首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hip and knee functions are intimately connected and reduced hip abductor function might play a role in development of knee osteoarthritis (OA) by increasing the external knee adduction moment during walking. The purpose of this study was to test the hypothesis that reduced function of the gluteus medius (GM) muscle would lead to increased external knee adduction moment during level walking in healthy subjects. Reduced GM muscle function was induced experimentally, by means of intramuscular injections of hypertonic saline that produced an intense short-term muscle pain and reduced muscle function. Isotonic saline injections were used as non-painful control. Fifteen healthy subjects performed walking trials at their self-selected walking speed before and immediately after injections, and again after 20 min of rest, to ensure pain recovery. Standard gait analyses were used to calculate three-dimensional trunk and lower extremity joint kinematics and kinetics. Surface electromyography (EMG) of the glutei, quadriceps, and hamstring muscles were also measured. The peak GM EMG activity had temporal concurrence with peaks in frontal plane moments at both hip and knee joints. The EMG activity in the GM muscle was significantly reduced by pain (?39.6%). All other muscles were unaffected. Peaks in the frontal plane hip and knee joint moments were significantly reduced during pain (?6.4% and ?4.2%, respectively). Lateral trunk lean angles and midstance hip joint adduction and knee joint extension angles were reduced by ?1°. Thus, the gait changes were primarily caused by reduced GM function. Walking with impaired GM muscle function due to pain significantly reduced the external knee adduction moment. This study challenge the notion that reduced GM function due to pain would lead to increased loads at the knee joint during level walking.  相似文献   

2.
Post-stroke individuals often exhibit abnormal kinematics, including increased pelvic obliquity and hip abduction coupled with reduced knee flexion. Prior examinations suggest these behaviors are expressions of abnormal cross-planar coupling of muscle activity. However, few studies have detailed the impact of gait-retraining paradigms on three-dimensional joint kinematics. In this study, a cross-tilt walking surface was examined as a novel gait-retraining construct. We hypothesized that relative to baseline walking kinematics, exposure to cross-tilt would generate significant changes in subsequent flat-walking joint kinematics during affected limb swing. Twelve post-stroke participants walked on a motorized treadmill platform during a flat-walking condition and during a 10-degree cross-tilt with affected limb up-slope, increasing toe clearance demand. Individuals completed 15 min of cross-tilt walking with intermittent flat-walking catch trials and a final washout period (5 min). For flat-walking conditions, we examined changes in pelvic obliquity, hip abduction/adduction and knee flexion kinematics at the spatiotemporal events of swing initiation and toe-off, and the kinematic event of maximum angle during swing. Pelvic obliquity significantly reduced at swing initiation and maximum obliquity in the final catch trial and late washout. Knee flexion significantly increased at swing initiation, toe-off, and maximum flexion across catch trials and late washout. Hip abduction/adduction was not significantly influenced following cross-tilt walking. Significant decrease in the rectus femoris and medial hamstrings muscle activity across catch trials and late washout was observed. Exploiting the abnormal features of post-stroke gait during retraining yielded desirable changes in muscular and kinematic patterns post-training.  相似文献   

3.
The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients.  相似文献   

4.
Treadmill has been broadly used in laboratory and rehabilitation settings for the purpose of facilitating human locomotion analysis and gait training. The objective of this study was to determine whether dynamic gait stability differs or resembles between the two walking conditions (overground vs. treadmill) among young adults. Fifty-four healthy young adults (age: 23.9 ± 4.7 years) participated in this study. Each participant completed five trials of overground walking followed by five trials of treadmill walking at a self-selected speed while their full body kinematics were gathered by a motion capture system. The spatiotemporal gait parameters and dynamic gait stability were compared between the two walking conditions. The results revealed that participants adopted a “cautious gait” on the treadmill compared with over ground in response to the possible inherent challenges to balance imposed by treadmill walking. The cautious gait, which was achieved by walking slower with a shorter step length, less backward leaning trunk, shortened single stance phase, prolonged double stance phase, and more flatfoot landing, ensures the comparable dynamic stability between the two walking conditions. This study could provide insightful information about dynamic gait stability control during treadmill ambulation in young adults.  相似文献   

