首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The contribution of DNA methylation to the metastatic process in colorectal cancers (CRCs) is unclear.

Methods

We evaluated the methylation status of 13 genes (MINT1, MINT2, MINT31, MLH1, p16, p14, TIMP3, CDH1, CDH13, THBS1, MGMT, HPP1 and ERα) by bisulfite-pyrosequencing in 79 CRCs comprising 36 CRCs without liver metastasis and 43 CRCs with liver metastasis, including 16 paired primary CRCs and liver metastasis. We also performed methylated CpG island amplification microarrays (MCAM) in three paired primary and metastatic cancers.

Results

Methylation of p14, TIMP3 and HPP1 in primary CRCs progressively decreased from absence to presence of liver metastasis (13.1% vs. 4.3%; 14.8% vs. 3.7%; 43.9% vs. 35.8%, respectively) (P<.05). When paired primary and metastatic tumors were compared, only MGMT methylation was significantly higher in metastatic cancers (27.4% vs. 13.4%, P = .013), and this difference was due to an increase in methylation density rather than frequency in the majority of cases. MCAM showed an average 7.4% increase in DNA methylated genes in the metastatic samples. The numbers of differentially hypermethylated genes in the liver metastases increased with increasing time between resection of the primary and resection of the liver metastasis. Bisulfite-pyrosequencing validation in 12 paired samples showed that most of these increases were not conserved, and could be explained by differences in methylation density rather than frequency.

Conclusions

Most DNA methylation differences between primary CRCs and matched liver metastasis are due to random variation and an increase in DNA methylation density rather than de-novo inactivation and silencing. Thus, DNA methylation changes occur for the most part before progression to liver metastasis.  相似文献   

2.

Background

Oncogenic mutational analysis provides predictive guidance for therapeutics such as anti-EGFR antibodies, but it is successful only for a subset of colorectal cancer (CRC) patients.

Method

A comprehensive molecular profiling of 120 CRC patients, including 116 primary, 15 liver metastasis, and 1 peritoneal seeding tissue samples was performed to identify the relationship between v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) WT and mutant CRC tumors and clinical outcomes. This included determination of the protein activation patterns of human epidermal receptor 1 (HER1), HER2, HER3, c-MET, insulin-like growth factor 1 receptor (IGF1R), phosphatidylinositide 3-kinase (PI3K), Src homology 2 domain containing (Shc), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) kinases using multiplexed collaborative enzyme enhanced reactive (CEER) immunoassay.

Results

KRAS WT and mutated CRCs were not different with respect to the expression of the various signaling molecules. Poor prognosis in terms of early relapse (<2 years) and shorter disease-free survival (DFS) correlated with enhanced activation of PI3K signaling relative to the HER kinase pathway signaling, but not with the KRAS mutational status. KRAS WT CRCs were identified as a mixed prognosis population depending on their level of PI3K signaling. KRAS WT CRCs with high HER1/c-MET index ratio demonstrated a better DFS post-surgery. c-MET and IGF1R activities relative to HER axis activity were considerably higher in early relapse CRCs, suggesting a role for these alternative receptor tyrosine kinases (RTKs) in driving high PI3K signaling.

Conclusions

The presented data subclassified CRCs based on their activated signaling pathways and identify a role for c-MET and IGF1R-driven PI3K signaling in CRCs, which is superior to KRAS mutational tests alone. The results from this study can be utilized to identify aggressive CRCs, explain failure of currently approved therapeutics in specific CRC subsets, and, most importantly, generate hypotheses for pathway-guided therapeutic strategies that can be tested clinically.  相似文献   

3.

Background

Long noncoding RNAs (lncRNAs) play widespread roles in gene regulation and cellular processes. However, the functional roles of lncRNAs in colorectal cancer (CRC) are not yet well elucidated. The aim of the present study was to measure the levels of lncRNA 91H expression in CRC and evaluate its clinical significance and biological roles in the development and progression of CRC.

