首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitination and degradation. Using a gain-of-function assay, we examined the relationships between S2-SLF1 (for S2-allelic product of Type-1 SLF) and four S-RNases. The results suggest that S2-SLF1 interacts with S7- and S13-RNases, and the previously identified S1- and S3-RNases, but not with S5- or S11-RNase. An artificial microRNA expressed by the S2-SLF1 promoter, but not by the vegetative cell-specific promoter, Late Anther Tomato 52, suppressed expression of S2-SLF1 in S2 pollen, suggesting that SLF1 is specific to the generative cell. The S2 pollen with S2-SLF1 suppressed was compatible with S3-, S5-, S7-, S11-, and S13-carrying pistils, confirming that other SLF proteins are responsible for detoxifying S5- and S11-RNases and suggesting that S2-SLF1 is not the only SLF in S2 pollen that interacts with S3-, S7-, and S13-RNases. Petunia may have evolved at least two types of SLF proteins to detoxify any non-self S-RNase to minimize the deleterious effects of mutation in any SLF.  相似文献   

2.
Models of codon substitution are developed that incorporate physicochemical properties of amino acids. When amino acid sites are inferred to be under positive selection, these models suggest the nature and extent of the physicochemical properties under selection. This is accomplished by first partitioning the codons on the basis of some property of the encoded amino acids. This partition is used to parametrize the rates of property-conserving and property-altering base substitutions at the codon level by means of finite mixtures of Markov models that also account for codon and transition:transversion biases. Here, we apply this method to two positively selected receptors involved in ligand-recognition: the class I alleles of the human major histocompatibility complex (MHC) of known structure and the S-locus receptor kinase (SRK) of the sporophytic self-incompatibility system (SSI) in cruciferous plants (Brassicaceae), whose structure is unknown. Through likelihood ratio tests we demonstrate that at some sites, the positively selected MHC and SRK proteins are under physicochemical selective pressures to alter polarity, volume, polarity and/or volume, and charge to various extents. An empirical Bayes approach is used to identify sites that may be important for ligand recognition in these proteins.Reviewing Editor : Dr. Willie Swanson  相似文献   

3.
BackgroundIn order to meet the demands of the ever-increasing human population, it has become necessary to raise climate-resilient crops. Plant breeding, which involves crossing and selecting superior gene pools, has contributed tremendously towards achieving this goal during the past few decades. The relatively newer methods of crop improvement based on genetic engineering are relatively simple, and targets can be achieved in an expeditious manner. More recently emerged genome editing technique using CRISPR has raised strong hopes among plant scientists for precise integration of valuable traits and removal of undesirable ones.ConclusionGenome editing using Site-Specific Nucleases (SSNs) is a good alternative to the plant breeding and genetic engineering approaches as it can modify the genomes specifically and precisely at the target site in the host genome. Another added advantage of the genome editing approach is the simpler biosafety regulations that have been adopted by many countries for commercialization of the products thus generated. This review provides a critical assessment of the available methods for improving the stress tolerance in crop plants. Special emphasis has been given on genome editing approach in light of the diversity of tools, which are being discovered on an everyday basis and the practical applications of the same. This information will serve as a beginner’s guide to initiate the crop improvement programs as well as giving technical insight to the expert to plan the research strategically to tackle even multigenic traits in crop plants.  相似文献   

4.
Self-incompatibility (SI) in the Solanaceae, Rosaceae and Scrophulariaceae is controlled by the polymorphic S locus, which contains two separate genes encoding pollen and pistil determinants in SI interactions. The S-RNase gene encodes the pistil determinant, whereas the pollen determinant gene, named the pollen S gene, has not yet been identified. Here, we set out to construct an integrated genetic and physical map of the S locus of Petunia inflata and identify any additional genes located at this locus. We first conducted chromosome walking at the S2 locus using BAC clones that contained either S2-RNase or one of the nine markers tightly linked to the S locus. Ten separate contigs were constructed, which collectively spanned 4.4 Mb. To identify additional genes located at the S2 locus, a 328-kb region (part of an 881-kb BAC contig) containing S2-RNase was completely sequenced. Approximately 76% of the region contained repetitive sequences, including transposon-like sequences. Other than S2-RNase, an F-box gene, named PiSLF2 (S2-allele of P. inflata S-locus F-box gene), was the only predicted gene whose deduced amino acid sequence was similar to the sequences of known proteins in the database. Two different cDNA selection methods were used to identify additional genes in the 881-kb contig; 11 groups of cDNA clones were identified in addition to those for S2-RNase and PiSLF2. RT-PCR analysis of expression profiles and PCR analysis of BAC clones and genomic DNA confirmed that seven of these 11 newly identified genes were located in the 881-kb contig.  相似文献   