5.
It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.  相似文献   

6.
Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis.  相似文献   

7.
The Re-Link Trainer (RLT) is a modified walking frame with a linkage system designed to apply a non-individualized kinematic constraint to normalize gait trajectory of the left limb. The premise behind the RLT is that a user’s lower limb is constrained into a physiologically normal gait pattern, ideally generating symmetry across gait cycle parameters and kinematics. This pilot study investigated adaptations in the natural gait pattern of healthy adults when using the RLT compared to normal overground walking. Bilateral lower limb kinematic and electromyography data were collected while participants walked overground at a self-selected speed, followed by walking in the RLT. A series of 2-way analyses of variance examined between-limb and between-condition differences. Peak hip extension and knee flexion were reduced bilaterally when walking in the RLT. Left peak hip extension occurred earlier in the gait cycle when using the RLT, but later for the right limb. Peak hip flexion was significantly increased and occurred earlier for the constrained limb, while peak plantarflexion was significantly reduced. Peak knee flexion and plantarflexion in the right limb occurred later when using the RLT. Significant bilateral reductions in peak electromyography amplitude were evident when walking in the RLT, along with a significant shift in when peak muscle activity was occurring. These findings suggest that the RLT does impose a significant constraint, but generates asymmetries in lower limb kinematics and muscle activity patterns. The large interindividual variation suggests users may utilize differing motor strategies to adapt their gait pattern to the imposed constraint.  相似文献   

8.
Biomechanics of overground vs. treadmill walking in healthy individuals.   总被引:1,自引:0,他引:1  
The goal of this study was to compare treadmill walking with overground walking in healthy subjects with no known gait disorders. Nineteen subjects were tested, where each subject walked on a split-belt instrumented treadmill as well as over a smooth, flat surface. Comparisons between walking conditions were made for temporal gait parameters such as step length and cadence, leg kinematics, joint moments and powers, and muscle activity. Overall, very few differences were found in temporal gait parameters or leg kinematics between treadmill and overground walking. Conversely, sagittal plane joint moments were found to be quite different, where during treadmill walking trials, subjects demonstrated less dorsiflexor moments, less knee extensor moments, and greater hip extensor moments. Joint powers in the sagittal plane were found to be similar at the ankle but quite different at the knee and hip joints. Differences in muscle activity were observed between the two walking modalities, particularly in the tibialis anterior throughout stance, and in the hamstrings, vastus medialis and adductor longus during swing. While differences were observed in muscle activation patterns, joint moments and joint powers between the two walking modalities, the overall patterns in these behaviors were quite similar. From a therapeutic perspective, this suggests that training individuals with neurological injuries on a treadmill appears to be justified.  相似文献   

9.
Pathological movement patterns like crouch gait are characterized by abnormal kinematics and muscle activations that alter how muscles support the body weight during walking. Individual muscles are often the target of interventions to improve crouch gait, yet the roles of individual muscles during crouch gait remain unknown. The goal of this study was to examine how muscles contribute to mass center accelerations and joint angular accelerations during single-limb stance in crouch gait, and compare these contributions to unimpaired gait. Subject-specific dynamic simulations were created for ten children who walked in a mild crouch gait and had no previous surgeries. The simulations were analyzed to determine the acceleration of the mass center and angular accelerations of the hip, knee, and ankle generated by individual muscles. The results of this analysis indicate that children walking in crouch gait have less passive skeletal support of body weight and utilize substantially higher muscle forces to walk than unimpaired individuals. Crouch gait relies on the same muscles as unimpaired gait to accelerate the mass center upward, including the soleus, vasti, gastrocnemius, gluteus medius, rectus femoris, and gluteus maximus. However, during crouch gait, these muscles are active throughout single-limb stance, in contrast to the modulation of muscle forces seen during single-limb stance in an unimpaired gait. Subjects walking in crouch gait rely more on proximal muscles, including the gluteus medius and hamstrings, to accelerate the mass center forward during single-limb stance than subjects with an unimpaired gait.  相似文献   

