首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With 2.5 billion people at risk, dengue is a major emerging disease threat and an escalating public health problem worldwide. Dengue virus causes disease ranging from a self-limiting febrile illness (dengue fever) to the potentially fatal dengue hemorrhagic fever/dengue shock syndrome. Severe dengue disease is associated with sub-protective levels of antibody, which exacerbate disease upon re-infection. A dengue vaccine should generate protective immunity without increasing severity of disease. To date, the determinants of vaccine-mediated protection against dengue remain unclear, and additional correlates of protection are urgently needed. Here, mice were immunized with viral replicon particles expressing the dengue envelope protein ectodomain to assess the relative contribution of humoral versus cellular immunity to protection. Vaccination with viral replicon particles provided robust protection against dengue challenge. Vaccine-induced humoral responses had the potential to either protect from or exacerbate dengue disease upon challenge, whereas cellular immune responses were beneficial. This study explores the immunological basis of protection induced by a dengue vaccine and suggests that a safe and efficient vaccine against dengue should trigger both arms of the immune system.  相似文献   

2.
Adult rhesus monkeys (Macaca mulata) were vaccinated with four inactivated rabies vaccines, including two cell culture vaccines, one zonal purified cell culture vaccine, and a 10% extracted duck embryo vaccine. The vaccines were potency tested by both National Institutes of Health (NIH) and Habel methods and passed one or both tests. However, a vaccine having acceptable potency by one method frequently failed or was marginal by the other procedure. Groups of three monkeys were inoculated with each vaccine by one of two schedules. The first consisted of four weekly 1-ml doses followed by a 1-ml booster dose at 6 months, and the second consisted of seven daily 1-ml doses of vaccine with no booster. Both zonal purified and extracted duck embryo vaccines induced detectable neutralizing antibody by day 7 with either schedule, and antibody titers elicited by the cell culture vaccine remained high through 210 days. However, antibody titers produced by the 10% duck embryo vaccine dropped sharply after their 28-day peak. Duck embryo cell culture vaccines with low or marginal potency as measured by Habel or NIH tests still produced rapid, high levels of serum-neutralizing antibody in primates. LD(50) or NIH and Habel tests as measured in mice were not necessarily good indices of antibody response in the primate host. The need for a cell culture potency test that will yield a more predictable correlation with the definitive host's antibody response is discussed.  相似文献   

3.
本实验室构建的疟疾DNA疫苗经动物试验表明具有很好的免疫原性,为申请临床试验,进行了制备工艺的研究。本研究将含pcD-awte质粒的大肠杆菌DH5α在发酵罐中发酵培养,碱裂解法粗提质粒,再依次通过Sepharose 6FF分子筛层析、Plasmidselect 亲硫吸附层析和Source 30Q离子交换层析精制获得质粒纯品,并对纯品进行质量分析。结果每升培养液可获得质粒纯品43.9mg,质量符合Ferreira等推荐的药用标准。  相似文献   

