首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The anaerobic spirochete Brachyspira pilosicoli colonizes the large intestine of various species of birds and mammals, including humans. It causes “intestinal spirochetosis”, a condition characterized by mild colitis, diarrhea and reduced growth. This study aimed to sequence and analyse the bacterial genome to investigate the genetic basis of its specialized ecology and virulence.

Methodology/Principal Findings

The genome of B. pilosicoli 95/1000 was sequenced, assembled and compared with that of the pathogenic Brachyspira hyodysenteriae and a near-complete sequence of Brachyspira murdochii. The B. pilosicoli genome was circular, composed of 2,586,443 bp with a 27.9 mol% G+C content, and encoded 2,338 genes. The three Brachyspira species shared 1,087 genes and showed evidence of extensive genome rearrangements. Despite minor differences in predicted protein functional groups, the species had many similar features including core metabolic pathways. Genes distinguishing B. pilosicoli from B. hyodysenteriae included those for a previously undescribed bacteriophage that may be useful for genetic manipulation, for a glycine reductase complex allowing use of glycine whilst protecting from oxidative stress, and for aconitase and related enzymes in the incomplete TCA cycle, allowing glutamate synthesis and function of the cycle during oxidative stress. B. pilosicoli had substantially fewer methyl-accepting chemotaxis genes than B. hyodysenteriae and hence these species are likely to have different chemotactic responses that may help to explain their different host range and colonization sites. B. pilosicoli lacked the gene for a new putative hemolysin identified in B. hyodysenteriae WA1. Both B. pilosicoli and B. murdochii lacked the rfbBADC gene cluster found on the B. hyodysenteriae plasmid, and hence were predicted to have different lipooligosaccharide structures. Overall, B. pilosicoli 95/1000 had a variety of genes potentially contributing to virulence.

Conclusions/Significance

The availability of the complete genome sequence of B. pilosicoli 95/1000 will facilitate functional genomics studies aimed at elucidating host-pathogen interactions and virulence.  相似文献   

2.

Background

Brachyspira species are fastidious anaerobic microorganisms, that infect the colon of various animals. The genus contains both important pathogens of livestock as well as commensals. Two species are known to infect humans: B. aalborgi and B. pilosicoli. There is some evidence suggesting that the veterinary pathogenic B. pilosicoli is a potential zoonotic agent, however, since diagnosis in humans is based on histopathology of colon biopsies, species identification is not routinely performed in human materials.

Methods

The study population comprised 57 patients with microscopic evidence of Brachyspira infection and 26 patients with no histopathological evidence of Brachyspira infection. Concomitant faecal samples were available from three infected patients. Based on publically available 16S rDNA gene sequences of all Brachyspira species, species-specific primer sets were designed. DNA was extracted and tested by real-time PCR and 16S rDNA was sequenced.

Results

Sensitivity and specificity for identification of Brachyspira species in colon biopsies was 100% and 87.7% respectively. Sequencing revealed B. pilosicoli in 15.4% of patients, B. aalborgi in 76.9% and a third species, tentatively named “Brachyspira hominis”, in 26.2%. Ten patients (12.3%) had a double and two (3.1%) a triple infection. The presence of Brachyspira pilosicoli was significantly associated with inflammatory changes in the colon-biopsy (p = 0.028).

Conclusions

This newly designed PCR allows for sub-differentiation of Brachyspira species in patient material and thus allows large-scaled surveillance studies to elucidate the pathogenicity of human Brachyspira infections. One-third of affected patients appeared to be infected with a novel species.  相似文献   

3.

Objective

This study aims to investigate in vitro the effect of the VDR agonist BXL-01-0029 onto IFNγ/TNFα-induced CXCL10 secretion by human skeletal muscle cells compared to elocalcitol (VDR agonist), methylprednisolone, methotrexate, cyclosporin A, infliximab and leflunomide; to assess in vivo circulating CXCL10 level in subjects at time of diagnosis with IMs, before therapy, together with TNFα, IFNγ, IL-8, IL-6, MCP-1, MIP-1β and IL-10, vs. healthy subjects.