Methods

91H expression and copy number variation (CNV) were measured in 72 CRC tumor tissues and adjacent normal tissues by real-time PCR. The biological roles of 91H were evaluated by MTT, scratch wound assay, migration and invasion assays, and flow cytometry.

Results

91H was significantly overexpressed in cancerous tissue and CRC cell lines compared with adjacent normal tissue and a normal human intestinal epithelial cell line. Moreover, 91H overexpression was closely associated with distant metastasis and poor prognosis in patients with CRC, except for CNV of 91H. Multivariate analysis indicated that 91H expression was an independent prognostic indicator, as well as distant metastasis. Our in vitro data indicated that knockdown of 91H inhibited the proliferation, migration, and invasiveness of CRC cells.

Conclusions

91H played an important role in the molecular etiology of CRC and might be regarded as a novel prognosis indicator in patients with CRC.  相似文献   

4.

Purpose

We sought to identify genes of clinical significance to predict survival and the risk for colorectal liver metastasis (CLM), the most common site of metastasis from colorectal cancer (CRC).

Patients and Methods

We profiled gene expression in 31 specimens from primary CRC and 32 unmatched specimens of CLM, and performed Significance Analysis of Microarrays (SAM) to identify genes differentially expressed between these two groups. To characterize the clinical relevance of two highly-ranked differentially-expressed genes, we analyzed the expression of secreted phosphoprotein 1 (SPP1 or osteopontin) and lymphoid enhancer factor-1 (LEF1) by immunohistochemistry using a tissue microarray (TMA) representing an independent set of 154 patients with primary CRC.

Results

Supervised analysis using SAM identified 963 genes with significantly higher expression in CLM compared to primary CRC, with a false discovery rate of <0.5%. TMA analysis showed SPP1 and LEF1 protein overexpression in 60% and 44% of CRC cases, respectively. Subsequent occurrence of CLM was significantly correlated with the overexpression of LEF1 (chi-square p = 0.042), but not SPP1 (p = 0.14). Kaplan Meier analysis revealed significantly worse survival in patients with overexpression of LEF1 (p<0.01), but not SPP1 (p = 0.11). Both univariate and multivariate analyses identified stage (p<0.0001) and LEF1 overexpression (p<0.05) as important prognostic markers, but not tumor grade or SPP1.

Conclusion

Among genes differentially expressed between CLM and primary CRC, we demonstrate overexpression of LEF1 in primary CRC to be a prognostic factor for poor survival and increased risk for liver metastasis.  相似文献   

5.

Background

Colorectal carcinoma (CRC) is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs, miRs) play important roles in carcinogenesis. MiR-126 has been shown to be down-regulated in CRC. In this study, we identified the potential effects of miR-126 on some important biological properties of CRC cells and clarified the regulation of insulin receptor substrate 1 (IRS-1) and its possible signaling pathway by miR-126.

Methods

The effect of miR-126 on IRS-1, AKT, and ERK1/2 expression was assessed in the CRC cell lines HT-29 and HCT-116 with a miR-126 mimic or inhibitor to increase or decrease miR-126 expression. Furthermore, the roles of miR-126 in regulation of the biological properties of CRC cells were analyzed with miR-126 mimic or inhibitor-transfected cells. The 3′-untranslated region (3′-UTR) of IRS-1 regulated by miR-126 was analyzed by using a dual-luciferase reporter assay.

Results

We found that IRS-1 is the functional downstream target of miR-126 by directly targeting the 3′-UTR of IRS-1. Endogenous miR-126 and exogenous miR-126 mimic inhibited IRS-1 expression. Furthermore, gain-of-function or loss-of-function studies showed that over-expression of miR-126 down-regulated IRS-1, suppressed AKT and ERK1/2 activation, CRC cells proliferation, migration, invasion, and caused cell cycle arrest, but had no effect on cell apoptosis. Knockdown of miR-126 promoted these processes in HCT-116 cells and promoted AKT and ERK1/2 activation by up-regulating the expression of the IRS-1 protein.