4.
The Plasmodium falciparum circumsporozoite protein (CSP) is critical for sporozoite function and invasion of hepatocytes. Given its critical nature, a phase III human CSP malaria vaccine trial is ongoing. The CSP is composed of three regions as follows: an N terminus that binds heparin sulfate proteoglycans, a four amino acid repeat region (NANP), and a C terminus that contains a thrombospondin-like type I repeat (TSR) domain. Despite the importance of CSP, little is known about its structure. Therefore, recombinant forms of CSP were produced by expression in both Escherichia coli (Ec) and then refolded (EcCSP) or in the methylotrophic yeast Pichia pastoris (PpCSP) for structural analyses. To analyze the TSR domain of recombinant CSP, conformation-dependent monoclonal antibodies that recognized unfixed P. falciparum sporozoites and inhibited sporozoite invasion of HepG2 cells in vitro were identified. These monoclonal antibodies recognized all recombinant CSPs, indicating the recombinant CSPs contain a properly folded TSR domain structure. Characterization of both EcCSP and PpCSP by dynamic light scattering and velocity sedimentation demonstrated that both forms of CSP appeared as highly extended proteins (Rh 4.2 and 4.58 nm, respectively). Furthermore, high resolution atomic force microscopy revealed flexible, rod-like structures with a ribbon-like appearance. Using this information, we modeled the NANP repeat and TSR domain of CSP. Consistent with the biochemical and biophysical results, the repeat region formed a rod-like structure about 21–25 nm in length and 1.5 nm in width. Thus native CSP appears as a glycosylphosphatidylinositol-anchored, flexible rod-like protein on the sporozoite surface.Malaria caused by Plasmodium falciparum is a serious global health issue, resulting in an estimated 1.5 million deaths annually, primarily among infants and young children. Ongoing multifaceted global intervention strategies to control malaria include drug treatment, insecticide usage, bed-net use, and vaccine development. However, parasite and mosquito control measures have met with limited success resulting from an increased drug and insecticide resistance within the Plasmodia and mosquito populations, respectively. Vaccine development represents an encouraging approach given that previous animal and human studies using irradiated sporozoites demonstrated the feasibility of producing an efficacious vaccine (13). Although the exact immunologic correlates of protection remain elusive, an abundance of evidence indicates that protection against liver stage parasites is complex, involving multiple immune mechanisms (411).To date, the majority of the pre-erythrocytic stage vaccine development has focused on the circumsporozoite protein (CSP),2 the predominant surface antigen on sporozoites. CSP can be segmented into three regions as follows: the N-terminal region containing region I; the central repeat region; and the C-terminal region containing the thrombospondin-like type I repeat (TSR). Initial CSP vaccine development focused on the central repeat region that contains the immunodominant B cell epitope (12). However, vaccine constructs quickly evolved to incorporate both the central repeat region containing the B cell epitopes and the C terminus containing the TSR domain, T cell epitopes, and B cell epitopes (13, 14). Currently, the most advanced and moderately effective malaria vaccine, RTS,S, is composed of a portion of the central repeat and the C-terminal regions linked to the hepatitis B surface antigen (15). However, recent studies have highlighted the physiological importance of the N-terminal region (1619). Rathore et al. (19) not only demonstrated the role of the N-terminal region in liver cell attachment but also identified along with Ancsin and Kisilevsky (16) an epitope within the N-terminal region that interacted with liver cells through heparin sulfate (18). Moreover, this epitope was not only found to be immunogenic but the resulting antibodies were determined to be inhibitory in a sporozoite invasion assay (18). Peptides corresponding to the N-terminal region (PpCS-(22–110) and PpCS-(65–110)) were also recognized by sera obtained from individuals living in malaria-endemic regions (17).To better understand the structure of CSP and to produce good quality recombinant protein for human vaccine-directed studies, we generated full-length and near full-length recombinant CSP. We examined two expression systems, Escherichia coli and Pichia pastoris, to determine their feasibility to generate CSP. To assist the characterization of the rCSPs, we generated a panel of monoclonal antibodies (mAbs) that were characterized biologically prior to being used to examine the rCSPs. Additionally, each of the rCSP molecules was extensively biochemically and biophysically characterized. The results collated together have enabled the molecular modeling of CSP as a long flexible, rod-like protein.  相似文献   

5.
目的:评价采用轮状病毒灭活疫苗进行初始免疫,减毒活疫苗进行加强免疫的序贯免疫方案的体液免疫应答效果。方法:将实验小鼠随机分为4组(口服疫苗组、序贯疫苗组、口服对照组及序贯对照组),按相应方案免疫后,ELISA检测血清轮状病毒特异性IgG和IgA、肠道轮状病毒特异性IgA;微量中和实验检测血清病毒特异性中和抗体;同时采用ELISA分析口服活疫苗后病毒排出情况。结果:与对照组相比,序贯疫苗组小鼠产生的轮状病毒特异性血清IgG、IgA、中和抗体及肠道IgA水平显著升高。与口服疫苗组相比,序贯疫苗组的免疫方案诱发的轮状病毒特异性血清IgG、IgA、中和抗体水平显著升高,肠道IgA水平两组间没有显著差异。同时,与口服疫苗组相比,序贯疫苗组中轮状病毒灭活疫苗进行的初始免疫未影响第一次口服活疫苗后病毒的排出量和排出时间,但序贯疫苗组第二次口服活疫苗后病毒的排出量迅速减少,排毒时间快速缩短,与口服疫苗组第三次服苗后病毒的排出量和排出时间相似。结论: 轮状病毒灭活疫苗和减毒活疫苗序贯免疫可有效诱发小鼠全身和黏膜局部的体液免疫应答,该方案将有可能成为轮状病毒疫苗临床应用的候选方案。  相似文献   

6.