Methods

Human fetal skeletal muscle cells were used for in vitro studies; ELISA and Bio-Plex were used to measure cell supernatant and IC50 determination or serum cytokines; Western blot and Bio-Plex were for cell signaling analysis.

Results

BXL-01-0029 decreased with the highest potency IFNγ/TNFα-induced CXCL10 protein secretion and targeted cell signaling downstream of TNFα in human skeletal muscle cells; CXCL10 level was the highest in sera of subjects diagnosed with IMs before therapy and the only one significantly different vs. healthy controls.

Conclusions

Our in vitro and in vivo data, while confirm the relevance of CXCL10 in IMs, suggested BXL-01-0029 as a novel pharmacological tool for IM treatment, hypothetically to be used in combination with the current immunosuppressants to minimize side effects.  相似文献   

4.
5.

Objective

The etiology and pathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS) are unclear. Chronic inflammation is considered the main pathology of IC/BPS. This study measured the serum c-reactive protein (CRP), nerve growth factor (NGF) and pro-inflammatory cytokine/chemokine interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-8 expression in patients with IC/BPS to elucidate the involvement of systemic inflammation in IC/BPS.

Methods

Serum samples were collected from 30 IC/BPS patients and 26 control subjects. The concentrations of serum nerve growth factor (NGF), IL-1β, IL-6, TNF-α, and IL-8 were quantified using a bead-based, human serum adipokine panel kit. Serum C-reactive protein (CRP) was also assessed. Differences of serum CRP, NGF, IL-1β, IL-6, TNF-α, and IL-8 levels between the IC/BPS patients and controls were compared, and correlations between CRP and pro-inflammatory cytokines and chemokine were also evaluated.

Results

The results showed that CRP level (p = 0.031), NGF (p = 0.015) and pro-inflammatory cytokines/chemokine IL-1β, IL-6, TNF-α, and IL-8 levels were significantly higher in the patients with IC/BPS than among controls (all p<0.001). Significant associations were observed between IL-1β and IL-8 (p<0.001), IL-6 and CRP (p = 0.01), IL-6 and IL-8 (p = 0.02), and IL-6 and TNF-α (p = 0.03).

Conclusion

Increased pro-inflammatory cytokines/chemokine (IL-1β, IL-6, TNF-α, and IL-8) expression in the sera of IC/BPS patients implies not only mast cell activation, but also that other inflammatory mediators play important roles in the pathogenesis of IC/BPS. Thus, for some patients, IC/BPS is considered a chronic inflammatory disease.  相似文献   

6.

Background

Visceral leishmaniasis has emerged as an important opportunistic disease among patients infected with HIV-1. Both HIV-1 and the protozoan parasite Leishmania can productively infect cells of the macrophage-dendritic cell lineage.

Methodology/Principal Findings

Here we demonstrate that Leishmania infantum amastigotes increase HIV-1 production when human primary dendritic cells (DCs) are cocultured together with autologous CD4+ T cells. Interestingly, the promastigote form of the parasite does not modulate virus replication. Moreover, we report that amastigotes promote virus replication in both cell types. Our results indicate that this process is due to secretion of parasite-induced soluble factors by DCs. Luminex micro-beads array system analyses indicate that Leishmania infantum amastigotes induce a higher secretion of several cytokines (i.e. IL-1α, IL-2, IL-6, IL-10 and TNF-α) and chemokines (i.e. MIP-1α, MIP-1β and RANTES) in these cells. Studies conducted with pentoxifylline and neutralizing antibodies revealed that the Leishmania-dependent augmentation in HIV-1 replication is due to a higher secretion of IL-6 and TNF-α.

Conclusions/Significance

Altogether these findings suggest that the presence of Leishmania within DC/T-cell conjugates leads to an enhancement of virus production and demonstrate that HIV-1 and Leishmania can establish complex interactions in such a cellular microenvironment.  相似文献   

7.
8.

Background

IgE antibodies play a paramount role in the pathogenesis of various intestinal disorders. To gain insights in IgE-mediated pathophysiology of the gut, we investigated the expression of the high affinity IgE receptor FcεRI in human intestinal epithelium.

