis of aflatoxins G1, and G2 in A. parasiticus suggests that enzymes required for the formation of aflatoxins G1 and G2 are not present in A. flavus. The results showed that in addition to the conserved heme-binding and redox reaction domains encoded by ordA, other seemingly domain-unrelated amino acid residues are critical for cytochrome P-450 catalytic activity. The ordA gene has been assigned to a new cytochrome P-450 gene family named CYP64 by The Cytochrome P450 Nomenclature Committee.  相似文献   

16.
We investigated the relationship between the outer membrane protein OprD2 and carbapenem-resistance in 141 clinical isolates of Pseudomonas aeruginosa collected between January and December 2013 from the First Affiliated Hospital of Anhui Medical University in China. Agar dilution methods were employed to determine the minimum inhibitory concentration of meropenem (MEM) and imipenem (IMP) for P. aeruginosa. The gene encoding OprD2 was amplified from141 P. aeruginosa isolates and analyzed by PCR and DNA sequencing. Differences between the effects of IMPR and IMPS groups on the resistance of the P. aeruginosa were observed by SDS-poly acrylamide gel electrophoresis (SDS-PAGE). Three resistance types were classified in the 141 carbapenem-resistant P. aeruginosa (CRPA) isolates tested, namely IMPRMEMR (66.7%), IMPRMEMS (32.6%), and IMPRMEMS (0.7%). DNA sequencing revealed significant diverse gene mutations in the OprD2-encoding gene in these strains. Thirty-four strains had large fragment deletions in the OprD2gene, in 6 strains the gene contained fragment inserts, and in 96 resistant strains, the gene featured small fragment deletions or multi-site mutations. Only 4 metallo-β-lactamase strains and 1 imipenem-sensitive (meropenem-resistant) strain showed a normal OprD2 gene. Using SDS-PAGE to detect the outer membrane protein in 16 CRPA isolates, it was found that 10 IMPRMEMR strains and 5 IMPRMEMS strains had lost the OprD2 protein, while the IMPSMEMR strain contained a normal 46-kDa protein. In conclusion, mutation or loss of the OprD2-encoding gene caused the loss of OprD2, which further led to carbapenem-resistance of P. aeruginosa. Our findings provide insights into the mechanism of carbapenem resistance in P. aeruginosa.  相似文献   

17.
Pseudomonas aeruginosa is a major pathogen causing chronic pulmonary infections; for example, 80% of cystic fibrosis patients get infected by this bacterium as the disease progresses. Such chronic infections are challenging because P. aeruginosa exhibits high-level tolerance to antibiotics by forming biofilms (multicellular structures attached to surfaces), by entering dormancy and forming antibiotic tolerant persister cells, and by conversion to the mucoid phenotype. Recently, we reported that a synthetic quorum sensing inhibitor, (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8), can sensitize both planktonic and biofilm-associated persister cells of P. aeruginosa PAO1 to antibiotics at the concentrations non-inhibitory to its growth. In this study, we further characterized the effects of this compound on the mucoid strain P. aeruginosa PDO300. BF8 was found to reduce persistence during the growth of PDO300 and effectively kill the persister cells isolated from PDO300 cultures. In addition to planktonic cells, BF8 was also found to inhibit biofilm formation of PDO300 and reduce associated persistence. These findings broaden the activities of this class of compounds and indicate that BF8 also has other targets in P. aeruginosa in addition to quorum sensing.  相似文献   