Conclusions

MiR-126 may play roles in regulation of the biological behavior of CRC cells, at least in part, by targeting IRS-1 via AKT and ERK1/2 signaling pathways.  相似文献   

6.

Background

Colorectal cancer (CRC) is the second leading cause of cancer deaths despite the fact that detection of this cancer in early stages results in over 90% survival rate. Currently less than 45% of at-risk individuals in the US are screened regularly, exposing a need for better screening tests. We performed two case-control studies to validate a blood-based test that identifies methylated DNA in plasma from all stages of CRC.

Methodology/Principal Findings

Using a PCR assay for analysis of Septin 9 (SEPT9) hypermethylation in DNA extracted from plasma, clinical performance was optimized on 354 samples (252 CRC, 102 controls) and validated in a blinded, independent study of 309 samples (126 CRC, 183 controls). 168 polyps and 411 additional disease controls were also evaluated. Based on the training study SEPT9-based classification detected 120/252 CRCs (48%) and 7/102 controls (7%). In the test study 73/126 CRCs (58%) and 18/183 control samples (10%) were positive for SEPT9 validating the training set results. Inclusion of an additional measurement replicate increased the sensitivity of the assay in the testing set to 72% (90/125 CRCs detected) while maintaining 90% specificity (19/183 for controls). Positive rates for plasmas from the other cancers (11/96) and non-cancerous conditions (41/315) were low. The rate of polyp detection (>1 cm) was ∼20%.

Conclusions/Significance

Analysis of SEPT9 DNA methylation in plasma represents a straightforward, minimally invasive method to detect all stages of CRC with potential to satisfy unmet needs for increased compliance in the screening population. Further clinical testing is warranted.  相似文献   

7.

Background

Testes-specific protease 50 (TSP50) is normally expressed in testes and abnormally expressed in breast cancer, but whether TSP50 is expressed in colorectal carcinoma (CRC) and its clinical significance is unclear. We aimed to detect TSP50 expression in CRC, correlate it with clinicopathological factors, and assess its potential diagnostic and prognostic value.

Methodology/Principal Findings

TSP50 mRNAs and proteins were detected in 7 CRC cell lines and 8 CRC specimens via RT-PCR and Western blot analysis. Immunohistochemical analysis of TSP50, p53 and carcinoembryonic antigen (CEA) with tissue microarrays composed of 95 CRCs, 20 colorectal adenomas and 20 normal colorectal tissues were carried out and correlated with clinicopathological characteristics and disease-specific survival for CRC patients. There was no significant correlation between the expression levels of TSP50 and p53 (P = 0.751) or CEA (P = 0.663). Abundant expression of TSP50 protein was found in CRCs (68.4%) while it was poorly expressed in colorectal adenomas and normal tissues (P<0.0001). Thus, CRCs can be distinguished from them with high specificity (92.5%) and positive predictive value (PPV, 95.6%). The survival of CRC patients with high TSP50 expression was significantly shorter than that of the patients with low TSP50 expression (P = 0.010), specifically in patients who had early-stage tumors (stage I and II; P = 0.004). Multivariate Cox regression analysis indicated that high TSP50 expression was a statistically significant independent risk factor (hazard ratio  = 2.205, 95% CI = 1.214–4.004, P = 0.009).

Conclusion

Our data demonstrate that TSP50 is a potential effective indicator of poor survival for CRC patients, especially for those with early-stage tumors.  相似文献   

8.

Background

Placenta growth factor (PlGF), a dimeric glycoprotein with 53% homology to VEGF, binds to VEGF receptor-1 (Flt-1), but not to VEGF receptor-2 (Flk-1), and may function by modulating VEGF activity. We previously have showed that PlGF displays prognostic value in colorectal cancer (CRC) but the mechanism remains elucidated.