Methodology/Principal Findings

FcεRI α-chain, as detected by immunohistochemistry, was positive in epithelial cells for eight of eleven (8/11) specimens from colon cancer patients and 5/11 patients with inflammation of the enteric mucosa. The FcεRIα positive epithelial cells co-expressed FcεRIγ, whereas with one exception, none of the samples was positive for the β-chain in the epithelial layer. The functionality of FcεRI was confirmed in situ by human IgE binding. In experiments with human intestinal tumor cell lines, subconfluent Caco-2/TC7 and HCT-8 cells were found to express the α- and γ-chains of FcεRI and to bind IgE, whereas confluent cells were negative for γ-chains.

Conclusions/Significance

Our data provide the first evidence that the components of a functional FcεRI are in vitro expressed by the human intestinal epithelial cells depending on differentiation and, more importantly, in situ in epithelia of patients with colon cancer or gastrointestinal inflammations. Thus, a contribution of FcεRI either to immunosurveillance or pathophysiology of the intestinal epithelium is suggested.  相似文献   

9.

Introduction

Little is known about how neonatal airway epithelial cell phenotype impacts on respiratory disease in later life. This study aimed to establish a methodology to culture and characterise neonatal nasal epithelial cells sampled from healthy, non-sedated infants within 48 hours of delivery.

Methods

Nasal epithelial cells were sampled by brushing both nostrils with an interdental brush, grown to confluence and sub-cultured. Cultured cells were characterised morphologically by light and electron microscopy and by immunocytochemistry. As an exemplar pro-inflammatory chemokine, IL-8 concentrations were measured in supernatants from unstimulated monolayers and after exposure to IL-1β/TNF-α or house dust mite extract.

Results

Primary cultures were successfully established in 135 (91%) of 149 neonatal samples seeded, with 79% (n  =  117) successfully cultured to passage 3. The epithelial lineage of the cells was confirmed by morphological analysis and immunostaining. Constitutive IL-8 secretion was observed and was upregulated by IL-1β/TNF-α or house dust mite extract in a dose dependent manner.

Conclusion

We describe a safe, minimally invasive method of culturing nasal epithelial cells from neonates suitable for functional cell analysis offering an opportunity to study “naïve” cells that may prove useful in elucidating the role of the epithelium in the early origins of asthma and/or allergic rhinitis.  相似文献   

10.

Introduction

The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage from human osteoarthritic joints, 2) CPC migration is stimulated by single growth factors and the cocktail of factors released from traumatized cartilage and 3) CPC migration is influenced by cytokines present in traumatized joints.

Methods

We characterized the cells growing out from macroscopically intact human osteoarthritic cartilage using a panel of positive and negative surface markers and analyzed their differentiation capacity. The migratory response to platelet-derived growth factor (PDGF)-BB, insulin-like growth factor 1 (IGF-1), supernatants obtained from in vitro traumatized cartilage and interleukin-1 beta (IL-1β) as well as tumor necrosis factor alpha (TNF-α) were tested with a modified Boyden chamber assay. The influence of IL-1β and TNF-α was additionally examined by scratch assays and outgrowth experiments.

Results

A comparison of 25 quadruplicate marker combinations in CPC and bone-marrow derived mesenchymal stromal cells showed a similar expression profile. CPC cultures had the potential for adipogenic, osteogenic and chondrogenic differentiation. PDGF-BB and IGF-1, such as the supernatant from traumatized cartilage, induced a significant site-directed migratory response. IL-1β and TNF-α significantly reduced basal cell migration and abrogated the stimulative effect of the growth factors and the trauma supernatant. Both cytokines also inhibited cell migration in the scratch assay and primary outgrowth of CPC from cartilage tissue. In contrast, the cytokine IL-6, which is present in trauma supernatant, did not affect growth factor induced migration of CPC.

Conclusion

These results indicate that traumatized cartilage releases chemoattractive factors for CPC but IL-1β and TNF-α inhibit their migratory activity which might contribute to the low regenerative potential of cartilage in vivo.  相似文献   

11.
12.