18.
Recent studies have reported the isolation of highly mucoid serotype 3 Streptococcus pneumoniae (Sp) from the respiratory tracts of children with cystic fibrosis (CF). Whether these highly mucoid Sp contribute to, or are associated with, respiratory failure among patients with CF remains unknown. Other mucoid bacteria, predominately Pseudomonas aeruginosa, are associated with CF respiratory decline. We used a mouse model of CF to study pneumococcal pneumonia with highly mucoid serotype 3 and non-mucoid serotype 19A Sp isolates. We investigated susceptibility to infection, survival, and bacterial counts from bronchoaviolar lavage samples and lung homogenates, as well as associated inflammatory cytokines at the site of infection, and lung pathology. Congenic CFTR–/– mice and wild-type (WT)-mice were infected intranasally with CHB756, CHB1126, and WU2 (highly mucoid capsular serotype 3, intermediately mucoid serotype 3, and less mucoid serotype 3, respectively), or CHB1058 (non-mucoid serotype 19A). BAL, lung homogenates, and blood were collected from mice 5 days post-infection. Higher CFU recovery and shorter survival were observed following infection of CFTR–/– mice with CHB756 compared to infection with CHB1126, WU2, or CHB1058 (P≤0.001). Additionally, CFTR–/– mice infected with CHB756 and CHB1126 were more susceptible to infection than WT-mice (P≤0.05). Between CFTR–/– mice and WT-mice, no significant differences in TNF-α, CXCL1/KC concentrations, or lung histopathology were observed. Our results indicate that highly mucoid type 3 Sp causes more severe lung disease than non-mucoid Sp, and does so more readily in the lungs of CFTR–/– than WT-mice.  相似文献   

19.
Simple sequence repeats (SSRs) or microsatellites are one of the most popular sources of genetic markers and play a significant role in gene function and genome organization. We identified SSRs in the genome of Ganoderma lucidum and analyzed their frequency and distribution in different genomic regions. We also compared the SSRs in G. lucidum with six other Agaricomycetes genomes: Coprinopsis cinerea, Laccaria bicolor, Phanerochaete chrysosporium, Postia placenta, Schizophyllum commune and Serpula lacrymans. Based on our search criteria, the total number of SSRs found ranged from 1206 to 6104 and covered from 0.04% to 0.15% of the fungal genomes. The SSR abundance was not correlated with the genome size, and mono- to tri-nucleotide repeats outnumbered other SSR categories in all of the species examined. In G. lucidum, a repertoire of 2674 SSRs was detected, with mono-nucleotides being the most abundant. SSRs were found in all genomic regions and were more abundant in non-coding regions than coding regions. The highest SSR relative abundance was found in introns (108 SSRs/Mb), followed by intergenic regions (84 SSRs/Mb). A total of 684 SSRs were found in the protein-coding sequences (CDSs) of 588 gene models, with 81.4% of them being tri- or hexa-nucleotides. After scanning for InterPro domains, 280 of these genes were successfully annotated, and 215 of them could be assigned to Gene Ontology (GO) terms. SSRs were also identified in 28 bioactive compound synthesis-related gene models, including one 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), three polysaccharide biosynthesis genes and 24 cytochrome P450 monooxygenases (CYPs). Primers were designed for the identified SSR loci, providing the basis for the future development of SSR markers of this medicinal fungus.  相似文献   

20.
Pseudomonas aeruginosa is the predominant microorganism in chronic lung infection of cystic fibrosis patients. The chronic lung infection is preceded by intermittent colonization. When the chronic infection becomes established, it is well accepted that the isolated strains differ phenotypically from the intermittent strains. Dominating changes are the switch to mucoidity (alginate overproduction) and loss of epigenetic regulation of virulence such as the Quorum Sensing (QS). To elucidate the dynamics of P. aeruginosa QS systems during long term infection of the CF lung, we have investigated 238 isolates obtained from 152 CF patients at different stages of infection ranging from intermittent to late chronic. Isolates were characterized with regard to QS signal molecules, alginate, rhamnolipid and elastase production and mutant frequency. The genetic basis for change in QS regulation were investigated and identified by sequence analysis of lasR, rhlR, lasI and rhlI. The first QS system to be lost was the one encoded by las system 12 years (median value) after the onset of the lung infection with subsequent loss of the rhl encoded system after 17 years (median value) shown as deficiencies in production of the 3-oxo-C12-HSL and C4-HSL QS signal molecules respectively. The concomitant development of QS malfunction significantly correlated with the reduced production of rhamnolipids and elastase and with the occurrence of mutations in the regulatory genes lasR and rhlR. Accumulation of mutations in both lasR and rhlR correlated with development of hypermutability. Interestingly, a higher number of mucoid isolates were found to produce C4-HSL signal molecules and rhamnolipids compared to the non-mucoid isolates. As seen from the present data, we can conclude that P. aeruginosa and particularly the mucoid strains do not lose the QS regulation or the ability to produce rhamnolipids until the late stage of the chronic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号