Results

Overexpression of PlGF increased the invasive/migration ability and decreased apoptosis in CRC cells showing Flt-1 expression. Increased migration was associated with increasing MMP9 via p38 MAPK activation. Tumors grew faster, larger; with higher vascularity from PlGF over-expression cells in xenograft assay. In two independent human CRC tissue cohorts, PlGF, MMP9, and Flt-1 expressions were higher in the advanced than the localized disease group. PlGF expression correlated with MMP9, and Flt-1 expression. CRC patients with high PlGF and high Flt-1 expression in tissue had poor prognosis.

Conclusion

PlGF/Flt-1 signaling plays an important role in CRC progression, blocking PlGF/Flt-1 signaling maybe an alternative therapy for CRC.  相似文献   

9.

Background

The role of CTGF varies in different types of cancer. The purpose of this study is to investigate the involvement of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC).

Experimental design

CTGF expression levels were examined in NPC tissues and cells, nasopharynx (NP) tissues, and NP69 cells. The effects and molecular mechanisms of CTGF expression on cell proliferation, migration, invasion, and cell cycle were also explored.

Results

NPC cells exhibited decreased mRNA expression of CTGF compared to immortalized human nasopharyngeal epithelial cell line NP69. Similarly, CTGF was observed to be downregulated in NPC compared to normal tissues at mRNA and protein levels. Furthermore, reduced CTGF was negatively associated with the progression of NPC. Knocking down CTGF expression enhanced the colony formation, cell migration, invasion, and G1/S cell cycle transition. Mechanistic analysis revealed that CTGF suppression activated FAK/PI3K/AKT and its downstream signals regulating the cell cycle, epithelial-mesenchymal transition (EMT) and MMPs. Finally, DNA methylation microarray revealed a lack of hypermethylation at the CTGF promoter, suggesting other mechanisms are associated with suppression of CTGF in NPC.

Conclusion

Our study demonstrates that reduced expression of CTGF promoted cell proliferation, migration, invasion and cell cycle progression through FAK/PI3K/AKT, EMT and MMP pathways in NPC.  相似文献   

10.

Background

Colorectal cancers (CRCs) with microsatellite instability (MSI) are associated with a good prognosis and a high density of tumor-infiltrating lymphocytes (TILs). We have undertaken to determine the link between TIL densities and MSI CRC histologic features.

Patients and Methods

Using tissue microarrays, T-cell sub-population infiltration, including T cells (CD3), cytotoxic T cells (CD8) and regulatory T cells (FoxP3) were studied in 86 MSI CRCs. We separately analyzed TILs of the stromal and epithelial compartments in the tumor center, the tumoral invasion margin and associated normal tissue.

Results

For FoxP3+ TIL density in the tumor center stromal compartment, we found a strong negative correlation with T4 stage (p = 0.01), node invasion (p<0.001) and VELIPI (vascular emboli, lymphatic invasion and perinervous invasion) criteria (p = 0.002).

Conclusion

The strong correlation between regulatory T cell density and the absence of VELIPI criteria suggests that this sub-group of T cells is preferentially associated with less invasive tumors.  相似文献   

11.
12.

Background

Wound healing is a highly dynamic process that requires signaling from the extracellular matrix to the fibroblasts for migration and proliferation, and closure of the wound. This rate of wound closure is impaired in diabetes, which may be due to the increased levels of the precursor for advanced glycation end products, 3-deoxyglucosone (3DG). Previous studies suggest a differential role for p38 mitogen-activated kinase (MAPK) during wound healing; whereby, p38 MAPK acts as a growth kinase during normal wound healing, but acts as a stress kinase during diabetic wound repair. Therefore, we investigated the signaling cross-talk by which p38 MAPK mediates wound healing in fibroblasts cultured on native collagen and 3DG-collagen.