Background

An effective HIV vaccine will likely require induction of both mucosal and systemic cellular and humoral immune responses. We investigated whether intramuscular (IM) delivery of electroporated plasmid DNA vaccine and simultaneous protein vaccinations by intranasal (IN) and IM routes could be combined to induce mucosal and systemic cellular and humoral immune responses to a model HIV-1 CN54 gp140 antigen in mice.

Results

Co-immunisation of DNA with intranasal protein successfully elicited both serum and vaginal IgG and IgA responses, whereas DNA and IM protein co-delivery did not induce systemic or mucosal IgA responses. Cellular IFNγ responses were preserved in co-immunisation protocols compared to protein-only vaccination groups. The addition of DNA to IN protein vaccination reduced the strong Th2 bias observed with IN protein vaccination alone. Luminex analysis also revealed that co-immunisation with DNA and IN protein induced expression of cytokines that promote B-cell function, generation of TFH cells and CCR5 ligands that can reduce HIV infectivity.

Significance

These data suggest that while IN inoculation alone elicits both cellular and humoral responses, co-administration with homologous DNA vaccination can tailor these towards a more balanced Th1/Th2 phenotype modulating the cellular cytokine profile while eliciting high-levels of antigen-specific antibody. This work provides insights on how to generate differential immune responses within the same vaccination visit, and supports co-immunisation with DNA and protein by a mucosal route as a potential delivery strategy for HIV vaccines.  相似文献   

7.
Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)–based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies.  相似文献   

8.
Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens.  相似文献   

9.
通过CpG寡核苷酸(CpG ODN)与重组HBsAg蛋白疫苗(rHBsAg)联合免疫C57BL/6BL/6小鼠,观察CpG ODN对小鼠免疫状况的影响。试验分对照、乙肝疫苗以及用乙肝疫苗加CpG三组,MTT法分别进行HBsAg特异性刺激淋巴细胞转化试验、HBsAg特异性刺激细胞毒性T细胞杀伤试验、自然杀伤细胞非特异性杀伤试验,以及ConA刺激淋巴细胞转化试验;ELISA测定HBsAb、INF-γ、IL-12和IL-4结果中,疫苗加CpG组抗原特异性转化试验指数为4.05±0.31;疫苗加CpG组抗原特异性CTL率为82.27±22.64,在统计学上差异显著(P<0.05);而HBsAb、INF-γ、IL-12的结果分别为51.85±14.41、802.25±104.25和373.62±66.58,与对照组及疫苗组比较,差异显著(P<0.05)。CpG ODN能作为一种新的免疫佐剂更好地增强重组乙肝表面抗原蛋白疫苗诱导小鼠产生高效的体液和细胞免疫应答。  相似文献   

10.
In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1). In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer''s clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer''s clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.  相似文献   

11.
Porins were prepared from smooth strain of Salmonella typhi 0–901 and chemotype of rough mutant of S. typhimurium Ra-30. Mice were immunized with both the porin preparations in different groups and challenged with S. typhimurium LT2–71 and S. enteritidis SH-1269. Porin immunized mice showed significant protection (P <0.01) against challenge with homologous as well as heterologous strains. Hence, the use of porins may be attempted in future to protect against salmonellosis.  相似文献   

12.
利用HCV抗原多表位来研制HCV疫苗是目前的一个新方向。本研 究利用HCV的HCV的5个保守表位串联,并加入破伤风类毒素上的一个T细胞激活位点,设计成 一个HCV多表位抗原基因PCX,在大肠杆菌中表达,用此蛋白免疫恒河猴,诱导猴体产生了较 高的抗体水平,滴度达1∶1000以上,在免疫后的60周抗体滴度仍达1∶40以上。同时,在免 疫后6周用人HCV阳性血清攻击猴子,免疫PCX的猴子出现一过性ALT升高,在攻击后三周内用 RT-PCR检测到猴血清内HCV的RNA阳性。结果表明,免疫多表位的PCX蛋白可以诱导机体产生 高水平的免疫应答。  相似文献   

13.
利用HCV抗原多表位来研制HCV疫苗是目前的一个新方向.本研究利用HCV的HCV的5个保守表位串联,并加入破伤风类毒素上的一个T细胞激活位点,设计成一个HCV多表位抗原基因PCX,在大肠杆菌中表达,用此蛋白免疫恒河猴,诱导猴体产生了较高的抗体水平,滴度达11000以上,在免疫后的60周抗体滴度仍达140以上.同时,在免疫后6周用人HCV阳性血清攻击猴子,免疫PCX的猴子出现一过性ALT升高,在攻击后三周内用RT-PCR检测到猴血清内HCV的RNA阳性.结果表明,免疫多表位的PCX蛋白可以诱导机体产生高水平的免疫应答.  相似文献   

