首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Over 450 transfer RNA (tRNA) genes have been annotated in the human genome. Reliable quantitation of tRNA levels in human samples using microarray methods presents a technical challenge. We have developed a microarray method to quantify tRNAs based on a fluorescent dye-labeling technique. The first-generation tRNA microarray consists of 42 probes for nuclear encoded tRNAs and 21 probes for mitochondrial encoded tRNAs. These probes cover tRNAs for all 20 amino acids and 11 isoacceptor families. Using this array, we report that the amounts of tRNA within the total cellular RNA vary widely among eight different human tissues. The brain expresses higher overall levels of nuclear encoded tRNAs than every tissue examined but one and higher levels of mitochondrial encoded tRNAs than every tissue examined. We found tissue-specific differences in the expression of individual tRNA species, and tRNAs decoding amino acids with similar chemical properties exhibited coordinated expression in distinct tissue types. Relative tRNA abundance exhibits a statistically significant correlation to the codon usage of a collection of highly expressed, tissue-specific genes in a subset of tissues or tRNA isoacceptors. Our findings demonstrate the existence of tissue-specific expression of tRNA species that strongly implicates a role for tRNA heterogeneity in regulating translation and possibly additional processes in vertebrate organisms.  相似文献   

2.
tRNA isodecoders share the same anticodon but have differences in their body sequence. An unexpected result from genome sequencing projects is the identification of a large number of tRNA isodecoder genes in mammalian genomes. In the reference human genome, more than 270 isodecoder genes are present among the approximately 450 tRNA genes distributed among 49 isoacceptor families. Whether sequence diversity among isodecoder tRNA genes reflects functional variability is an open question. To address this, we developed a method to quantify the efficiency of tRNA isodecoders in stop-codon suppression in human cell lines. First, a green fluorescent protein (GFP) gene that contains a single UAG stop codon at two distinct locations is introduced. GFP is only produced when a tRNA suppressor containing CUA anticodon is co-transfected with the GFP gene. The suppression efficiency is examined for 31 tRNA isodecoders (all contain CUA anticodon), 21 derived from four isoacceptor families of tRNASer genes, 7 from five families of tRNALeu genes, and 3 from three families of tRNAAla genes. We found that isodecoder tRNAs display a large difference in their suppression efficiency. Among those with above background suppression activity, differences of up to 20-fold were observed. We were able to tune tRNA suppression efficiency by subtly adjusting the tRNA sequence and inter-convert poor suppressors into potent ones. We also demonstrate that isodecoder tRNAs with varying suppression efficiencies have similar stability and exhibit similar levels of aminoacylation in vivo. Our results indicate that naturally occurring tRNA isodecoders can have large functional variations and suggest that some tRNA isodecoders may perform a function distinct from translation.  相似文献   

3.
Elongation in protein translation is strongly dependent on the availability of mature transfer RNAs (tRNAs). The relative concentrations of the tRNA isoacceptors determine the translation efficiency in unicellular organisms. However, the degree of correspondence of codons and the relevant tRNA isoacceptors serves as an estimator for translation efficiency in all organisms. In this study, we focus on the translational capacity of the human proteome. We show that the correspondence between the codon usage and tRNAs can be improved by combining experimental measurements with the genomic copy number of isoacceptor groups. We show that there are technologies of tRNA measurements that are useful for our analysis. However, fragments of tRNAs do not agree with translational capacity. It was shown that there is a significant increase in the absolute levels of tRNA genes in cancerous cells in comparison to healthy cells. However, we find that the relative composition of tRNA isoacceptors in healthy, cancerous, or transformed cells remains almost identical. This result may indicate that maintaining the relative tRNA composition in cancerous cells is advantageous via its stabilizing of the effectiveness of translation.  相似文献   

4.
Analysis of codon usage for chick Type I collagen indicates that 89% of glycine codons are GGU/C. Since collagens are one-third glycine, chick Type I collagen synthesis should require large amounts of tRNAGly with the anticodon GCC. Earlier chromatographic studies of chick tRNA had indicated that connective tissues showed altered tRNAGly isoacceptor profiles [P. J. Christner and J. Rosenbloom (1976) Arch. Biochem. Biophys. 172, 399-409; H. J. Drabkin and L. N. Lukens (1978) J. Biol. Chem. 253, 6233-6241]. We have therefore used both two-dimensional gel electrophoresis and hybridization analysis to investigate whether collagen synthesis in chick connective tissues is associated with expression of a novel tRNAGly. Liver and calvaria tRNAs produced qualitatively similar patterns when separated on 2-D gels. Northern blots of 2-D-separated tRNAs from liver and calvaria, when hybridized to genes for vertebrate tRNAGly isoacceptors with GCC or UCC anticodons, showed hybridization to the same tRNAs in both tissues. Quantitation of tRNA species by dot blot hybridization indicated an increase in levels of the tRNAGly isoacceptor with anticodon GCC. Tissues synthesizing Type I collagen had a two- to threefold increase in this tRNA while tissues synthesizing Type II collagen showed a more modest increase. We conclude that elevated tRNAGly levels associated with collagen synthesis are due to increased amounts of the same isoacceptor which is the major tRNAGly in other tissues.  相似文献   

