首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Fusion of enveloped viruses with host cells is triggered by either receptor binding or low pH but rarely requires both except for avian sarcoma leukosis virus (ASLV). We recently reported that membrane fusion mediated by an oncogenic Jaagsiekte sheep retrovirus (JSRV) envelope (Env) requires an acidic pH, yet receptor overexpression is required for this process to occur. Here we show that a soluble form of the JSRV receptor, sHyal2, promoted JSRV Env-mediated fusion at a low pH in normally fusion-negative cells and that this effect was blocked by a synthetic peptide analogous to the C-terminal heptad repeat of JSRV Env. In contrast to the receptor of ASLV, sHyal2 induced pronounced shedding of the JSRV surface subunit, as well as unstable conformational rearrangement of its transmembrane (TM) subunit, yet full activation of JSRV Env fusogenicity, associated with strong TM oligomerization, required both sHyal2 and low pH. Consistently, sHyal2 enabled transduction of nonpermissive cells by JSRV Env pseudovirions, with low efficiency, but substantially blocked viral entry into permissive cells at both binding and postbinding steps, indicating that sHyal2 prematurely activates JSRV Env-mediated fusion. Altogether, our study supports a model that receptor priming promotes fusion activation of JSRV Env at a low pH, and that the underlying mechanism is likely to be different from that of ASLV. Thus, JSRV may provide a useful alternate model for the better understanding of virus fusion and cell entry.Fusion is a fundamental event in the life cycle of enveloped viruses and is essential for viral replication. While viral fusion proteins are highly divergent in primary sequence, their structures and modes of activation share striking similarities, permitting their classification into two major groups (41). Class I fusion proteins, as exemplified by the retrovirus envelope (Env) and influenza virus hemagglutinin (HA), are composed mainly of alpha-helices, and they are present as metastable trimers on the viral surface (11). Class II fusion proteins, represented by alphavirus E1 and flavivirus E, contain predominantly beta-sheets and exist as dimers in the prefusion state (16). Of note, the vesicular stomatitis virus G (VSV-G) and herpesvirus gB proteins were recently assigned to a newly established class III, for fusion proteins combining properties of both class I and class II (13, 30). Despite these differences, one common and intriguing characteristic of all viral fusion proteins is their ability to undergo dramatic conformational rearrangements upon activation, i.e., the formation of trimers of hairpins, which drive fusion between viral and cellular membranes (11, 17).Retrovirus Env is a typical type I transmembrane protein composed of surface (SU) and transmembrane (TM) subunits and belongs to the class I fusion proteins. SU is responsible for binding to cognate cellular receptors or cofactors, while TM directly mediates membrane fusion (6). Most retroviruses use a pH-independent pathway for entry, during which receptor binding relieves the ability of SU to restrain TM, resulting in conformational changes in TM and subsequent fusion with the cell membrane (11). Interestingly, increasing numbers of retroviruses have recently been shown to require a low pH (3, 15, 24, 28, 31) or pH-dependent protease activities to trigger fusion (18); the latter property has also been demonstrated for some other enveloped viruses (2, 14, 18, 26, 27, 33, 34). Among these, avian sarcoma leukosis virus (ASLV) is unique in that it uses a two-step mechanism for fusion, in which receptor binding primes the second trigger of low pH (24).Jaagsiekte sheep retrovirus (JSRV) is a simple betaretrovirus etiologically responsible for contagious lung tumors in sheep (12). The native Env protein of JSRV functions as a potent oncogene that induces cell transformation in vitro and in animals (4, 9, 21, 29, 42). The cell entry receptor for JSRV has been identified as hyaluronidase 2 (Hyal2), a glycosylphosphatidylinositol (GPI)-anchored protein belonging to the hyaluronidase family (29); Hyal2 itself has low hyaluronidase activity, and this activity is not associated with JSRV entry and infection (38). Intrigued by the oncogenic nature of JSRV Env, we recently examined the mechanism of JSRV entry and found that JSRV Env-mediated fusion and cell entry require a low pH (1, 8). These observations led us to hypothesize that the pH-dependent fusion activation of JSRV Env may be advantageous for its oncogenesis, given that extreme cell-cell fusion of the plasma membrane at a neutral pH would result in syncytium formation and often cell death. Curiously, we noticed that overexpression of Hyal2 is necessary for JSRV Env to induce membrane fusion at a low pH in vitro, suggesting that Hyal2 may play an active role in the pH-dependent fusion process. Here we provide direct evidence that Hyal2 functions in cooperation with a low pH to trigger the JSRV Env-mediated fusion activation yet exhibits some striking differences from the mechanism of ASLV fusion. The multistep pathway for JSRV Env-mediated fusion activation might be important for its replication fitness and oncogenesis.  相似文献   

4.