Methodology/Principal Findings

Using human dermal fibroblasts cultured on 3DG-collagen as a model of diabetic wounds, we demonstrated that p38 MAPK can promote either cell growth or cell death, and this was dependent on the activation of AKT and ERK1/2. Wound closure on native collagen was dependent on p38 MAPK phosphorylation of AKT and ERK1/2. Furthermore, proliferation and collagen production in fibroblasts cultured on native collagen was dependent on p38 MAPK regulation of AKT and ERK1/2. In contrast, 3DG-collagen decreased fibroblast migration, proliferation, and collagen expression through ERK1/2 and AKT downregulation via p38 MAPK.

Conclusions/Significance

Taken together, the present study shows that p38 MAPK is a key signaling molecule that plays a significantly opposite role during times of cellular growth and cellular stress, which may account for the differing rates of wound closure seen in diabetic populations.  相似文献   

13.

Background

Many studies associated the main polyphenolic constituent of green tea, (-)-Epigallocatechin-3-gallate (EGCG), with inhibition of cancers, invasion and metastasis. To date, most of the studies have focused on the effect of EGCG on cell proliferation or death. Since cell migration is an important mechanism involved in tumor invasion, the aim of the present work was to target another approach of the therapeutic effect of EGCG, by investigating its effect on the cell migratory behavior.

Methods

The effect of EGCG (at concentrations lower than 10 μg/ml) on the migration speed of invasive cells was assessed by using 2D and 3D models of cell culture. We also studied the effects of EGCG on proteinases expression by RT-PCR analysis. By immunocytochemistry, we analyzed alterations of vimentin organization in presence of different concentrations of EGCG.

Results

We observed that EGCG had an inhibitory effect of cell migration in 2D and 3D cell culture models. EGCG also inhibited MMP-2 mRNA and protein expression and altered the intermediate filaments of vimentin.

Conclusion

Taken together, our results demonstrate that EGCG is able to inhibit the migration of bronchial tumor cells and could therefore be an attractive candidate to treat tumor invasion and cell migration.  相似文献   

14.

Background

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease (CLD) and is frequently linked to intrahepatic microvascular disorders. Activation of hepatic stellate cells (HSC) is a central event in liver damage, due to their contribution to hepatic renewal and to the development of fibrosis and hepatocarcinoma. During the progression of CLDs, HSC attempt to restore injured tissue by stimulating repair processes, such as fibrosis and angiogenesis. Because HSC express the key vascular receptor Tie2, among other angiogenic receptors and mediators, we analyzed its involvement in the development of CLD.

Methods

Tie2 expression was monitored in HSC cultures that were exposed to media from HCV-expressing cells (replicons). The effects of Tie2 blockade on HSC activation by either neutralizing antibody or specific signaling inhibitors were also examined.

Results

Media from HCV-replicons enhanced HSC activation and invasion and upregulated Tie2 expression. Notably, the blockade of Tie2 receptor (by a specific neutralizing antibody) or signaling (by selective AKT and MAPK inhibitors) significantly reduced alpha-smooth muscle actin (α-SMA) expression and the invasive potential of HCV-conditioned HSC.

Conclusions

These findings ascribe a novel profibrogenic function to Tie2 receptor in the progression of chronic hepatitis C, highlighting the significance of its dysregulation in the evolution of CLDs and its potential as a novel therapeutic target.  相似文献   

15.

Background

Metastasis accounts for the most deaths in patients with hepatocellular carcinoma (HCC). Receptor activator of nuclear factor kappa B ligand (RANKL) is associated with cancer metastasis, while its role in HCC remains largely unknown.

Methods

Immunohistochemistry was performed to determine the expression of RANK in HCC tissue (n = 398). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to examine the expression of RANK, E-cadherin, N-cadherin, vimentin, Snail, Slug, Twist and MMPs in HCC cells. Wound healing and Transwell assays were used to evaluate cell migration and invasion ability.