5.
南楠  曾凡锁  詹亚光 《植物学报》2008,25(1):102-111
DNA甲基化是表观遗传学研究的热点问题之一, 植物DNA甲基化的研究对植物研究领域的发展有着举足轻重的作用。本文阐述了植物DNA甲基化的相关机制, 其中包括RdDM(RNA-dependent DNA methylation)、DNA 甲基化与组蛋白修饰 以及DNA 去甲基化等近几年研究的热点问题; 讨论了DNA甲基化在植物发育中的功能(包括基因组防御和调控基因表达)、DNA甲基化与转基因沉默的关系以及其在表观遗传学中的地位。最后就目前国内外研究植物DNA甲基化所采取的常用策略,即高效液相色谱法、亚硫酸盐测序法、甲基化敏感的限制性内切酶结合Southern杂交分析法和MSAP(methylation-sensitive amplified Polymorphism)法进行了详尽的介绍和讨论。  相似文献   

6.
植物DNA甲基化及其研究策略   总被引:3,自引:0,他引:3  
DNA甲基化是表观遗传学研究的热点问题之一,植物DNA甲基化的研究对植物研究领域的发展有着举足轻重的作用。本文阐述了植物DNA甲基化的相关机制,其中包括RdDM(RNA—dependent DNA methylation)、DNA甲基化与组蛋白修饰以及DNA去甲基化等近几年研究的热点问题:讨论了DNA甲基化在植物发育中的功能(包括基因组防御和调控基因表达)、DNA甲基化与转基因沉默的关系以及其在表观遗传学中的地位。最后就目前国内外研究植物DNA甲基化所采取的常用策略,即高效液相色谱法、亚硫酸盐测序法、甲基化敏感的限制性内切酶结合Southern杂交分析法和MSAP(methylation—sensitive amplified polymorphism)法进行了详尽的介绍和讨论。  相似文献   

7.
The process of sex differentiation in fishes is regulated by genetic and environmental factors. The sex of Patagonian pejerrey (Odontesthes hatcheri) appears to be under strong genotypic control (GSD) because the sex ratios are balanced (1:1) between 17°C and 23°C. However, sex ratios become female-biased at <15°C and male-biased at 25°C, which shows that this species also possesses some degree of temperature-dependent sex determination (TSD). Identification of the genetic sex of an individual will help elucidate the molecular basis of sex differentiation in this species. In this study, we used amplified fragment length polymorphism (AFLP) analysis to develop a genetic linkage map for both sexes and a sex-linked DNA marker for Patagonian pejerrey. The AFLP analysis of 23 male and 23 female progeny via 64 primer combinations produced a total of 153 bands. The genetic linkage map consisted of 79 markers in 20 linkage groups and 48 markers in 15 linkage groups for males and females, respectively. One AFLP marker tightly linked to the sex-determining locus was identified: the marker, ACG/CAA-217, amplified to the male-specific DNA fragment. Sequence analysis of this region revealed a single nucleotide polymorphism (SNP) between males and females, which was converted into a SNP marker. This marker provides genetic confirmation that the sex of Patagonian pejerrey is determined genetically and would be useful for the analysis of the molecular basis of GSD and TSD in this species.  相似文献   