5.
Transfer RNAs (tRNAs) are typically considered housekeeping products with little regulatory function. However, several studies over the past 10 years have linked tRNA misregulation to cancer. We have previously reported that tRNA levels are significantly elevated in breast cancer and multiple myeloma cells. To further investigate the cellular and physiological effects of tRNA overexpression, we overexpressed tRNAiMet in two human breast epithelial cell lines. We then determined tRNA abundance changes and performed phenotypic characterization. Overexpression of tRNAiMet significantly altered the global tRNA expression profile and resulted in increased cell metabolic activity and cell proliferation. Our results extend the relevance of tRNA overexpression in human cells and underscore the complexity of cellular regulation of tRNA expression.  相似文献   

6.
Depending on their genetic origin, plant mitochondrial tRNAs are classified into three categories: the "native" and "chloroplast-like" mitochondrial-encoded tRNAs and the imported nuclear-encoded tRNAs. The number and identity of tRNAs in each category change from one plant specie to another. As some plant mitochondrial trn genes were found to be not expressed, and as all Arabidopsis thaliana mitochondrial trn genes are known, we systematically tested the expression of A. thaliana mitochondrial trn genes. Both the "chloroplast-like" trnW and trnM-e genes were found to be not expressed. These exceptions are remarkable since trnW and trnM-e are expressed in the mitochondria of other land plants. Whereas we could not conclude which tRNA(Met) compensates the lack of expression of trnM-e, we showed that the cytosolic tRNA(Trp) is present in A. thaliana mitochondria, thus compensating the absence of expression of the mitochondrial-encoded trnW.  相似文献   

7.
Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvation results in 'selective charging' where the charging levels of some tRNA isoacceptors will be low and those of others will remain high. Here, we developed a microarray for the analysis of charged fractions of tRNAs and measured charging for all Escherichia coli tRNAs before and during leucine, threonine or arginine starvation. Before starvation, most tRNAs were fully charged. During starvation, the isoacceptors in the leucine, threonine or arginine families showed selective charging when cells were starved for their cognate amino acid, directly confirming the theoretical prediction. Codons read by isoacceptors that retain high charging can be used for efficient translation of genes that are essential during amino-acid starvation. Selective charging can explain anomalous patterns of codon usage in the genes for different families of proteins.  相似文献   

8.
Metazoan organisms have many tRNA genes responsible for decoding amino acids. The set of all tRNA genes can be grouped in sets of common amino acids and isoacceptor tRNAs that are aminoacylated by corresponding aminoacyl-tRNA synthetases. Analysis of tRNA alignments shows that, despite the high number of tRNA genes, specific tRNA sequence motifs are highly conserved across multicellular eukaryotes. The conservation often extends throughout the isoacceptors and isodecoders with, in some cases, two sets of conserved isodecoders. This study is focused on non-Watson–Crick base pairs in the helical stems, especially GoU pairs. Each of the four helical stems may contain one or more conserved GoU pairs. Some are amino acid specific and could represent identity elements for the cognate aminoacyl tRNA synthetases. Other GoU pairs are found in more than a single amino acid and could be critical for native folding of the tRNAs. Interestingly, some GoU pairs are anticodon-specific, and others are found in phylogenetically-specific clades. Although the distribution of conservation likely reflects a balance between accommodating isotype-specific functions as well as those shared by all tRNAs essential for ribosomal translation, such conservations may indicate the existence of specialized tRNAs for specific translation targets, cellular conditions, or alternative functions.  相似文献   

9.
The mitochondrial genome of Chlamydomonas reinhardtii only encodes three expressed tRNA genes, thus most mitochondrial tRNAs are likely imported. The sharing of tRNAs between chloroplasts and mitochondria has been speculated in this organism. We first demonstrate that no plastidial tRNA is present in mitochondria and that the mitochondrial translation mainly relies on the import of nucleus-encoded tRNA species. Then, using northern analysis, we show that the extent of mitochondrial localization for the 49 tRNA isoacceptor families encoded by the C. reinhardtii nuclear genome is highly variable. Until now the reasons for such variability were unknown. By comparing cytosolic and mitochondrial codon usage with the sub-cellular distribution of tRNAs, we provide unprecedented evidence that the steady-state level of a mitochondrial tRNA is linked not only to the frequency of the cognate codon in mitochondria but also to its frequency in the cytosol, then allowing optimal mitochondrial translation.  相似文献   