5.
The packaging of retroviral genomic RNA (gRNA) requires cis-acting elements within the RNA and trans-acting elements within the Gag polyprotein. The packaging signal ψ, at the 5′ end of the viral gRNA, binds to Gag through interactions with basic residues and Cys-His box RNA-binding motifs in the nucleocapsid. Although specific interactions between Gag and gRNA have been demonstrated previously, where and when they occur is not well understood. We discovered that the Rous sarcoma virus (RSV) Gag protein transiently localizes to the nucleus, although the roles of Gag nuclear trafficking in virus replication have not been fully elucidated. A mutant of RSV (Myr1E) with enhanced plasma membrane targeting of Gag fails to undergo nuclear trafficking and also incorporates reduced levels of gRNA into virus particles compared to those in wild-type particles. Based on these results, we hypothesized that Gag nuclear entry might facilitate gRNA packaging. To test this idea by using a gain-of-function genetic approach, a bipartite nuclear localization signal (NLS) derived from the nucleoplasmin protein was inserted into the Myr1E Gag sequence (generating mutant Myr1E.NLS) in an attempt to restore nuclear trafficking. Here, we report that the inserted NLS enhanced the nuclear localization of Myr1E.NLS Gag compared to that of Myr1E Gag. Also, the NLS sequence restored gRNA packaging to nearly wild-type levels in viruses containing Myr1E.NLS Gag, providing genetic evidence linking nuclear trafficking of the retroviral Gag protein with gRNA incorporation.The encapsidation of the RNA genome is essential for retrovirus replication. Because the viral genomic RNA (gRNA) constitutes only a small fraction of the total cellular mRNA, a specific Gag-RNA interaction is thought to be required for viral genome packaging (2). The determinants of virus-specific gRNA incorporation include the cis-acting element at the 5′end of the viral gRNA, known as the packaging signal (ψ), and the nucleocapsid (NC) domain of the Gag polyprotein (3, 14, 62). In Rous sarcoma virus (RSV), the NC domain contains basic residues that are required for the recognition of and binding to ψ, as well as two Cys-His motifs that maintain the overall conformation of NC and are essential for RNA packaging (30, 31).Packaging of gRNA into progeny virions requires that the unspliced viral mRNA be exported from the nucleus. However, cellular proofreading mechanisms ensure that unspliced or intron-containing mRNAs are retained in the nucleus until splicing occurs. Complex retroviruses like human immunodeficiency virus type 1 (HIV-1) overcome this export block of unspliced genomes by encoding the Rev protein, which interacts with a cis-acting sequence in the viral RNA (the Rev-responsive element [RRE]) to facilitate cytoplasmic accumulation of intron-containing viral mRNA (16, 35). The export of the Rev-viral RNA complex is mediated through the interaction of a leucine-rich nuclear export signal (NES) in Rev with the CRM1 nuclear export factor (17, 18, 37, 41). Simple retroviruses do not encode Rev-like regulatory proteins, so other strategies for the export of unspliced viral RNAs are needed. For Mason-Pfizer monkey virus, a cis-acting constitutive transport element induces nuclear export of the unspliced viral RNA in a process mediated by the cellular mRNA nuclear export factor TAP (5, 25, 46, 63). In RSV, an RNA element composed of either of the two direct repeats flanking the src gene mediates the cytoplasmic accumulation of unspliced viral RNA by using host export proteins TAP and Dpb5 (29, 42, 44).The findings of recent studies suggest that specific RNA export pathways direct viral gRNA to sites of virion assembly (56); for example, HIV-1 gRNA export out of the nucleus by the Rev-RRE-CRM1 complex is required for the proper subcellular localization of Gag and efficient virus particle production (26, 57). In the case of RSV, little is known about the trafficking of the viral RNA destined for virion encapsidation or the effects of the gRNA nuclear export pathway on Gag trafficking and virus particle production. However, we do know that RSV Gag enters the nucleus during infection, owing to nuclear localization signals (NLSs) in the matrix (MA) and NC domains. The nuclear localization of Gag is transient, and export is mediated by a CRM1-dependent NES