8.
With the fairly recent advent of inexpensive, rapid sequencing technologies that continue to improve sequencing efficiency and accuracy, many species of animals, plants, and microbes have annotated genomic information publicly available. The focus on genomics has thus been shifting from the collection of whole sequenced genomes to the study of functional genomics. Reverse genetic approaches have been used for many years to advance from sequence data to the resulting phenotype in an effort to deduce the function of a gene in the species of interest. Many of the currently used approaches (RNAi, gene knockout, site-directed mutagenesis, transposon tagging) rely on the creation of transgenic material, the development of which is not always feasible for many plant or animal species. TILLING is a non-transgenic reverse genetics approach that is applicable to all animal and plant species which can be mutagenized, regardless of its mating / pollinating system, ploidy level, or genome size. This approach requires prior DNA sequence information and takes advantage of a mismatch endonuclease to locate and detect induced mutations. Ultimately, it can provide an allelic series of silent, missense, nonsense, and splice site mutations to examine the effect of various mutations in a gene. TILLING has proven to be a practical, efficient, and an effective approach for functional genomic studies in numerous plant and animal species. EcoTILLING, which is a variant of TILLING, examines natural genetic variation in populations and has been successfully utilized in animals and plants to discover SNPs including rare ones. In this review, TILLING and EcoTILLING techniques, beneficial applications and limitations from plant and animal studies are discussed.Key Words: Reverse genetics, functional genomics, TILLING (target induced local lesions in genomes), EcoTILLING (Ecotype TILLING), sequencing, SNP (single nucleotide polymorphism), genetic stocks.  相似文献   

9.
Parkinson disease (PD) is known as a common progressive neurodegenerative disease which is clinically diagnosed by the manifestation of numerous motor and nonmotor symptoms. PD is a genetically heterogeneous disorder with both familial and sporadic forms. To date, researches in the field of Parkinsonism have identified 23 genes or loci linked to rare monogenic familial forms of PD with Mendelian inheritance. Biochemical studies revealed that the products of these genes usually play key roles in the proper protein and mitochondrial quality control processes, as well as synaptic transmission and vesicular recycling pathways within neurons. Despite this, large number of patients affected with PD typically tends to show sporadic forms of disease with lack of a clear family history. Recent genome-wide association studies (GWAS) meta-analyses on the large sporadic PD case–control samples from European populations have identified over 12 genetic risk factors. However, the genetic etiology that underlies pathogenesis of PD is also discussed, since it remains unidentified in 40% of all PD-affected cases. Nowadays, with the emergence of new genetic techniques, international PD genomics consortiums and public online resources such as PDGene, there are many hopes that future large-scale genetics projects provide further insights into the genetic etiology of PD and improve diagnostic accuracy and therapeutic clinical trial designs.  相似文献   

10.
Three different approaches to improve tertiary fold prediction using the genetic algorithm are discussed: (i) Refinement of the search strategy, (ii) combination of prediction and experiment and (iii) inclusion of experimental data as selection criteria into the genetic algorithm. Examples from our current work are presented for refined strategies against crowding in solution space, definition of domain boundaries and secondary structure in combination with experiment, and direct incorporation of experimentally known distance constraints into the fitness function.Electronic Supplementary Material available.  相似文献   

11.
短串联重复序列D7S2201基因座的群体遗传学研究   总被引:3,自引:5,他引:3  
黄代新  张林  吴梅筠  陈国弟  陈于波 《遗传》2001,23(2):107-110
用扩增片段长度多态性技术分析短串联重复序列D7S2201基因座的遗传多态性,在262个中国成都地区汉族无关个体及119个泰国曼谷地区泰人无关个体中分别发现7个和5个等位基因,首次获得该基因座在两群体中的频率分布,其等位基因片段大小范围为100~124bp。两群体的基因型频率分布均符合Hardy Weinberg平衡。该基因座在两群体中的个人识别能力(PD)、杂合度(H)、多态性信息含量(CPI)及非父排除率(PE)分别为0.7038、0.5992、0.4789、0.2900和0.7351、0.5882、0.5012、0.2770。家系调查证实了等位基因的传递遵循孟德尔遗传规律。χ2检验表明两群体间等位基因频率分布无显著性差异。 Abstract:The polymorphism of a new short tandem repeat (STR) locus D7S2201 was analyzed by using AmpFLP. Seven alleles were observed in 262 unrelated Chinese individuals living in Chengdu and five alleles in 119 unrelated Thai individuals living in Bangkok, the ranges of fragment size were 100~124bp. The genotypes distributions of D7S2201 locus in the two populations were in accordance with Hardy Weinberg equilibrium. The discriminating power (PD), observed heterozygosity (H), polymorphism information content (CPI) and power of exclusion (PE) were 0.7038, 05992, 04789, 02900 in Chinese population and 0.7351, 0.5882, 0.5012, 0.2770 in Thai population respectively. Family studies confirmed Mendelian inheritance of alleles. No significant difference was observed between the two populations.  相似文献   