10.
The purposes of this study was to test a mechanism to reduce the knee adduction moment by testing the hypothesis that increased medio-lateral trunk sway can reduce the knee adduction moment during ambulation in healthy subjects, and to examine the possibility that increasing medio-lateral trunk sway can produce similar potentially adverse secondary gait changes previously associated with reduced knee adduction moments in patients with knee osteoarthritis. Nineteen healthy adults performed walking trials with normal and increased medio-lateral trunk sway at a self-selected normal walking speed. Standard gait analysis was used to calculate three-dimensional lower extremity joint kinematics and kinetics. Knee and hip adduction moments were lower (-65.0% and -57.1%, respectively) for the increased medio-lateral trunk sway trials than for the normal trunk sway trials. Knee flexion angle at heel-strike was 3 degrees higher for the increased than for the normal trunk sway trials. Knee and hip abduction moments were higher for the increased medio-lateral trunk sway trials, and none of the other variables differed between the two conditions. Walking with increased medio-lateral trunk sway substantially reduces the knee adduction moment during walking in healthy subjects without some of the adverse secondary effects such as increased axial loading rates at the major joints of the lower extremity. This result supports the potential of using gait retraining for walking with increased medio-lateral trunk sway as treatment for patients with degenerative joint disease such as medial compartment knee osteoarthritis.  相似文献   

11.
Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163–191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during treadmill-based clinical gait analysis.  相似文献   

12.
Load carriage perturbs the neuromuscular system, which can be impaired due to ageing. The ability to counteract perturbations is an indicator of neuromuscular function but if the response is insufficient the risk of falls will increase. However, it is unknown how load carriage affects older adults. Fourteen older adults (65 ± 6 years) attended a single visit during which they performed 4 min of walking in 3 conditions, unloaded, stable backpack load and unstable backpack load. During each walking trial, 3-dimensional kinematics of the lower limb and trunk movements and electromyographic activity of 6 lower limb muscles were recorded. The local dynamic stability (local divergence exponents), joint angle variability and spatio-temporal variability were determined along with muscle activation magnitudes. Medio-lateral dynamic stability was lower (p = 0.018) and step width (p = 0.019) and step width variability (p = 0.015) were greater in unstable load walking and step width variability was greater in stable load walking (p = 0.009) compared to unloaded walking. However, there was no effect on joint angle variability. Unstable load carriage increased activity of the Rectus Femoris (p = 0.001) and Soleus (p = 0.043) and stable load carriage increased Rectus Femoris activity (p = 0.006). These results suggest that loaded walking alters the gait of older adults and that unstable load carriage reduces dynamic stability compared to unloaded walking. This can potentially increase the risk of falls, but also offers the potential to use unstable loads as part of fall prevention programmes.  相似文献   

13.
Poor control of postural muscles is a primary impairment in cerebral palsy (CP), yet core trunk and hip muscle activity has not been thoroughly investigated. Frequency analysis of electromyographic (EMG) signals provides insight about the intensity and pattern of muscle activation, correlates with functional measures in CP, and is sensitive to change after intervention. The objective of this study was to investigate differences in trunk and hip muscle activation frequency in children with CP compared to children with similar amounts of walking experience and typical development (TD). EMG data from 31 children (15 with CP, 16 with TD) were recorded from 16 trunk and hip muscles bilaterally. A time–frequency pattern was generated using the continuous wavelet transform and instantaneous mean frequency (IMNF) was calculated at each interval of the gait cycle. Functional principal component analysis (PCA) revealed that IMNF was significantly higher in the CP group throughout the gait cycle for all muscles. Additionally, stride-to-stride variability was higher in the CP group. This evidence demonstrated altered patterns of trunk and hip muscle activation in CP, including increased rates of motor unit firing, increased number of recruited motor units, and/or decreased synchrony of motor units. These altered muscle activation patterns likely contribute to muscle fatigue and decreased biomechanical efficiency in children with CP.  相似文献   