Background

The type-1 cytokine pathway plays a pivotal role in immunity against intracellular bacterial pathogens such as Salmonellae and Mycobacteria. Bacterial stimulation of pattern recognition receptors on monocytes, macrophages and dendritic cells initiates this pathway, and results in the production of cytokines that activate lymphocytes to produce interferon (IFN)-γ. Interleukin (IL)-12 and IL-23 are thought to be the key cytokines required for initiating a type-1 cytokine immune response to Mycobacteria and Salmonellae. The relative contribution of IL-23 and IL-12 to this process is uncertain.

Methodology/Principal Findings

We show that various TLR agonists induce the production of IL-23 but not IL-12 in freshly isolated human monocytes and cultured human macrophages. In addition, type 1 pro-inflammatory macrophages (Mϕ1) differentiated in the presence of GM-CSF and infected with live Salmonella produce IL-23, IL-1β and IL-18, but not IL-12. Supernatants of Salmonella-infected Mϕ1 contained more IL-18 and IL-1β as compared with supernatants of Mϕ1 stimulated with isolated TLR agonists, and induced IFN-γ production in human CD56+ cells in an IL-23 and IL-1β-dependent but IL-12-independent manner. In addition, IL-23 together with IL-18 or IL-1β led to the production of GM-CSF in CD56+ cells. Both IFN-γ and GM-CSF enhanced IL-23 production by monocytes in response to TLR agonists, as well as induced IL-12 production.

Conclusions/Significance

The findings implicate a positive feedback loop in which IL-23 can enhance its release via induction of IFN-γ and GM-CSF. The IL-23 induced cytokines allow for the subsequent production of IL-12 and amplify the IFN-γ production in the type-1 cytokine pathway.  相似文献   

13.

Introduction

Although IL-1β is believed to be crucial in the pathogenesis of osteoarthritis (OA), the IL-1β blockade brings no therapeutic benefit in human OA and results in OA aggravation in several animal models. We explored the role of a cytokine signaling 1 (SOCS1) suppressor as a regulatory modulator of IL-1β signaling in chondrocytes.

Methods

Cartilage samples were obtained from patients with knee OA and those without OA who underwent surgery for femur-neck fracture. SOCS1 expression in cartilage was assessed with immunohistochemistry. IL-1β-induced SOCS1 expression in chondrocytes was analyzed with quantitative polymerase chain reaction and immunoblot. The effect of SOCS1 on IL-1β signaling pathways and the synthesis of matrix metalloproteinases (MMPs) and aggrecanase-1 was investigated in SOCS1-overexpressing or -knockdown chondrocytes.

Results

SOCS1 expression was significantly increased in OA cartilage, especially in areas of severe damage (P < 0.01). IL-1β stimulated SOCS1 mRNA expression in a dose-dependent pattern (P < 0.01). The IL-1β-induced production of MMP-1, MMP-3, MMP-13, and ADAMTS-4 (aggrecanase-1, a disintegrin and metalloproteinase with thrombospondin motifs 4) was affected by SOCS1 overexpression or knockdown in both SW1353 cells and primary human articular chondrocytes (all P values < 0.05). The inhibitory effects of SOCS1 were mediated by blocking p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) activation, and by downregulating transforming growth factor-β-activated kinase 1 (TAK1) expression.

Conclusions

Our results show that SOCS1 is induced by IL1-β in OA chondrocytes and suppresses the IL-1β-induced synthesis of matrix-degrading enzymes by inhibiting IL-1β signaling at multiple levels. It suggests that the IL-1β-inducible SOCS1 acts as a negative regulator of the IL-1β response in OA cartilage.  相似文献   

14.

Background

Waddlia chondrophila (W. chondrophila) is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus). This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity.

Methodology/Principal Findings

Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i.) and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways.

Conclusions/Significance

W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.  相似文献   

15.

Background

Mycoplasma hyorhinis (M.hyorhinis, M.hy) is associated with development of gastric and prostate cancers. The NLRP3 inflammasome, a protein complex controlling maturation of important pro-inflammatory cytokines interleukin (IL)-1β and IL-18, is also involved in tumorigenesis and metastasis of various cancers.