Results

We found that expression of RANK, the receptor of RANKL, was significantly higher in HCC tumor tissues than in peritumor liver tissues (p<0.001). Constitutive expression of RANK was detected in HCC cell lines, which can be up-regulated when HCC cells were stimulated with RANKL. Notably, in vitro experiments showed that activation of RANKL-RANK axis significantly promoted migration and invasion ability of HCC cells. In addition, RANKL stimulation increased the expression levels of N-cadherin, Snail, and Twist, while decreased the expression of E-cadherin, with concomitant activation of NF-κB signaling pathway. Moreover, administration of the NF-κB inhibitor attenuated RANKL-induced migration, invasion and epithelial-mesenchymal transition of HCC cells.

Conclusions

RANKL could potentiate migration and invasion ability of RANK-positive HCC cells through NF-κB pathway-mediated epithelial-mesenchymal transition, which means that RANKL-RANK axis could be a potential target for HCC therapy.  相似文献   

16.
X Xu  Y Zhou  C Xie  SM Wei  H Gan  S He  F Wang  L Xu  J Lu  W Dai  L He  P Chen  X Wang  C Guo 《PloS one》2012,7(8):e43119

Aims

The role of sonic hedgehog (SHH) in epithelial mesenchymal transition (EMT) of pancreatic cancer (PC) is known, however, its mechanism is unclear. Because SHH promotes tumor development predominantly through Gli1, we sought to understand its mechanism by identifying Gli1 targets in pancreatic cancer cells.

Methods

First, we investigated invasion, migration, and EMT in PC cells transfected with lentiviral Gli1 interference vectors or SHH over-expression vectors in vitro and in vivo. Next, we determined the target gene profiles of Gli1 in PC cells using cDNA microarray assays. Finally, the primary regulatory networks downstream of SHH-Gli1 signaling in PC cells were studied through functional analyses of these targets.

Results

Our results indicate there is decreased E-cadherin expression upon increased expression of SHH/Gli1. Migration of PC cells increased significantly in a dose-dependent manner within 24 hours of Gli1 expression (P<0.05). The ratio of liver metastasis and intrasplenic miniature metastasis increased markedly upon activation of SHH-Gli1 signals in nude mice. Using cDNA microarray, we identified 278 upregulated and 59 downregulated genes upon Gli1 expression in AsPC-1 cells. The data indicate that SHH-Gli1 signals promote EMT by mediating a complex signaling network including TGFβ, Ras, Wnt, growth factors, PI3K/AKT, integrins, transmembrane 4 superfamily (TM4SF), and S100A4.

Conclusion

Our results suggest that targeting the molecular connections established between SHH-Gli1 signaling and EMT could provide effective therapies for PC.  相似文献   

17.

Background

Progressive multifocal leukoencephalopathy (PML), a rare devastating demyelinating disease caused by the polyomavirus JC (JCV), occurs in severely immunocompromised patients, most of whom have advanced-stage HIV infection. Despite combination antiretroviral therapy (cART), 50% of patients die within 6 months of PML onset. We conducted a multicenter, open-label pilot trial evaluating the survival benefit of a five-drug cART designed to accelerate HIV replication decay and JCV-specific immune recovery.

Methods and Findings

All the patients received an optimized cART with three or more drugs for 12 months, plus the fusion inhibitor enfuvirtide during the first 6 months. The main endpoint was the one-year survival rate. A total of 28 patients were enrolled. At entry, median CD4+ T-cell count was 53 per microliter and 86% of patients had detectable plasma HIV RNA and CSF JCV DNA levels. Seven patients died, all before month 4. The one-year survival estimate was 0.75 (95% confidence interval, 0.61 to 0.93). At month 6, JCV DNA was undetectable in the CSF of 81% of survivors. At month 12, 81% of patients had undetectable plasma HIV RNA, and the median CD4+ T-cell increment was 105 per microliter. In univariate analysis, higher total and naive CD4+ T-cell counts and lower CSF JCV DNA level at baseline were associated with better survival. JCV-specific functional memory CD4+ T-cell responses, based on a proliferation assay, were detected in 4% of patients at baseline and 43% at M12 (P = 0.008).