14.
乙型肝炎病毒(hepatitis B virus,HBV)极易形成慢性感染,主要机制在于感染者不能产生强有力的细胞免疫应答以清除病毒[1].慢性HBV感染者体内虽然存在HBV抗原特异性T淋巴细胞,但对HBV抗原的反应性较低.研究发现,增强这类T淋巴细胞的反应性,可以促进HBV的清除[2].  相似文献   

15.
The least understood aspects of the cellular immune reactionsof arthropods are the earliest events: the initial recognitionof foreignness, and the resulting changes in hemocyte behaviorand morphology. There are indications that the recognition ofa surface as foreign is based primarily upon its electrostaticcharge, but more specific criteria may be utilized in some situations.Phagocytes are capable of recognizing foreignness without theintervention of soluble opsonins but, in some arthropods, thereis in vitro evidence that opsonins can increase the efficiencyof phagocytosis. It has been hypothesized, on the basis of ultrastructuralevidence that encapsulation, a multicellular immune response,is induced when labile hemocytes rupture upon encountering aforeign object. The released products may promote the formationof a sheath of ameboid hemocytes around the object. This hypothesisis now supported by the results of experiments performed onan in vitro encapsulation system. This system may prove usefulin the purification of encapsulation—promoting factors;in determining the mechanism of their release from hemocytes;and in investigating the possibility that the various cellularimmune reactions of arthropods have a common underlying mechanism.  相似文献   

16.
Highly pathogenic avian influenza A viruses of the H5N1 subtype continue to circulate in poultry, and zoonotic transmissions are reported frequently. Since a pandemic caused by these highly pathogenic viruses is still feared, there is interest in the development of influenza A/H5N1 virus vaccines that can protect humans against infection, preferably after a single vaccination with a low dose of antigen. Here we describe the induction of humoral and cellular immune responses in ferrets after vaccination with a cell culture-derived whole inactivated influenza A virus vaccine in combination with the novel adjuvant CoVaccine HT. The addition of CoVaccine HT to the influenza A virus vaccine increased antibody responses to homologous and heterologous influenza A/H5N1 viruses and increased virus-specific cell-mediated immune responses. Ferrets vaccinated once with a whole-virus equivalent of 3.8 μg hemagglutinin (HA) and CoVaccine HT were protected against homologous challenge infection with influenza virus A/VN/1194/04. Furthermore, ferrets vaccinated once with the same vaccine/adjuvant combination were partially protected against infection with a heterologous virus derived from clade 2.1 of H5N1 influenza viruses. Thus, the use of the novel adjuvant CoVaccine HT with cell culture-derived inactivated influenza A/H5N1 virus antigen is a promising and dose-sparing vaccine approach warranting further clinical evaluation.Since the first human case of infection with a highly pathogenic avian influenza A virus of the H5N1 subtype in 1997 (9, 10, 37), hundreds of zoonotic transmissions have been reported, with a high case-fatality rate (10, 44). Since these viruses continue to circulate among domestic birds and human cases are regularly reported, it is feared that they will adapt to their new host or exchange gene segments with other influenza A viruses, become transmissible from human to human, and cause a new pandemic. Recently, a novel influenza A virus of the H1N1 subtype emerged. This virus, which originated from pigs, was transmitted between humans efficiently, resulting in the first influenza pandemic of the 21st century (8, 45). Although millions of people have been inoculated with the (H1N1)2009 virus, the case-fatality rate was relatively low compared to that for infections with the H5N1 viruses (11, 31). However, the unexpected pandemic caused by influenza A/H1N1(2009) viruses has further highlighted the importance of rapid availability of safe and effective pandemic influenza virus vaccines. Other key issues for the development of pandemic influenza A virus vaccines include optimal use of the existing (limited) capacity for production of viral antigen and effectiveness against viruses that are antigenically distinct. Ideally, a single administration of a low dose of antigen would be sufficient to induce protective immunity against the homologous strain and heterologous antigenic variant strains. However, since the population at large will be immunologically naïve to a newly introduced virus, high doses of antigen are required to induce protective immunity in unprimed subjects (23, 36). The use of safe and effective adjuvants in pandemic influenza virus vaccines is considered a dose-sparing strategy. Clinical trials evaluating candidate inactivated influenza A/H5N1 virus vaccines showed that the use of adjuvants can increase their immunogenicity and broaden the specificity of the induced antibody responses (2, 7, 19, 23, 27, 36, 41). These research efforts have resulted in the licensing of adjuvanted vaccines against seasonal and pandemic influenza viruses (17). The protective efficacy of immune responses induced with candidate influenza A/H5N1 virus vaccines was demonstrated in ferrets after two immunizations (1, 22, 24, 25) or after a single immunization. The latter was achieved with a low dose of antigen in combination with the adjuvant Iscomatrix (26).Recently, a novel adjuvant that consists of a sucrose fatty acid sulfate ester (SFASE) immobilized on the oil droplets of a submicrometer emulsion of squalane in water has been developed (4). It has been demonstrated that the addition of this novel adjuvant, called CoVaccine HT, to multiple antigens increased the immune response to these antigens in pigs and horses and was well tolerated in both species (4, 16, 40). Furthermore, it was shown that the use of CoVaccine HT increased the virus-specific antibody responses in mice and ferrets after vaccination with a cell culture-derived whole inactivated influenza A/H5N1 virus vaccine (5, 13). One of the mode of actions of CoVaccine HT is the activation of antigen-presenting cells such as dendritic cells, most likely through Toll-like receptor 4 (TLR4) signaling (5).In the present study, we evaluated the protective potential of CoVaccine HT-adjuvanted cell culture-derived whole inactivated influenza A/H5N1 virus (WIV) vaccine in the ferret model, which is considered the most suitable animal model for the evaluation of candidate influenza virus vaccines (6, 14, 15). To this end, ferrets were vaccinated once or twice with various antigen doses with or without the adjuvant to test whether dose sparing could be achieved. The use of CoVaccine HT increased virus-specific antibody responses and T cell responses. A single administration of 3.8 μg hemagglutinin (HA) of WIV NIBRG-14 vaccine preparation in combination with CoVaccine HT conferred protection against challenge infection with the homologous highly pathogenic A/H5N1 virus strain A/VN/1194/04 and partial protection against infection with a heterologous, antigenically distinct strain, A/IND/5/05. Therefore, it was concluded that the use of CoVaccine HT in inactivated influenza virus vaccines induced protective virus-specific humoral and cell-mediated immune responses and that it could be suitable as adjuvant in (pre)pandemic A/H5N1 virus vaccines. Further clinical testing of these candidate vaccines seems to be warranted.  相似文献   