Methodology/Principal Findings

To clarify whether M.hy promoted tumor development via inflammasome activation, we analyzed monocytes for IL-1β and IL-18 production upon M.hy challenge. When exposed to M.hy, human monocytes exhibited rapid and robust IL-1β and IL-18 secretion. We further identified that lipid-associated membrane protein (LAMP) from M.hy was responsible for IL-1β induction. Applying competitive inhibitors, gene specific shRNA and gene targeted mice, we verified that M.hy induced IL-1β secretion was NLRP3-dependent in vitro and in vivo. Cathepsin B activity, K+ efflux, Ca2+ influx and ROS production were all required for the NLRP3 inflammasome activation by M.hy. Importantly, it is IL-1β but not IL-18 produced from macrophages challenged with M.hy promoted gastric cancer cell migration and invasion.

Conclusions

Our data suggest that activation of the NLRP3 inflammasome by M.hy may be associated with its promotion of gastric cancer metastasis, and anti-M.hy therapy or limiting NLRP3 signaling could be effective approach for control of gastric cancer progress.  相似文献   

16.

Background

While lung transplantation is an increasingly utilized therapy for advanced lung diseases, chronic rejection in the form of Bronchiolitis Obliterans Syndrome (BOS) continues to result in significant allograft dysfunction and patient mortality. Despite correlation of clinical events with eventual development of BOS, the causative pathophysiology remains unknown. Airway epithelial cells within the region of inflammation and fibrosis associated with BOS may have a participatory role.

Methods

Transplant derived airway epithelial cells differentiated in air liquid interface culture were treated with IL-1β and/or cyclosporine, after which secretion of cytokines and growth factor and gene expression for markers of epithelial to mesenchymal transition were analyzed.

Results

Secretion of IL-6, IL-8, and TNF-α, but not TGF-β1, was increased by IL-1β stimulation. In contrast to previous studies using epithelial cells grown in submersion culture, treatment of differentiated cells in ALI culture with cyclosporine did not elicit cytokine or growth factor secretion, and did not alter IL-6, IL-8, or TNF-α production in response to IL-1β treatment. Neither IL-1β nor cyclosporine elicited expression of markers of the epithelial to mesenchymal transition E-cadherin, EDN-fibronectin, and α-smooth muscle actin.

Conclusion

Transplant derived differentiated airway epithelial cell IL-6, IL-8, and TNF-α secretion is not regulated by cyclosporine in vitro; these cells thus may participate in local inflammatory responses in the setting of immunosuppression. Further, treatment with IL-1β did not elicit gene expression of markers of epithelial to mesenchymal transition. These data present a model of differentiated airway epithelial cells that may be useful in understanding epithelial participation in airway inflammation and allograft rejection in lung transplantation.  相似文献   

17.

Background

An IFN-γ response to M. tuberculosis-specific antigens is an effective biomarker for M. tuberculosis infection but it cannot discriminate between latent TB infection and active TB disease. Combining a number of cytokine/chemokine responses to M. tuberculosis antigens may enable differentiation of latent TB from active disease.

Methods

Asymptomatic recently-exposed individuals (spouses of TB patients) were recruited and tuberculin skin tested, bled and followed-up for two years. Culture supernatants, from a six-day culture of diluted whole blood samples stimulated with M. tuberculosis-derived PPD or ESAT-6, were measured for IFN-γ, IL-10, IL-13, IL-17, TNF-α and CXCL10 using cytokine ELISAs. In addition, 15 patients with sputum smear-positive pulmonary TB were recruited and tested.

Results

Spouses with positive IFN-γ responses to M. tuberculosis ESAT-6 (>62.5 pg/mL) and TB patients showed high production of IL-17, CXCL10 and TNF-α. Higher production of IL-10 and IL-17 in response to ESAT-6 was observed in the spouses compared with TB patients while the ratios of IFN-γ/IL-10 and IFN-γ/IL-17 in response to M. tuberculosis-derived PPD were significantly higher in TB patients compared with the spouses. Tuberculin skin test results did not correlate with cytokine responses.