10.
11.
12.
“Side population” (SP) cells, which pump out the fluorescent dye H33342 via the ABCG2 transporter, define a putative stem/progenitor cell population in the mammary gland. Breast cancer SP cells recently isolated from the MCF-7 cell line possess similar properties and may represent stem cell-like cancer cells. This study extends SP cell analysis to a broad panel of human breast cancer cell lines and investigates the expression of differentiation-associated markers in isolated cancer SP cells. Expression of ABCG2 was determined in 16 breast cancer cell lines by quantitative RT-PCR, Western blotting and immunohistochemistry. Subsequently, all cell lines were screened for the presence of SP cells. Human breast cancer cell lines commonly express ABCG2. ABCG2-immunoreactivity was clearly restricted to rare cancer cells in several cell lines including Cal-51. Analysis of H33342-labeled Cal-51 cells revealed a small fraction of putative SP cells accounting for one percent of all cells. The genuine nature of Cal-51 SP cells was unambiguously verified by demonstrating a 30-fold increased ABCG2-expression in isolated Cal-51 SP cells. During in vitro expansion, Cal-51 SP cells generated heterologous non-SP (NSP) cells and ABCG2-expression declined dramatically. In contrast, NSP cells failed to sustain proliferation. Freshly isolated Cal-51 SP cells also exhibited increased expression of Muc1 and CALLA. Noteworthy, non-malignant mammary epithelial SP cells lack these differentiation markers, highlighting fundamental differences between non-malignant and breast cancer-derived SP cells. In summary, we established Cal-51 SP cells as a novel in vitro model to study differential gene expression in breast cancer-derived SP and NSP cells.  相似文献   

13.
14.
Hanjiang Fu  Qin Liu 《FEBS letters》2009,583(2):437-44
tRNAs play a central role in protein translation, acting as the carrier of amino acids. By cloning microRNAs, we unexpectedly obtained some tRNA fragments generated by tRNA cleavage in the anticodon loop. These tRNA fragments are present in many cell lines and different mouse tissues. In addition, various stress conditions can induce this tRNA cleavage event in mammalian cells. More importantly, angiogenin (ANG), a member of RNase A superfamily, appears to be the nuclease which cleaves tRNAs into tRNA halves in vitro and in vivo. These results imply that angiogenin plays an important physiological role in cell stress response, except for the known function of inducing angiogenesis.  相似文献   

15.
16.
17.
In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs. We traced the evolutionary history of these gene loss events by sequencing mitochondrial genomes from key outgroups (Agrostemma githago and Silene [=Lychnis] chalcedonica). We then performed the first global sequencing of purified plant mitochondrial tRNA populations to characterize the expression of mitochondrial-encoded tRNAs and the identity of imported nuclear-encoded tRNAs. We also confirmed the utility of high-throughput sequencing methods for the detection of tRNA import by sequencing mitochondrial tRNA populations in a species (Solanum tuberosum) with known tRNA trafficking patterns. Mitochondrial tRNA sequencing in Silene revealed substantial shifts in the abundance of some nuclear-encoded tRNAs in conjunction with their recent history of mt-tRNA gene loss and surprising cases where tRNAs with anticodons still encoded in the mitochondrial genome also appeared to be imported. These data suggest that nuclear-encoded counterparts are likely replacing mitochondrial tRNAs even in systems with recent mitochondrial tRNA gene loss, and the redundant import of a nuclear-encoded tRNA may provide a mechanism for functional replacement between translation systems separated by billions of years of evolutionary divergence.  相似文献   

18.
19.
Streptomyces coelicolor undergoes distinct morphological changes as it grows on solid media where spores differentiate into vegetative and aerial mycelium that is followed by the production of spores. Deletion of bldA, encoding the rare tRNA(Leu) UAA, blocks development at the stage of vegetative mycelium formation. From previous data it appears that tRNA(Leu) UAA accumulates relatively late during growth while two other tRNAs do not. Here, we studied the expression of 17 different tRNAs including bldA tRNA, and the RNA subunit of the tRNA processing endoribonuclease RNase P. Our results showed that all selected tRNAs and RNase P RNA increased with time during development. However, accumulation of bldA tRNA and another rare tRNA(Leu) isoacceptor started at an earlier stage compared with the other tRNAs. We also introduced the bldA tRNA anticodon (UAA) into other tRNAs and introduced these into a bldA deletion strain. In particular, one such mutant tRNA derived from the tRNA(Leu) CAA isoacceptor suppressed the bldA phenotype. Thus, the bldA tRNA scaffold is not critical for function as a regulator of S. coelicolor cell differentiation. Further substitution experiments, in which the 5'- and 3'-flanking regions of the suppressor tRNA were changed, indicated that these regions were important for the suppression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号