17.
The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite''s surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria.  相似文献   

18.
构建编码HBV包膜-核心蛋白融合基因的DNA疫苗pSC、pSS1S2C和编码HBV包膜蛋白或核心蛋白基因的DNA疫苗pHBs、pHBc,分别肌肉注射免疫BALB/c小鼠,检测小鼠的血清抗体、T细胞增殖和细胞毒性T淋巴细胞反应,比较融合基因DNA疫苗与单基因DNA疫苗诱生免疫应答的强度,发现融合基因DNA疫苗诱生抗体的效率明显不及单基因DNA疫苗,但其能诱导更强、更持久的细胞免疫应答,表明HBV包膜-核心蛋白融合基因DNA疫苗对于治疗慢性乙型肝炎可能比单基因DNA疫苗更为有效.  相似文献   

19.
Screening live mycobacterial vaccine candidates is the important strategy to develop new vaccines against adult tuberculosis (TB). In this study, the immunogenicity and protective efficacy of several avirulent mycobacterial strains including Mycobacterium smegmatis, M. vaccae, M. terrae, M. phlei, M. trivial, and M. tuberculosis H37Ra were compared with M. bovis BCG in BALB/c mice. Our results demonstrated that differential immune responses were induced in different mycobacterial species vaccinated mice. As BCG-vaccinated mice did, M. terrae immunization resulted in Th1-type responses in the lung, as well as splenocytes secreting IFN-γ against a highly conserved mycobacterial antigen Ag85A. M. smegmatis also induced the same splenocytes secreting IFN-γ as BCG and M. terrae did. In addition, M. terrae and M. smegmatis-immunized mice predominantly increased expression of IL-10 and TGF-β in the lung. Most importantly, mice vaccinated with H37Ra and M. vaccae could provide the same protection in the lung against virulent M. tuberculosis challenge as BCG. The result may have important implications in developing adult TB vaccine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号