12.
Focal adhesion kinase (FAK) is a protein tyrosine kinase that regulates cellular adhesion, motility, proliferation and survival in various types of cells. Interestingly, FAK is activated and/or overexpressed in advanced cancers, and promotes cancer progression and metastasis. For this reason, FAK became a potential therapeutic target in cancer, and small molecule FAK inhibitors have been developed and are being tested in clinical phase trials. These inhibitors have demonstrated to be effective by inducing tumor cell apoptosis in addition to reducing metastasis and angiogenesis. Furthermore, several genetic FAK mouse models have made advancements in understanding the specific role of FAK both in tumors and in the tumor environment. In this review, we discuss FAK inhibitors as well as genetic mouse models to provide mechanistic insights into FAK signaling and its potential in cancer therapy.  相似文献   

13.
Polyploidy has played a major role in the evolution of higher plants. Precise control of chromosome pairing is vital for conferring meiotic regularity, and hence reproductive stability in allopolyploids. In this review, we examine whether strong evidence has accumulated for the presence and activity of pairing control genes in different allopolyploid species that are entirely bivalent forming and that display a strict disomic inheritance. We show that very good evidence has been adduced in Triticum species, Avena sativa, Festuca arundinacea, Brassica napus, Gossypium hirsutum, and G. barbadense, and in amphidiploids related to the diploid species Lolium perenne, L. multiflorum, and L. rigidum. More circumstantial evidence has been obtained for polyploids in the genera Aegilops, Hordeum, Nicotiana, and Coffea, which have received far less attention than the other species. Although these pairing regulators seem to control different processes operating throughout the premeiotic interphase and the meiotic prophase, little is known about their precise mode of action. We present three hypotheses that have been proposed to explain the origin and evolution of pairing control genes; none of them has been supported by direct evidence, and the origin of most pairing suppressors is still unknown. Accordingly, the study of pairing control genes is still an important task for understanding the stabilization and establishment of allopolyploid species.  相似文献   

14.
Self-incompatibility in Brassica oleracea is controlled by the highly polymorphic S locus. Isolation and subsequent characterization of the S-locus-glycoprotein (SLG) gene, which encodes the S-locus-specific glycoprotein (SLSG), has revealed the presence of a self-incompatibility multigene family. One of these S-locus-related genes, SLR1, has been shown to be expressed. In this study we present the isolation and preliminary characterization of a second expressed S-locus-related sequence, SLR2. Through restriction fragment length polymorphism (RFLP) linkage analysis we demonstrate that the SLR1 and SLR2 loci reside approximately 18.5 map units apart in one linkage group that segregates independently of the S-locus. The identification of a second SLR gene expressed in stigmas suggests that loci unlinked to the S-locus may play a role in the self-incompatibility response, or in pollination in general.  相似文献   

15.
The gene for autosomal recessive forms of spinal muscular atrophy (SMA) has recently been mapped to chromosome 5ql3, within a 4-cM region between the blocks D5S465/D5S125 and MAP-1B/D5S112. We identified two new highly polymorphic microsatellite DNA markers—namely, AFM265wf5 (D5S629) and AFM281yh9 (D5S637)—which are the closest markers to the SMA locus. Multilocus analysis by the location-score method was used to establish the best estimate of the SMA gene location. Our data suggest that the most likely location for SMA is between locus D5S629 and the block D5S637/D5S351/MAP-1B/D5S112/D5S357. Genetic analysis of inbred SMA families, based on homozygosity by descent and physical mapping using mega-YACs, gave additional information for the loci order as follows: cen–D5S6–D5S125/D5S465–D5S435–D5S629–SMA–D5S637–D5S351–MAP–1B/D5S112–D5S357–D5S39–tel. These data give the direction for bidirectional walking in order to clone this interval and isolate the SMA gene.  相似文献   