Conclusions

CXCL10 and TNF-α may be used as adjunct markers alongside an IFN-γ release assay to diagnose M. tuberculosis infection, and IL-17 and IL-10 production may differentiate individuals with LTBI from active TB.  相似文献   

18.

Background

Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure.

Methods

Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation.

Results

Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1β-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice.

Conclusion

Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure.  相似文献   

19.

Introduction

Osteoarthritis (OA) is a whole joint disease, and characterized by progressive degradation of articular cartilage, synovial hyperplasia, bone remodeling and angiogenesis in various joint tissues. Exosomes are a type of microvesicles (MVs) that may play a role in tissue-tissue and cell-cell communication in homeostasis and diseases. We hypothesized that exosomes function in a novel regulatory network that contributes to OA pathogenesis and examined the function of exosomes in communication among joint tissue cells.

Methods

Human synovial fibroblasts (SFB) and articular chondrocytes were obtained from normal knee joints. Exosomes isolated from conditioned medium of SFB were analyzed for size, numbers, markers and function. Normal articular chondrocytes were treated with exosomes from SFB, and Interleukin-1β (IL-1β) stimulated SFB. OA-related genes expression was quantified using real-time PCR. To analyze exosome effects on cartilage tissue, we performed glycosaminoglycan release assay. Angiogenic activity of these exosomes was tested in migration and tube formation assays. Cytokines and miRNAs in exosomes were analyzed by Bio-Plex multiplex assay and NanoString analysis.

Results

Exosomes from IL-1β stimulated SFB significantly up-regulated MMP-13 and ADAMTS-5 expression in articular chondrocytes, and down-regulated COL2A1 and ACAN compared with SFB derived exosomes. Migration and tube formation activity were significantly higher in human umbilical vein endothelial cells (HUVECs) treated with the exosomes from IL-1β stimulated SFB, which also induced significantly more proteoglycan release from cartilage explants. Inflammatory cytokines, IL-6, MMP-3 and VEGF in exosomes were only detectable at low level. IL-1β, TNFα MMP-9 and MMP-13 were not detectable in exosomes. NanoString analysis showed that levels of 50 miRNAs were differentially expressed in exosomes from IL-1β stimulated SFB compared to non-stimulated SFB.

Conclusions

Exosomes from IL-1β stimulated SFB induce OA-like changes both in vitro and in ex vivo models. Exosomes represent a novel mechanism by which pathogenic signals are communicated among different cell types in OA-affected joints.  相似文献   

20.

Objective

In the pathogenesis of coronary atherosclerosis, local macrophage-driven inflammation and secretion of proinflammatory cytokines, interleukin-1β (IL-1β) in particular, are recognized as key factors. Moderate alcohol consumption is associated with a reduced risk of coronary artery disease mortality. Here we examined in cultured human macrophages whether ethanol modulates the intracellular processes involved in the secretion of IL-1β.

Results

Ethanol decreased dose-dependently the production of mature IL-1β induced by activators of the NLRP3 inflammasome, i.e. ATP, cholesterol crystals, serum amyloid A and nigericin. Ethanol had no significant effect on the expression of NLRP3 or IL1B mRNA in LPS-primed macrophages. Moreover, secretion of IL-1β was decreased in parallel with reduction of caspase-1 activation, demonstrating that ethanol inhibits inflammasome activation instead of synthesis of pro-IL-1β. Acetaldehyde, a highly reactive metabolite of ethanol, had no effect on the ATP-induced IL-1β secretion. Ethanol also attenuated the secretion of IL-1β triggered by synthetic double-stranded DNA, an activator of the AIM2 inflammasome. Ethanol conferred the inhibitory functions by attenuating the disruption of lysosomal integrity and ensuing leakage of the lysosomal protease cathepsin B and by reducing oligomerization of ASC.

Conclusion

Ethanol-induced inhibition of the NLRP3 inflammasome activation in macrophages may represent a biological pathway underlying the protective effect of moderate alcohol consumption on coronary heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号