in the p10 region (6, 52, 53). Thus, it is feasible that Gag may facilitate the nuclear export of the gRNA, either directly or indirectly, to promote particle assembly (53).In support of this idea, Gag mutants engineered to be more efficiently directed to the plasma membrane than wild-type Gag by the addition of the Src membrane-binding domain (in Myr1E virus) or by the insertion of extra basic residues (in SuperM virus) are not concentrated in nuclei when cells are treated with the CRM1 inhibitor leptomycin B (LMB) (8, 20, 53). Moreover, Myr1E and SuperM virus particles incorporate reduced levels of viral gRNA compared to the levels incorporated by wild-type particles. Thus, there is a correlation between the nuclear transit of Gag and gRNA packaging, although the Myr1E and SuperM viruses may be deficient in gRNA encapsidation because they are transported to the plasma membrane too rapidly (8). To test the hypothesis that the loss of Gag nuclear trafficking is responsible for the gRNA packaging defect, we used a gain-of-function genetic approach whereby a heterologous NLS was inserted into Myr1E Gag, yielding mutant virus Myr1E.NLS. Our results revealed that restoring the nuclear trafficking of Myr1E Gag also restored the incorporation of gRNA into mutant virus particles.  相似文献   

6.
In their vertebrate hosts, arboviruses such as Semliki Forest virus (SFV) (Togaviridae) generally counteract innate defenses and trigger cell death. In contrast, in mosquito cells, following an early phase of efficient virus production, a persistent infection with low levels of virus production is established. Whether arboviruses counteract RNA interference (RNAi), which provides an important antiviral defense system in mosquitoes, is an important question. Here we show that in Aedes albopictus-derived mosquito cells, SFV cannot prevent the establishment of an antiviral RNAi response or prevent the spread of protective antiviral double-stranded RNA/small interfering RNA (siRNA) from cell to cell, which can inhibit the replication of incoming virus. The expression of tombusvirus siRNA-binding protein p19 by SFV strongly enhanced virus spread between cultured cells rather than virus replication in initially infected cells. Our results indicate that the spread of the RNAi signal contributes to limiting virus dissemination.In animals, RNA interference (RNAi) was first described for Caenorhabditis elegans (27). The production or introduction of double-stranded RNA (dsRNA) in cells leads to the degradation of mRNAs containing homologous sequences by sequence-specific cleavage of mRNAs. Central to RNAi is the production of 21- to 26-nucleotide small interfering RNAs (siRNAs) from dsRNA and the assembly of an RNA-induced silencing complex (RISC), followed by the degradation of the target mRNA (23, 84). RNAi is a known antiviral strategy of plants (3, 53) and insects (21, 39, 51). Study of Drosophila melanogaster in particular has given important insights into RNAi responses against pathogenic viruses and viral RNAi inhibitors (31, 54, 83, 86, 91). RNAi is well characterized for Drosophila, and orthologs of antiviral RNAi genes have been found in Aedes and Culex spp. (13, 63).Arboviruses, or arthropod-borne viruses, are RNA viruses mainly of the families Bunyaviridae, Flaviviridae, and Togaviridae. The genus Alphavirus within the family Togaviridae contains several mosquito-borne pathogens: arboviruses such as Chikungunya virus (16) and equine encephalitis viruses (88). Replication of the prototype Sindbis virus and Semliki Forest virus (SFV) is well understood (44, 71, 74, 79). Their genome consists of a positive-stranded RNA with a 5′ cap and a 3′ poly(A) tail. The 5′ two-thirds encodes the nonstructural polyprotein P1234, which is cleaved into four replicase proteins, nsP1 to nsP4 (47, 58, 60). The structural polyprotein is encoded in the 3′ one-third of the genome and cleaved into capsid and glycoproteins after translation from a subgenomic mRNA (79). Cytoplasmic replication complexes are associated with cellular membranes (71). Viruses mature by budding at the plasma membrane (35).In nature, arboviruses are spread by arthropod vectors (predominantly mosquitoes, ticks, flies, and midges) to vertebrate hosts (87). Little is known about how arthropod cells react to arbovirus infection. In mosquito cell cultures, an