16.
At the beginning of this special issue of Acta Biotheoretica carrying the above title, we present a brief overview on currently important topics that have been brought up during the last “European Conference on Mathematical and Theoretical Biology” in Edinburgh. After emphasizing the need for a “synthetic biology” also from the side of theory, model building and analysis, we survey most plenary talks of this Conference and a selected series of eigth review articles, which are mainly related to corresponding minisymposia, reflecting the current state of the art and the lively discussion within this interdisciplinary field.  相似文献   

17.
Through an Australian case study, this article considers the broad issue of involving multiple stakeholders in processes designed to resolve complex issues that link environment, society, health, and sustainability. The approach adopted to address native vegetation management in New South Wales, a state of Australia, is an interesting attempt at directly involving farming communities with other stakeholders in formulating vegetation management plans. The process included a unique combination of centralized interest group mediation and decentralized regional planning processes through regional committees. The article draws upon evidence from one Regional Vegetation Committee in order to highlight some of the difficulties in coupling together centralized representative group bargaining with decentralized deliberative decision making. Suggestions are made as to further areas for research.  相似文献   

18.
Operationalizing the Cartagena Protocol on Biosafety will require resolving disputes about the meaning of the term 'precautionary approach' in the treaty text. Although the terms precautionary approach and precautionary principle have been referred to in the regulation of transgenic plants for nearly a decade, no customary expectation of what actions either requires has developed. If specific obligations for regulators, regulated entities, or both are not established, compliance will be impossible. This essay examines various interpretations of the precautionary principle, discusses their shortcomings, and suggests a way to rethink the regulation of transgenic plants that focuses on genuine uncertainty. Transgenic plants with familiar phenotypes should be subject to considerably less regulatory scrutiny than those whose risks are genuinely unknown, or known to pose heightened risk.  相似文献   

19.
Moldova has a rich historical and cultural heritage, which may be reflected in the current genetic makeup of its population. To date, no comprehensive studies exist about the population genetic structure of modern Moldavians. To bridge this gap with respect to paternal lineages, we analyzed 37 binary and 17 multiallelic (STRs) polymorphisms on the non-recombining portion of the Y chromosome in 125 Moldavian males. In addition, 53 Ukrainians from eastern Moldova and 54 Romanians from the neighboring eastern Romania were typed using the same set of markers. In Moldavians, 19 Y chromosome haplogroups were identified, the most common being I-M423 (20.8%), R-M17* (17.6%), R-M458 (12.8%), E-v13 (8.8%), R-M269* and R-M412* (both 7.2%). In Romanians, 14 haplogroups were found including I-M423 (40.7%), R-M17* (16.7%), R-M405 (7.4%), E-v13 and R-M412* (both 5.6%). In Ukrainians, 13 haplogroups were identified including R-M17 (34.0%), I-M423 (20.8%), R-M269* (9.4%), N-M178, R-M458 and R-M73 (each 5.7%). Our results show that a significant majority of the Moldavian paternal gene pool belongs to eastern/central European and Balkan/eastern Mediterranean Y lineages. Phylogenetic and AMOVA analyses based on Y-STR loci also revealed that Moldavians are close to both eastern/central European and Balkan-Carpathian populations. The data correlate well with historical accounts and geographical location of the region and thus allow to hypothesize that extant Moldavian paternal genetic lineages arose from extensive recent admixture between genetically autochthonous populations of the Balkan-Carpathian zone and neighboring Slavic groups.  相似文献   

20.
Abstract: Post-embryonic development is controlled by two types of meristems: apical and lateral. There has been considerable progress recently in understanding the function of root and shoot apical meristems at the molecular level. Knowledge of analogous processes in the lateral, or secondary, meristems, i.e. the vascular cambium or cork cambium, is, however, rudimentary. This is despite the fact that much of the diversity in the plant kingdom is based on the differential functions of these meristems, emphasizing the importance of lateral meristems in the development of different plant forms. The vascular cambium is particularly important for woody plants, but it also plays an important role during the development of various herbaceous species, such as Arabidopsis thaliana. In this review, we focus on the two basic functions of cambial activity: cell proliferation and pattern formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号