14.
Energy storage and return (ESAR) foot-ankle prostheses have been developed in an effort to improve gait performance in lower-limb amputees. However, little is known about their effectiveness in providing the body segment mechanical energetics normally provided by the ankle muscles. The objective of this theoretical study was to use muscle-actuated forward dynamics simulations of unilateral transtibial amputee and non-amputee walking to identify the contributions of ESAR prostheses to trunk support, forward propulsion and leg swing initiation and how individual muscles must compensate in order to produce a normal, symmetric gait pattern. The simulation analysis revealed the ESAR prosthesis provided the necessary trunk support, but it could not provide the net trunk forward propulsion normally provided by the plantar flexors and leg swing initiation normally provided by the biarticular gastrocnemius. To compensate, the residual leg gluteus maximus and rectus femoris delivered increased energy to the trunk for forward propulsion in early stance and late stance into pre-swing, respectively, while the residual iliopsoas delivered increased energy to the leg in pre- and early swing to help initiate swing. In the intact leg, the soleus, gluteus maximus and rectus femoris delivered increased energy to the trunk for forward propulsion in the first half of stance, while the iliopsoas increased the leg energy it delivered in pre- and early swing. Thus, the energy stored and released by the ESAR prosthesis combined with these muscle compensations was able to produce a normal, symmetric gait pattern, although various neuromuscular and musculoskeletal constraints may make such a pattern non-optimal.  相似文献   

15.
The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0°) to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA), obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA), erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement.  相似文献   

16.
《IRBM》2022,43(5):447-455
ObjectivesThe deviation in gait cycle due to trunk acceleration and muscle activity on even and uneven inclined planes should be analyzed for the design of lower limb exoskeletons. This study compares the gait variability of gastrocnemius and medial hamstring muscle activity variation of twenty young male adults on inclined even and uneven planes.Material and methodsThe individuals walked on a long, 10° inclined even and uneven plane in both up-the-plane and down-the-plane directions at their preferred speed (average speed is 1.2 m/s). Gait variability during walking was calculated using an average standard deviation of trunk acceleration and the significance of change was calculated using two-way-ANOVA. For studying the difference between integrated electromyography (IEMG) values of walking on even and uneven planes, two parameters Normalized IEMG Percentage (NIP) and IEMG Variation Percentage (IVP) were chosen for the analysis.ResultsThe results strongly agree with the hypothesis that gait variability hikes in the vertical direction of subject with a p-value of 0.04. The IEMG range of medial-hamstring muscle while walking on even and uneven plane is not highly significant for swing (0.44) as well as stance phase (0.47). While walking on an inclined uneven plane, the response of gastrocnemius muscle indicated the variation of NIP between 14.31% to 64.63%. It was observed that NIP and IEMG values of medial-hamstring muscles during backward walking have a resemblance.ConclusionTrunk variability had a significant change in the vertical direction (V) and was insignificant in medial-lateral (ML) and anterior-posterior (AP) orientations for both even and uneven inclined planes during forward and reverse walking. The muscle activity of gastrocnemius and medial-hamstring muscles does not have sound variations while walking on the inclined uneven plane.  相似文献   

17.
We used a lower limb robotic exoskeleton controlled by the wearer's muscle activity to study human locomotor adaptation to disrupted muscular coordination. Ten healthy subjects walked while wearing a pneumatically powered ankle exoskeleton on one limb that effectively increased plantar flexor strength of the soleus muscle. Soleus electromyography amplitude controlled plantar flexion assistance from the exoskeleton in real time. We hypothesized that subjects' gait kinematics would be initially distorted by the added exoskeleton power, but that subjects would reduce soleus muscle recruitment with practice to return to gait kinematics more similar to normal. We also examined the ability of subjects to recall their adapted motor pattern for exoskeleton walking by testing subjects on two separate sessions, 3 days apart. The mechanical power added by the exoskeleton greatly perturbed ankle joint movements at first, causing subjects to walk with significantly increased plantar flexion during stance. With practice, subjects reduced soleus recruitment by approximately 35% and learned to use the exoskeleton to perform almost exclusively positive work about the ankle. Subjects demonstrated the ability to retain the adapted locomotor pattern between testing sessions as evidenced by similar muscle activity, kinematic and kinetic patterns between the end of the first test day and the beginning of the second. These results demonstrate that robotic exoskeletons controlled by muscle activity could be useful tools for testing neural mechanisms of human locomotor adaptation.  相似文献   