acute phase with efficient virus production is generally followed by the establishment of a persistent infection with low levels of virus production (9). This is fundamentally different from the cytolytic events following arbovirus interactions with mammalian cells and pathogenic insect viruses with insect cells. Alphaviruses encode host response antagonists for mammalian cells (2, 7, 34, 38).RNAi has been described for mosquitoes (56) and, when induced before infection, antagonizes arboviruses and their replicons (1, 4, 14, 15, 29, 30, 32, 42, 64, 65). RNAi is also functional in various mosquito cell lines (1, 8, 43, 49, 52). In the absence of RNAi, alphavirus and flavivirus replication and/or dissemination is enhanced in both mosquitoes and Drosophila (14, 17, 31, 45, 72). RNAi inhibitors weakly enhance SFV replicon replication in tick and mosquito cells (5, 33), posing the questions of how, when, and where RNAi interferes with alphavirus infection in mosquito cells.Here we use an A. albopictus-derived mosquito cell line to study RNAi responses to SFV. Using reporter-based assays, we demonstrate that SFV cannot avoid or efficiently inhibit the establishment of an RNAi response. We also demonstrate that the RNAi signal can spread between mosquito cells. SFV cannot inhibit cell-to-cell spread of the RNAi signal, and spread of the virus-induced RNAi signal (dsRNA/siRNA) can inhibit the replication of incoming SFV in neighboring cells. Furthermore, we show that SFV expression of a siRNA-binding protein increases levels of virus replication mainly by enhancing virus spread between cells rather than replication in initially infected cells. Taken together, these findings suggest a novel mechanism, cell-to-cell spread of antiviral dsRNA/siRNA, by which RNAi limits SFV dissemination in mosquito cells.  相似文献   

7.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

8.
9.
Cytosolic chaperones are a diverse group of ubiquitous proteins that play central roles in multiple processes within the cell, including protein translation, folding, intracellular trafficking, and quality control. These cellular proteins have also been implicated in the replication of numerous viruses, although the full extent of their involvement in viral replication is unknown. We have previously shown that the heat shock protein 40 (hsp40) chaperone encoded by the yeast YDJ1 gene facilitates RNA replication of flock house virus (FHV), a well-studied and versatile positive-sense RNA model virus. To further explore the roles of chaperones in FHV replication, we examined a panel of 30 yeast strains with single deletions of cytosolic proteins that have known or hypothesized chaperone activity. We found that the majority of cytosolic chaperone deletions had no impact on FHV RNA accumulation, with the notable exception of J-domain-containing hsp40 chaperones, where deletion of APJ1 reduced FHV RNA accumulation by 60%, while deletion of ZUO1, JJJ1, or JJJ2 markedly increased FHV RNA accumulation, by 4- to 40-fold. Further studies using cross complementation and double-deletion strains revealed that the contrasting effects of J domain proteins were reproduced by altering expression of the major cytosolic hsp70s encoded by the SSA and SSB families and were mediated in part by divergent effects on FHV RNA polymerase synthesis. These results identify hsp70 chaperones as critical regulators of FHV RNA replication and indicate that cellular chaperones can have both positive and negative regulatory effects on virus replication.The compact genomes of viruses relative to those of other infectious agents restrict their ability to encode all proteins required to complete their replication cycles. To circumvent this limitation, viruses often utilize cellular factors or processes to complete essential steps in replication. One group of cellular proteins frequently targeted by viruses are cellular chaperones, which include a diverse set of heat shock proteins (hsps) that normally facilitate cellular protein translation, folding, trafficking, and degradation (18, 64). The connection between viruses and cellular chaperones was originally identified in bacteria, where the Escherichia coli hsp40 and hsp70 homologues, encoded by dnaJ and dnaK, respectively, were identified as bacterial genes essential for bacteriophage λ DNA replication (62). Research