Conclusions

The early use of five-drug cART after PML diagnosis appears to improve survival. This is associated with recovery of anti-JCV T-cell responses and JCV clearance from CSF. A low CD4+ T-cell count (particularly naive subset) and high JCV DNA copies in CSF at PML diagnosis appear to be risk factors for death.

Trial Registration

ClinicalTrials.gov NCT00120367  相似文献   

18.
19.

Background

Clock genes drive about 5–15% of genome-wide mRNA expression, and disruption of the circadian clock may deregulate the cell''s normal biological functions. Cryptochrome 1 is a key regulator of the circadian feedback loop and plays an important role in organisms. The present study was conducted to investigate the expression of Cry1 and its prognostic significance in colorectal cancer (CRC). In addition, the function of Cry1 in human CRC was investigated in cell culture models.

Methods

Real-time quantitative PCR, Western blot analysis and immunohistochemistry were used to explore Cry1 expression in CRC cell lines and primary CRC clinical specimens. MTT and colony formation assays were used to determine effects on cellular proliferation ability. The animal model was used to explore the Cry1 impact on the tumor cellular proliferation ability in vivo. Transwell assays were performed to detect the migration ability of the cell lines. Statistical analyzes were applied to evaluate the diagnostic value and the associations of Cry1 expression with clinical parameters.

Results

Cry1 expression was up regulated in the majority of the CRC cell lines and 168 primary CRC clinical specimens at the protein level. Clinical pathological analysis showed that Cry1 expression was significantly correlated with lymph node metastasis (p = 0.004) and the TNM stage (p = 0.003). High Cry1 expression was associated with poor overall survival in CRC patients (p = 0.010). Experimentally, we found that up-regulation of Cry1 promoted the proliferation and migration of HCT116 cells, while down-regulation of Cry1 inhibited the colony formation and migration of SW480 cells.

Conclusions

These results suggest that Cry1 likely plays important roles in CRC development and progression andCry1 may be a prognostic biomarker and a promising therapeutic target for CRC.  相似文献   

20.

Background

Calpain small subunit 1 (Capn4) has been shown to correlate with the metastasis/invasion of hepatocellular carcinoma. This study aimed to investigate the role of Capn4 in intrahepatic cholangiocarcinoma (ICC).

Methods

Capn4 expression was measured in 33 ICC tissues by quantitative real-time polymerase chain reaction and western blot. The role of Capn4 in the migration, invasion and proliferation of ICC cells and matrix metalloproteinase 2 (MMP2) expression were assessed after Capn4 depletion by specific small interfering RNA. Capn4 expression was further examined by immunohistochemistry in a tissue microarray consisting of 140 ICC patients and 13 normal liver tissues, and the prognostic role of Capn4 in ICC was evaluated by Kaplan-Meier and Cox regression analyses.

Results

Capn4 expression was significantly higher in the ICC tissues compared to the peritumor tissues. Capn4 down-regulation impaired the migration/invasion ability of HCCC-9810 and QBC939 cells in vitro and decreased MMP2 expression. Capn4 overexpression significantly correlated with the presence of lymphatic metastasis of ICC (p = 0.026) and the tumor-node-metastasis (TNM) stage (p = 0.009). The postoperative 2- and 5-year overall survivals in patients with Capn4low were higher than those in the Capn4high group. The cumulative recurrence rate in patients with Capn4low was much lower than in the Capn4high group. Multivariate analysis showed that Capn4 overexpression was an independent prognostic marker in ICC.

Conclusions

Capn4 overexpression was implicated in ICC metastasis/invasion, and Capn4 overexpression may be used as a molecular therapeutic target for ICC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号