18.
When studying pathological gait it is important to correctly identify primary gait anomalies originating from damage to the central nervous and musculoskeletal system and separate them from compensatory changes of gait pattern, which is often challenging due to the lack of knowledge related to biomechanics of pathological gait. A mechanical system consisting of specially designed trousers, special shoe arrangement, and elastic ropes attached to selected locations on the trousers and shoes is proposed to allow emulation of muscle contractures of soleus (SOL) and gastrocnemius (GAS) muscles and both SOL-GAS. The main objective of this study was to evaluate and compare gait variability as recorded in normal gait and when being constrained with the proposed system. Six neurologically and orthopedically intact volunteers walked along a 7-m walkway while gait kinematics and kinetics were recorded using VICON motion analysis system and two AMTI forceplates. Statistical analysis of coefficient of variation of kinematics and kinetics as recorded in normal walking and during the most constrained SOL-GAS condition showed comparable gait variability. Inspection of resulting group averaged gait patterns revealed considerable resemblance to a selected clinical example of spastic diplegia, indicating that the proposed mechanical system potentially represents a novel method for studying emulated pathological gait arising from artificially induced muscle contractures in neurologically intact individuals.  相似文献   

19.
The purpose of this study was to investigate control of the ankle joint muscles before and during gait initiation. Seven healthy humans, aged 20-30 years old, participated in this study. Motor-evoked potentials (MEPs) were recorded from the soleus and the tibialis anterior muscles, and H-reflexes were evoked from the soleus muscle in the stance leg of gait initiation. The soleus H-reflexes were depressed throughout all the periods before and during gait initiation. The soleus MEP amplitudes were decreased in some periods before gait initiation, but were increased in other periods before and during gait initiation. The MEP amplitudes in the tibialis anterior muscle were increased before the onset of the EMG activity, and this increase persisted through gait initiation. The findings indicate that the ankle joint flexor is under intensive cortico-spinal control before and during gait initiation. Both the cortical and spinal pathways are involved in preparing and controlling the activity of the ankle joint extensor for gait initiation.  相似文献   

20.
Most birds use at least two modes of locomotion: flying and walking (terrestrial locomotion). Whereas the wings and tail are used for flying, the legs are mainly used for walking. The role of other body segments remains, however, poorly understood. In this study, we examine the kinematics of the head, the trunk, and the legs during terrestrial locomotion in the quail (Coturnix coturnix). Despite the trunk representing about 70% of the total body mass, its function in locomotion has received little scientific interest to date. This prompted us to focus on its role in terrestrial locomotion. We used high-speed video fluoroscopic recordings of quails walking at voluntary speeds on a trackway. Dorso-ventral and lateral views of the motion of the skeletal elements were recorded successively and reconstructed in three dimensions using a novel method based on the temporal synchronisation of both views. An analysis of the trajectories of the body parts and their coordination showed that the trunk plays an important role during walking. Moreover, two sub-systems participate in the gait kinematics: (i) the integrated 3D motion of the trunk and thighs allows for the adjustment of the path of the centre of mass; (ii) the motion of distal limbs transforms the alternating forward motion of the feet into a continuous forward motion at the knee and thus assures propulsion. Finally, head bobbing appears qualitatively synchronised to the movements of the trunk. An important role for the thigh muscles in generating the 3D motion of the trunk is suggested by an analysis of the pelvic anatomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号