over the past 30 years has further revealed the importance of cellular chaperones in viral replication, such that the list of virus-hsp connections is now quite extensive and includes viruses from numerous families with diverse genome structures (4, 6, 7, 16, 19, 20, 23, 25, 40, 41, 44, 51, 54, 60). These studies have demonstrated the importance of cellular chaperones in multiple steps of the viral life cycle, including entry, viral protein translation, genome replication, encapsidation, and virion release. However, the list of virus-hsp connections is likely incomplete. Further studies to explore this particular host-pathogen interaction will shed light on virus replication mechanisms and pathogenesis, and potentially highlight targets for novel antiviral agents.To study the role of cellular chaperones in the genome replication of positive-sense RNA viruses, we use flock house virus (FHV), a natural insect pathogen and well-studied member of the Nodaviridae family. The FHV life cycle shares many common features with other positive-sense RNA viruses, including the membrane-specific targeting and assembly of functional RNA replication complexes (37, 38), the exploitation of various cellular processes and host factors for viral replication (5, 23, 60), and the induction of large-scale membrane rearrangements (24, 28, 38, 39). FHV virions contain a copackaged bipartite genome consisting of RNA1 (3.1 kb) and RNA2 (1.4 kb), which encode protein A, the viral RNA-dependent RNA polymerase, and the structural capsid protein precursor, respectively (1). During active genome replication, FHV produces a subgenomic RNA3 (0.4 kb), which encodes the RNA interference inhibitor protein B2 (12, 29, 32). These viral characteristics make FHV an excellent model system to study many aspects of positive-sense RNA virus biology.In addition to the benefits of a simple genome, FHV is able to establish robust RNA replication in a wide variety of genetically tractable eukaryotic hosts, including Drosophila melanogaster (38), Caenorhabditis elegans (32), and Saccharomyces cerevisiae (46). The budding yeast S. cerevisiae has been an exceptionally useful model host to study the mechanisms of viral RNA replication complex assembly and function with FHV (31, 37, 39, 45, 53, 55, 56, 60) as well as other positive-sense RNA viruses (11). The facile genetics of S. cerevisiae, along with the vast array of well-defined cellular and molecular tools and techniques, make it an ideal eukaryotic host for the identification of cellular factors required for positive-sense RNA virus replication. Furthermore, readily available yeast libraries with deletions and regulated expression of individual proteins have led to the completion of several high-throughput screens to provide a global survey of host factors that impact virus replication (26, 42, 52). An alternative approach with these yeast libraries that reduces the inherently high false-negative rates associated with high-throughput screens is to focus on a select set of host genes associated with a particular cellular pathway, process, or location previously implicated in virus replication.We have utilized such a targeted approach and focused on examining the impact of cytosolic chaperones on FHV RNA replication. Previously, we have shown that the cellular chaperone hsp90 facilitates protein A synthesis in Drosophila cells (5, 23), and the hsp40 encoded by the yeast YDJ1 gene facilitates FHV RNA replication in yeast, in part through effects on both protein A accumulation and function (60). In this report, we further extend these observations by examining FHV RNA accumulation in a panel of yeast strains with deletions of known or hypothesized cytosolic chaperones. We demonstrate that cytosolic chaperones can have either suppressive or enhancing effects on FHV RNA accumulation. In particular, related hsp70 members encoded by the SSA and SSB yeast chaperone families have marked and dramatically divergent effects on both genomic and subgenomic RNA accumulation and viral polymerase synthesis. These results highlight the complexities of the host-pathogen interactions that influence positive-sense RNA virus replication and identify the hsp70 family of cytosolic chaperones as key regulators of FHV replication.  相似文献   

10.
11.
12.
13.
14.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号